/* * PowerPC emulation micro-operations for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //#define DEBUG_OP #include "config.h" #include "exec.h" #include "op_helper.h" /* XXX: this is to be suppressed */ #define regs (env) #define FT0 (env->ft0) #define FT1 (env->ft1) #define FT2 (env->ft2) /* XXX: this is to be suppressed... */ #define PPC_OP(name) void OPPROTO glue(op_, name)(void) #define REG 0 #include "op_template.h" #define REG 1 #include "op_template.h" #define REG 2 #include "op_template.h" #define REG 3 #include "op_template.h" #define REG 4 #include "op_template.h" #define REG 5 #include "op_template.h" #define REG 6 #include "op_template.h" #define REG 7 #include "op_template.h" #define REG 8 #include "op_template.h" #define REG 9 #include "op_template.h" #define REG 10 #include "op_template.h" #define REG 11 #include "op_template.h" #define REG 12 #include "op_template.h" #define REG 13 #include "op_template.h" #define REG 14 #include "op_template.h" #define REG 15 #include "op_template.h" #define REG 16 #include "op_template.h" #define REG 17 #include "op_template.h" #define REG 18 #include "op_template.h" #define REG 19 #include "op_template.h" #define REG 20 #include "op_template.h" #define REG 21 #include "op_template.h" #define REG 22 #include "op_template.h" #define REG 23 #include "op_template.h" #define REG 24 #include "op_template.h" #define REG 25 #include "op_template.h" #define REG 26 #include "op_template.h" #define REG 27 #include "op_template.h" #define REG 28 #include "op_template.h" #define REG 29 #include "op_template.h" #define REG 30 #include "op_template.h" #define REG 31 #include "op_template.h" /* PowerPC state maintenance operations */ /* set_Rc0 */ PPC_OP(set_Rc0) { env->crf[0] = T0 | xer_ov; RETURN(); } /* Set Rc1 (for floating point arithmetic) */ PPC_OP(set_Rc1) { env->crf[1] = regs->fpscr[7]; RETURN(); } /* Constants load */ void OPPROTO op_reset_T0 (void) { T0 = 0; RETURN(); } PPC_OP(set_T0) { T0 = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_set_T0_64 (void) { T0 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif PPC_OP(set_T1) { T1 = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_set_T1_64 (void) { T1 = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif #if 0 // unused PPC_OP(set_T2) { T2 = PARAM(1); RETURN(); } #endif void OPPROTO op_move_T1_T0 (void) { T1 = T0; RETURN(); } void OPPROTO op_move_T2_T0 (void) { T2 = T0; RETURN(); } /* Generate exceptions */ PPC_OP(raise_exception_err) { do_raise_exception_err(PARAM(1), PARAM(2)); } PPC_OP(update_nip) { env->nip = (uint32_t)PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_update_nip_64 (void) { env->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif PPC_OP(debug) { do_raise_exception(EXCP_DEBUG); } PPC_OP(exit_tb) { EXIT_TB(); } /* Load/store special registers */ PPC_OP(load_cr) { do_load_cr(); RETURN(); } PPC_OP(store_cr) { do_store_cr(PARAM(1)); RETURN(); } void OPPROTO op_load_cro (void) { T0 = env->crf[PARAM1]; RETURN(); } void OPPROTO op_store_cro (void) { env->crf[PARAM1] = T0; RETURN(); } PPC_OP(load_xer_cr) { T0 = (xer_so << 3) | (xer_ov << 2) | (xer_ca << 1); RETURN(); } PPC_OP(clear_xer_cr) { xer_so = 0; xer_ov = 0; xer_ca = 0; RETURN(); } PPC_OP(load_xer_bc) { T1 = xer_bc; RETURN(); } void OPPROTO op_store_xer_bc (void) { xer_bc = T0; RETURN(); } PPC_OP(load_xer) { do_load_xer(); RETURN(); } PPC_OP(store_xer) { do_store_xer(); RETURN(); } #if !defined(CONFIG_USER_ONLY) /* Segment registers load and store */ PPC_OP(load_sr) { T0 = regs->sr[T1]; RETURN(); } PPC_OP(store_sr) { do_store_sr(env, T1, T0); RETURN(); } PPC_OP(load_sdr1) { T0 = regs->sdr1; RETURN(); } PPC_OP(store_sdr1) { do_store_sdr1(env, T0); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_load_asr (void) { T0 = env->asr; RETURN(); } void OPPROTO op_store_asr (void) { ppc_store_asr(env, T0); RETURN(); } #endif PPC_OP(load_msr) { T0 = do_load_msr(env); RETURN(); } PPC_OP(store_msr) { do_store_msr(env, T0); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_store_msr_32 (void) { ppc_store_msr_32(env, T0); RETURN(); } #endif #endif /* SPR */ PPC_OP(load_spr) { T0 = regs->spr[PARAM(1)]; RETURN(); } PPC_OP(store_spr) { regs->spr[PARAM(1)] = T0; RETURN(); } PPC_OP(load_lr) { T0 = regs->lr; RETURN(); } PPC_OP(store_lr) { regs->lr = T0; RETURN(); } PPC_OP(load_ctr) { T0 = regs->ctr; RETURN(); } PPC_OP(store_ctr) { regs->ctr = T0; RETURN(); } PPC_OP(load_tbl) { T0 = cpu_ppc_load_tbl(regs); RETURN(); } PPC_OP(load_tbu) { T0 = cpu_ppc_load_tbu(regs); RETURN(); } #if !defined(CONFIG_USER_ONLY) PPC_OP(store_tbl) { cpu_ppc_store_tbl(regs, T0); RETURN(); } PPC_OP(store_tbu) { cpu_ppc_store_tbu(regs, T0); RETURN(); } PPC_OP(load_decr) { T0 = cpu_ppc_load_decr(regs); RETURN(); } PPC_OP(store_decr) { cpu_ppc_store_decr(regs, T0); RETURN(); } PPC_OP(load_ibat) { T0 = regs->IBAT[PARAM(1)][PARAM(2)]; RETURN(); } void OPPROTO op_store_ibatu (void) { do_store_ibatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_ibatl (void) { #if 1 env->IBAT[1][PARAM1] = T0; #else do_store_ibatl(env, PARAM1, T0); #endif RETURN(); } PPC_OP(load_dbat) { T0 = regs->DBAT[PARAM(1)][PARAM(2)]; RETURN(); } void OPPROTO op_store_dbatu (void) { do_store_dbatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_dbatl (void) { #if 1 env->DBAT[1][PARAM1] = T0; #else do_store_dbatl(env, PARAM1, T0); #endif RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* FPSCR */ PPC_OP(load_fpscr) { do_load_fpscr(); RETURN(); } PPC_OP(store_fpscr) { do_store_fpscr(PARAM1); RETURN(); } PPC_OP(reset_scrfx) { regs->fpscr[7] &= ~0x8; RETURN(); } /* crf operations */ PPC_OP(getbit_T0) { T0 = (T0 >> PARAM(1)) & 1; RETURN(); } PPC_OP(getbit_T1) { T1 = (T1 >> PARAM(1)) & 1; RETURN(); } PPC_OP(setcrfbit) { T1 = (T1 & PARAM(1)) | (T0 << PARAM(2)); RETURN(); } /* Branch */ #define EIP regs->nip PPC_OP(setlr) { regs->lr = (uint32_t)PARAM1; RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_setlr_64 (void) { regs->lr = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; RETURN(); } #endif PPC_OP(goto_tb0) { GOTO_TB(op_goto_tb0, PARAM1, 0); } PPC_OP(goto_tb1) { GOTO_TB(op_goto_tb1, PARAM1, 1); } void OPPROTO op_b_T1 (void) { regs->nip = (uint32_t)(T1 & ~3); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_b_T1_64 (void) { regs->nip = (uint64_t)(T1 & ~3); RETURN(); } #endif PPC_OP(jz_T0) { if (!T0) GOTO_LABEL_PARAM(1); RETURN(); } void OPPROTO op_btest_T1 (void) { if (T0) { regs->nip = (uint32_t)(T1 & ~3); } else { regs->nip = (uint32_t)PARAM1; } RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_btest_T1_64 (void) { if (T0) { regs->nip = (uint64_t)(T1 & ~3); } else { regs->nip = ((uint64_t)PARAM1 << 32) | (uint64_t)PARAM2; } RETURN(); } #endif PPC_OP(movl_T1_ctr) { T1 = regs->ctr; RETURN(); } PPC_OP(movl_T1_lr) { T1 = regs->lr; RETURN(); } /* tests with result in T0 */ void OPPROTO op_test_ctr (void) { T0 = (uint32_t)regs->ctr; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_64 (void) { T0 = (uint64_t)regs->ctr; RETURN(); } #endif void OPPROTO op_test_ctr_true (void) { T0 = ((uint32_t)regs->ctr != 0 && (T0 & PARAM1) != 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_true_64 (void) { T0 = ((uint64_t)regs->ctr != 0 && (T0 & PARAM1) != 0); RETURN(); } #endif void OPPROTO op_test_ctr_false (void) { T0 = ((uint32_t)regs->ctr != 0 && (T0 & PARAM1) == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctr_false_64 (void) { T0 = ((uint64_t)regs->ctr != 0 && (T0 & PARAM1) == 0); RETURN(); } #endif void OPPROTO op_test_ctrz (void) { T0 = ((uint32_t)regs->ctr == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_64 (void) { T0 = ((uint64_t)regs->ctr == 0); RETURN(); } #endif void OPPROTO op_test_ctrz_true (void) { T0 = ((uint32_t)regs->ctr == 0 && (T0 & PARAM1) != 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_true_64 (void) { T0 = ((uint64_t)regs->ctr == 0 && (T0 & PARAM1) != 0); RETURN(); } #endif void OPPROTO op_test_ctrz_false (void) { T0 = ((uint32_t)regs->ctr == 0 && (T0 & PARAM1) == 0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_test_ctrz_false_64 (void) { T0 = ((uint64_t)regs->ctr == 0 && (T0 & PARAM1) == 0); RETURN(); } #endif PPC_OP(test_true) { T0 = (T0 & PARAM(1)); RETURN(); } PPC_OP(test_false) { T0 = ((T0 & PARAM(1)) == 0); RETURN(); } /* CTR maintenance */ PPC_OP(dec_ctr) { regs->ctr--; RETURN(); } /*** Integer arithmetic ***/ /* add */ PPC_OP(add) { T0 += T1; RETURN(); } void OPPROTO op_check_addo (void) { if (likely(!(((uint32_t)T2 ^ (uint32_t)T1 ^ UINT32_MAX) & ((uint32_t)T2 ^ (uint32_t)T0) & (1UL << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } #if defined(TARGET_PPC64) void OPPROTO op_check_addo_64 (void) { if (likely(!(((uint64_t)T2 ^ (uint64_t)T1 ^ UINT64_MAX) & ((uint64_t)T2 ^ (uint64_t)T0) & (1UL << 63)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } } #endif /* add carrying */ void OPPROTO op_check_addc (void) { if (likely((uint32_t)T0 >= (uint32_t)T2)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_addc_64 (void) { if (likely((uint64_t)T0 >= (uint64_t)T2)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #endif /* add extended */ void OPPROTO op_adde (void) { do_adde(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_adde_64 (void) { do_adde_64(); RETURN(); } #endif /* add immediate */ PPC_OP(addi) { T0 += PARAM(1); RETURN(); } /* add to minus one extended */ void OPPROTO op_add_me (void) { T0 += xer_ca + (-1); if (likely((uint32_t)T1 != 0)) xer_ca = 1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_add_me_64 (void) { T0 += xer_ca + (-1); if (likely((uint64_t)T1 != 0)) xer_ca = 1; RETURN(); } #endif void OPPROTO op_addmeo (void) { do_addmeo(); RETURN(); } void OPPROTO op_addmeo_64 (void) { do_addmeo(); RETURN(); } /* add to zero extended */ void OPPROTO op_add_ze (void) { T0 += xer_ca; RETURN(); } /* divide word */ void OPPROTO op_divw (void) { if (unlikely(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0)) { T0 = (int32_t)((-1) * ((uint32_t)T0 >> 31)); } else { T0 = (int32_t)T0 / (int32_t)T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divd (void) { if (unlikely(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1) || (int64_t)T1 == 0)) { T0 = (int64_t)((-1ULL) * ((uint64_t)T0 >> 63)); } else { T0 = (int64_t)T0 / (int64_t)T1; } RETURN(); } #endif void OPPROTO op_divwo (void) { do_divwo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divdo (void) { do_divdo(); RETURN(); } #endif /* divide word unsigned */ void OPPROTO op_divwu (void) { if (unlikely(T1 == 0)) { T0 = 0; } else { T0 = (uint32_t)T0 / (uint32_t)T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divdu (void) { if (unlikely(T1 == 0)) { T0 = 0; } else { T0 /= T1; } RETURN(); } #endif void OPPROTO op_divwuo (void) { do_divwuo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_divduo (void) { do_divduo(); RETURN(); } #endif /* multiply high word */ void OPPROTO op_mulhw (void) { T0 = ((int64_t)((int32_t)T0) * (int64_t)((int32_t)T1)) >> 32; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulhd (void) { uint64_t tl, th; do_imul64(&tl, &th); T0 = th; RETURN(); } #endif /* multiply high word unsigned */ void OPPROTO op_mulhwu (void) { T0 = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1) >> 32; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulhdu (void) { uint64_t tl, th; do_mul64(&tl, &th); T0 = th; RETURN(); } #endif /* multiply low immediate */ PPC_OP(mulli) { T0 = ((int32_t)T0 * (int32_t)PARAM1); RETURN(); } /* multiply low word */ PPC_OP(mullw) { T0 = (int32_t)(T0 * T1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulld (void) { T0 *= T1; RETURN(); } #endif void OPPROTO op_mullwo (void) { do_mullwo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_mulldo (void) { do_mulldo(); RETURN(); } #endif /* negate */ void OPPROTO op_neg (void) { if (likely(T0 != INT32_MIN)) { T0 = -(int32_t)T0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_neg_64 (void) { if (likely(T0 != INT64_MIN)) { T0 = -(int64_t)T0; } RETURN(); } #endif void OPPROTO op_nego (void) { do_nego(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_nego_64 (void) { do_nego_64(); RETURN(); } #endif /* substract from */ PPC_OP(subf) { T0 = T1 - T0; RETURN(); } void OPPROTO op_check_subfo (void) { if (likely(!(((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) & ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_subfo_64 (void) { if (likely(!(((uint64_t)(~T2) ^ (uint64_t)T1 ^ UINT64_MAX) & ((uint64_t)(~T2) ^ (uint64_t)T0) & (1ULL << 63)))) { xer_ov = 0; } else { xer_so = 1; xer_ov = 1; } RETURN(); } #endif /* substract from carrying */ void OPPROTO op_check_subfc (void) { if (likely((uint32_t)T0 > (uint32_t)T1)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_subfc_64 (void) { if (likely((uint64_t)T0 > (uint64_t)T1)) { xer_ca = 0; } else { xer_ca = 1; } RETURN(); } #endif /* substract from extended */ void OPPROTO op_subfe (void) { do_subfe(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfe_64 (void) { do_subfe_64(); RETURN(); } #endif /* substract from immediate carrying */ void OPPROTO op_subfic (void) { T0 = PARAM1 + ~T0 + 1; if ((uint32_t)T0 <= (uint32_t)PARAM1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfic_64 (void) { T0 = PARAM1 + ~T0 + 1; if ((uint64_t)T0 <= (uint64_t)PARAM1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif /* substract from minus one extended */ void OPPROTO op_subfme (void) { T0 = ~T0 + xer_ca - 1; if (likely((uint32_t)T0 != (uint32_t)-1)) xer_ca = 1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfme_64 (void) { T0 = ~T0 + xer_ca - 1; if (likely((uint64_t)T0 != (uint64_t)-1)) xer_ca = 1; RETURN(); } #endif void OPPROTO op_subfmeo (void) { do_subfmeo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfmeo_64 (void) { do_subfmeo_64(); RETURN(); } #endif /* substract from zero extended */ void OPPROTO op_subfze (void) { T1 = ~T0; T0 = T1 + xer_ca; if ((uint32_t)T0 < (uint32_t)T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfze_64 (void) { T1 = ~T0; T0 = T1 + xer_ca; if ((uint64_t)T0 < (uint64_t)T1) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif void OPPROTO op_subfzeo (void) { do_subfzeo(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_subfzeo_64 (void) { do_subfzeo_64(); RETURN(); } #endif /*** Integer comparison ***/ /* compare */ void OPPROTO op_cmp (void) { if ((int32_t)T0 < (int32_t)T1) { T0 = 0x08; } else if ((int32_t)T0 > (int32_t)T1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmp_64 (void) { if ((int64_t)T0 < (int64_t)T1) { T0 = 0x08; } else if ((int64_t)T0 > (int64_t)T1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #endif /* compare immediate */ void OPPROTO op_cmpi (void) { if ((int32_t)T0 < (int32_t)PARAM1) { T0 = 0x08; } else if ((int32_t)T0 > (int32_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpi_64 (void) { if ((int64_t)T0 < (int64_t)((int32_t)PARAM1)) { T0 = 0x08; } else if ((int64_t)T0 > (int64_t)((int32_t)PARAM1)) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #endif /* compare logical */ void OPPROTO op_cmpl (void) { if ((uint32_t)T0 < (uint32_t)T1) { T0 = 0x08; } else if ((uint32_t)T0 > (uint32_t)T1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpl_64 (void) { if ((uint64_t)T0 < (uint64_t)T1) { T0 = 0x08; } else if ((uint64_t)T0 > (uint64_t)T1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #endif /* compare logical immediate */ void OPPROTO op_cmpli (void) { if ((uint32_t)T0 < (uint32_t)PARAM1) { T0 = 0x08; } else if ((uint32_t)T0 > (uint32_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cmpli_64 (void) { if ((uint64_t)T0 < (uint64_t)PARAM1) { T0 = 0x08; } else if ((uint64_t)T0 > (uint64_t)PARAM1) { T0 = 0x04; } else { T0 = 0x02; } RETURN(); } #endif void OPPROTO op_isel (void) { if (T0) T0 = T1; else T0 = T2; RETURN(); } void OPPROTO op_popcntb (void) { do_popcntb(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_popcntb_64 (void) { do_popcntb_64(); RETURN(); } #endif /*** Integer logical ***/ /* and */ PPC_OP(and) { T0 &= T1; RETURN(); } /* andc */ PPC_OP(andc) { T0 &= ~T1; RETURN(); } /* andi. */ void OPPROTO op_andi_T0 (void) { T0 &= PARAM(1); RETURN(); } void OPPROTO op_andi_T1 (void) { T1 &= PARAM1; RETURN(); } /* count leading zero */ void OPPROTO op_cntlzw (void) { int cnt; cnt = 0; if (!(T0 & 0xFFFF0000UL)) { cnt += 16; T0 <<= 16; } if (!(T0 & 0xFF000000UL)) { cnt += 8; T0 <<= 8; } if (!(T0 & 0xF0000000UL)) { cnt += 4; T0 <<= 4; } if (!(T0 & 0xC0000000UL)) { cnt += 2; T0 <<= 2; } if (!(T0 & 0x80000000UL)) { cnt++; T0 <<= 1; } if (!(T0 & 0x80000000UL)) { cnt++; } T0 = cnt; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_cntlzd (void) { #if HOST_LONG_BITS == 64 int cnt; cnt = 0; if (!(T0 & 0xFFFFFFFF00000000ULL)) { cnt += 32; T0 <<= 32; } if (!(T0 & 0xFFFF000000000000ULL)) { cnt += 16; T0 <<= 16; } if (!(T0 & 0xFF00000000000000ULL)) { cnt += 8; T0 <<= 8; } if (!(T0 & 0xF000000000000000ULL)) { cnt += 4; T0 <<= 4; } if (!(T0 & 0xC000000000000000ULL)) { cnt += 2; T0 <<= 2; } if (!(T0 & 0x8000000000000000ULL)) { cnt++; T0 <<= 1; } if (!(T0 & 0x8000000000000000ULL)) { cnt++; } T0 = cnt; #else uint32_t tmp; /* Make it easier on 32 bits host machines */ if (!(T0 >> 32)) { tmp = T0; T0 = 32; } else { tmp = T0 >> 32; T0 = 0; } if (!(tmp & 0xFFFF0000UL)) { T0 += 16; tmp <<= 16; } if (!(tmp & 0xFF000000UL)) { T0 += 8; tmp <<= 8; } if (!(tmp & 0xF0000000UL)) { T0 += 4; tmp <<= 4; } if (!(tmp & 0xC0000000UL)) { T0 += 2; tmp <<= 2; } if (!(tmp & 0x80000000UL)) { T0++; tmp <<= 1; } if (!(tmp & 0x80000000UL)) { T0++; } #endif RETURN(); } #endif /* eqv */ PPC_OP(eqv) { T0 = ~(T0 ^ T1); RETURN(); } /* extend sign byte */ void OPPROTO op_extsb (void) { #if defined (TARGET_PPC64) T0 = (int64_t)((int8_t)T0); #else T0 = (int32_t)((int8_t)T0); #endif RETURN(); } /* extend sign half word */ void OPPROTO op_extsh (void) { #if defined (TARGET_PPC64) T0 = (int64_t)((int16_t)T0); #else T0 = (int32_t)((int16_t)T0); #endif RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_extsw (void) { T0 = (int64_t)((int32_t)T0); RETURN(); } #endif /* nand */ PPC_OP(nand) { T0 = ~(T0 & T1); RETURN(); } /* nor */ PPC_OP(nor) { T0 = ~(T0 | T1); RETURN(); } /* or */ PPC_OP(or) { T0 |= T1; RETURN(); } /* orc */ PPC_OP(orc) { T0 |= ~T1; RETURN(); } /* ori */ PPC_OP(ori) { T0 |= PARAM(1); RETURN(); } /* xor */ PPC_OP(xor) { T0 ^= T1; RETURN(); } /* xori */ PPC_OP(xori) { T0 ^= PARAM(1); RETURN(); } /*** Integer rotate ***/ void OPPROTO op_rotl32_T0_T1 (void) { T0 = rotl32(T0, T1 & 0x1F); RETURN(); } void OPPROTO op_rotli32_T0 (void) { T0 = rotl32(T0, PARAM1); RETURN(); } /*** Integer shift ***/ /* shift left word */ void OPPROTO op_slw (void) { if (T1 & 0x20) { T0 = 0; } else { T0 = (uint32_t)(T0 << T1); } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_sld (void) { if (T1 & 0x40) { T0 = 0; } else { T0 = T0 << T1; } RETURN(); } #endif /* shift right algebraic word */ void OPPROTO op_sraw (void) { do_sraw(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srad (void) { do_srad(); RETURN(); } #endif /* shift right algebraic word immediate */ void OPPROTO op_srawi (void) { uint32_t mask = (uint32_t)PARAM2; T0 = (int32_t)T0 >> PARAM1; if ((int32_t)T1 < 0 && (T1 & mask) != 0) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_sradi (void) { uint64_t mask = ((uint64_t)PARAM2 << 32) | (uint64_t)PARAM3; T0 = (int64_t)T0 >> PARAM1; if ((int64_t)T1 < 0 && ((uint64_t)T1 & mask) != 0) { xer_ca = 1; } else { xer_ca = 0; } RETURN(); } #endif /* shift right word */ void OPPROTO op_srw (void) { if (T1 & 0x20) { T0 = 0; } else { T0 = (uint32_t)T0 >> T1; } RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srd (void) { if (T1 & 0x40) { T0 = 0; } else { T0 = (uint64_t)T0 >> T1; } RETURN(); } #endif void OPPROTO op_sl_T0_T1 (void) { T0 = T0 << T1; RETURN(); } void OPPROTO op_sli_T0 (void) { T0 = T0 << PARAM1; RETURN(); } void OPPROTO op_srl_T0_T1 (void) { T0 = (uint32_t)T0 >> T1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srl_T0_T1_64 (void) { T0 = (uint32_t)T0 >> T1; RETURN(); } #endif void OPPROTO op_srli_T0 (void) { T0 = (uint32_t)T0 >> PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srli_T0_64 (void) { T0 = (uint64_t)T0 >> PARAM1; RETURN(); } #endif void OPPROTO op_srli_T1 (void) { T1 = (uint32_t)T1 >> PARAM1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_srli_T1_64 (void) { T1 = (uint64_t)T1 >> PARAM1; RETURN(); } #endif /*** Floating-Point arithmetic ***/ /* fadd - fadd. */ PPC_OP(fadd) { FT0 = float64_add(FT0, FT1, &env->fp_status); RETURN(); } /* fsub - fsub. */ PPC_OP(fsub) { FT0 = float64_sub(FT0, FT1, &env->fp_status); RETURN(); } /* fmul - fmul. */ PPC_OP(fmul) { FT0 = float64_mul(FT0, FT1, &env->fp_status); RETURN(); } /* fdiv - fdiv. */ PPC_OP(fdiv) { FT0 = float64_div(FT0, FT1, &env->fp_status); RETURN(); } /* fsqrt - fsqrt. */ PPC_OP(fsqrt) { do_fsqrt(); RETURN(); } /* fres - fres. */ PPC_OP(fres) { do_fres(); RETURN(); } /* frsqrte - frsqrte. */ PPC_OP(frsqrte) { do_frsqrte(); RETURN(); } /* fsel - fsel. */ PPC_OP(fsel) { do_fsel(); RETURN(); } /*** Floating-Point multiply-and-add ***/ /* fmadd - fmadd. */ PPC_OP(fmadd) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_add(FT0, FT2, &env->fp_status); RETURN(); } /* fmsub - fmsub. */ PPC_OP(fmsub) { FT0 = float64_mul(FT0, FT1, &env->fp_status); FT0 = float64_sub(FT0, FT2, &env->fp_status); RETURN(); } /* fnmadd - fnmadd. - fnmadds - fnmadds. */ PPC_OP(fnmadd) { do_fnmadd(); RETURN(); } /* fnmsub - fnmsub. */ PPC_OP(fnmsub) { do_fnmsub(); RETURN(); } /*** Floating-Point round & convert ***/ /* frsp - frsp. */ PPC_OP(frsp) { FT0 = float64_to_float32(FT0, &env->fp_status); RETURN(); } /* fctiw - fctiw. */ PPC_OP(fctiw) { do_fctiw(); RETURN(); } /* fctiwz - fctiwz. */ PPC_OP(fctiwz) { do_fctiwz(); RETURN(); } /*** Floating-Point compare ***/ /* fcmpu */ PPC_OP(fcmpu) { do_fcmpu(); RETURN(); } /* fcmpo */ PPC_OP(fcmpo) { do_fcmpo(); RETURN(); } /*** Floating-point move ***/ /* fabs */ PPC_OP(fabs) { FT0 = float64_abs(FT0); RETURN(); } /* fnabs */ PPC_OP(fnabs) { FT0 = float64_abs(FT0); FT0 = float64_chs(FT0); RETURN(); } /* fneg */ PPC_OP(fneg) { FT0 = float64_chs(FT0); RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_helper.h" #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper.h" #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_helper.h" #include "op_mem.h" #endif /* Special op to check and maybe clear reservation */ void OPPROTO op_check_reservation (void) { if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003)) env->reserve = -1; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_reservation_64 (void) { if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003)) env->reserve = -1; RETURN(); } #endif /* Return from interrupt */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_rfi (void) { do_rfi(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_rfi_32 (void) { do_rfi_32(); RETURN(); } #endif #endif /* Trap word */ void OPPROTO op_tw (void) { do_tw(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_td (void) { do_td(PARAM1); RETURN(); } #endif #if !defined(CONFIG_USER_ONLY) /* tlbia */ PPC_OP(tlbia) { do_tlbia(); RETURN(); } /* tlbie */ void OPPROTO op_tlbie (void) { do_tlbie(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_tlbie_64 (void) { do_tlbie_64(); RETURN(); } #endif #if defined(TARGET_PPC64) void OPPROTO op_slbia (void) { do_slbia(); RETURN(); } void OPPROTO op_slbie (void) { do_slbie(); RETURN(); } #endif #endif /* PowerPC 602/603/755 software TLB load instructions */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_6xx_tlbld (void) { do_load_6xx_tlb(0); RETURN(); } void OPPROTO op_6xx_tlbli (void) { do_load_6xx_tlb(1); RETURN(); } #endif /* 601 specific */ void OPPROTO op_load_601_rtcl (void) { T0 = cpu_ppc601_load_rtcl(env); RETURN(); } void OPPROTO op_load_601_rtcu (void) { T0 = cpu_ppc601_load_rtcu(env); RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_601_rtcl (void) { cpu_ppc601_store_rtcl(env, T0); RETURN(); } void OPPROTO op_store_601_rtcu (void) { cpu_ppc601_store_rtcu(env, T0); RETURN(); } void OPPROTO op_load_601_bat (void) { T0 = env->IBAT[PARAM1][PARAM2]; RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* 601 unified BATs store. * To avoid using specific MMU code for 601, we store BATs in * IBAT and DBAT simultaneously, then emulate unified BATs. */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_601_batl (void) { int nr = PARAM1; env->IBAT[1][nr] = T0; env->DBAT[1][nr] = T0; RETURN(); } void OPPROTO op_store_601_batu (void) { do_store_601_batu(PARAM1); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* PowerPC 601 specific instructions (POWER bridge) */ /* XXX: those micro-ops need tests ! */ void OPPROTO op_POWER_abs (void) { if (T0 == INT32_MIN) T0 = INT32_MAX; else if (T0 < 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_abso (void) { do_POWER_abso(); RETURN(); } void OPPROTO op_POWER_clcs (void) { do_POWER_clcs(); RETURN(); } void OPPROTO op_POWER_div (void) { do_POWER_div(); RETURN(); } void OPPROTO op_POWER_divo (void) { do_POWER_divo(); RETURN(); } void OPPROTO op_POWER_divs (void) { do_POWER_divs(); RETURN(); } void OPPROTO op_POWER_divso (void) { do_POWER_divso(); RETURN(); } void OPPROTO op_POWER_doz (void) { if ((int32_t)T1 > (int32_t)T0) T0 = T1 - T0; else T0 = 0; RETURN(); } void OPPROTO op_POWER_dozo (void) { do_POWER_dozo(); RETURN(); } void OPPROTO op_load_xer_cmp (void) { T2 = xer_cmp; RETURN(); } void OPPROTO op_POWER_maskg (void) { do_POWER_maskg(); RETURN(); } void OPPROTO op_POWER_maskir (void) { T0 = (T0 & ~T2) | (T1 & T2); RETURN(); } void OPPROTO op_POWER_mul (void) { uint64_t tmp; tmp = (uint64_t)T0 * (uint64_t)T1; env->spr[SPR_MQ] = tmp >> 32; T0 = tmp; RETURN(); } void OPPROTO op_POWER_mulo (void) { do_POWER_mulo(); RETURN(); } void OPPROTO op_POWER_nabs (void) { if (T0 > 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_nabso (void) { /* nabs never overflows */ if (T0 > 0) T0 = -T0; xer_ov = 0; RETURN(); } /* XXX: factorise POWER rotates... */ void OPPROTO op_POWER_rlmi (void) { T0 = rotl32(T0, T2) & PARAM1; T0 |= T1 & PARAM2; RETURN(); } void OPPROTO op_POWER_rrib (void) { T2 &= 0x1FUL; T0 = rotl32(T0 & INT32_MIN, T2); T0 |= T1 & ~rotl32(INT32_MIN, T2); RETURN(); } void OPPROTO op_POWER_sle (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; RETURN(); } void OPPROTO op_POWER_sleq (void) { uint32_t tmp = env->spr[SPR_MQ]; T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; T0 |= tmp >> (32 - T1); RETURN(); } void OPPROTO op_POWER_sllq (void) { uint32_t msk = -1; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; T0 = (T0 << T1) & msk; T0 |= env->spr[SPR_MQ] & ~msk; RETURN(); } void OPPROTO op_POWER_slq (void) { uint32_t msk = -1, tmp; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = rotl32(T0, T1); T0 = tmp & msk; env->spr[SPR_MQ] = tmp; RETURN(); } void OPPROTO op_POWER_sraq (void) { env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL)); if (T1 & 0x20UL) T0 = -1L; else T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sre (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_srea (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = T0 >> T1; T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sreq (void) { uint32_t tmp; int32_t msk; T1 &= 0x1FUL; msk = INT32_MIN >> T1; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 |= tmp & msk; RETURN(); } void OPPROTO op_POWER_srlq (void) { uint32_t tmp; int32_t msk; msk = INT32_MIN >> (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 &= msk; T0 |= tmp & ~msk; RETURN(); } void OPPROTO op_POWER_srq (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; RETURN(); } /* POWER instructions not implemented in PowerPC 601 */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_POWER_mfsri (void) { T1 = T0 >> 28; T0 = env->sr[T1]; RETURN(); } void OPPROTO op_POWER_rac (void) { do_POWER_rac(); RETURN(); } void OPPROTO op_POWER_rfsvc (void) { do_POWER_rfsvc(); RETURN(); } #endif /* PowerPC 602 specific instruction */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_602_mfrom (void) { do_op_602_mfrom(); RETURN(); } #endif /* PowerPC 4xx specific micro-ops */ void OPPROTO op_405_add_T0_T2 (void) { T0 = (int32_t)T0 + (int32_t)T2; RETURN(); } void OPPROTO op_405_mulchw (void) { T0 = ((int16_t)T0) * ((int16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulchwu (void) { T0 = ((uint16_t)T0) * ((uint16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulhhw (void) { T0 = ((int16_t)(T0 >> 16)) * ((int16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mulhhwu (void) { T0 = ((uint16_t)(T0 >> 16)) * ((uint16_t)(T1 >> 16)); RETURN(); } void OPPROTO op_405_mullhw (void) { T0 = ((int16_t)T0) * ((int16_t)T1); RETURN(); } void OPPROTO op_405_mullhwu (void) { T0 = ((uint16_t)T0) * ((uint16_t)T1); RETURN(); } void OPPROTO op_405_check_ov (void) { do_405_check_ov(); RETURN(); } void OPPROTO op_405_check_sat (void) { do_405_check_sat(); RETURN(); } void OPPROTO op_405_check_ovu (void) { if (likely(T0 >= T2)) { xer_ov = 0; } else { xer_ov = 1; xer_so = 1; } RETURN(); } void OPPROTO op_405_check_satu (void) { if (unlikely(T0 < T2)) { /* Saturate result */ T0 = -1; } RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_4xx_load_dcr (void) { do_4xx_load_dcr(PARAM1); RETURN(); } void OPPROTO op_4xx_store_dcr (void) { do_4xx_store_dcr(PARAM1); RETURN(); } /* Return from critical interrupt : * same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1 */ void OPPROTO op_4xx_rfci (void) { do_4xx_rfci(); RETURN(); } void OPPROTO op_4xx_wrte (void) { msr_ee = T0 >> 16; RETURN(); } void OPPROTO op_4xx_tlbre_lo (void) { do_4xx_tlbre_lo(); RETURN(); } void OPPROTO op_4xx_tlbre_hi (void) { do_4xx_tlbre_hi(); RETURN(); } void OPPROTO op_4xx_tlbsx (void) { do_4xx_tlbsx(); RETURN(); } void OPPROTO op_4xx_tlbsx_ (void) { do_4xx_tlbsx_(); RETURN(); } void OPPROTO op_4xx_tlbwe_lo (void) { do_4xx_tlbwe_lo(); RETURN(); } void OPPROTO op_4xx_tlbwe_hi (void) { do_4xx_tlbwe_hi(); RETURN(); } #endif /* SPR micro-ops */ /* 440 specific */ void OPPROTO op_440_dlmzb (void) { do_440_dlmzb(); RETURN(); } void OPPROTO op_440_dlmzb_update_Rc (void) { if (T0 == 8) T0 = 0x2; else if (T0 < 4) T0 = 0x4; else T0 = 0x8; RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_pir (void) { env->spr[SPR_PIR] = T0 & 0x0000000FUL; RETURN(); } void OPPROTO op_load_403_pb (void) { do_load_403_pb(PARAM1); RETURN(); } void OPPROTO op_store_403_pb (void) { do_store_403_pb(PARAM1); RETURN(); } void OPPROTO op_load_40x_pit (void) { T0 = load_40x_pit(env); RETURN(); } void OPPROTO op_store_40x_pit (void) { store_40x_pit(env, T0); RETURN(); } void OPPROTO op_store_booke_tcr (void) { store_booke_tcr(env, T0); RETURN(); } void OPPROTO op_store_booke_tsr (void) { store_booke_tsr(env, T0); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */