/* * PowerPC emulation helpers for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include #include #include "cpu.h" #include "helper_regs.h" #include "qemu-common.h" #include "kvm.h" #include "kvm_ppc.h" #include "cpus.h" //#define DEBUG_MMU //#define DEBUG_BATS //#define DEBUG_SLB //#define DEBUG_SOFTWARE_TLB //#define DUMP_PAGE_TABLES //#define DEBUG_EXCEPTIONS //#define FLUSH_ALL_TLBS #ifdef DEBUG_MMU # define LOG_MMU(...) qemu_log(__VA_ARGS__) # define LOG_MMU_STATE(env) log_cpu_state((env), 0) #else # define LOG_MMU(...) do { } while (0) # define LOG_MMU_STATE(...) do { } while (0) #endif #ifdef DEBUG_SOFTWARE_TLB # define LOG_SWTLB(...) qemu_log(__VA_ARGS__) #else # define LOG_SWTLB(...) do { } while (0) #endif #ifdef DEBUG_BATS # define LOG_BATS(...) qemu_log(__VA_ARGS__) #else # define LOG_BATS(...) do { } while (0) #endif #ifdef DEBUG_SLB # define LOG_SLB(...) qemu_log(__VA_ARGS__) #else # define LOG_SLB(...) do { } while (0) #endif #ifdef DEBUG_EXCEPTIONS # define LOG_EXCP(...) qemu_log(__VA_ARGS__) #else # define LOG_EXCP(...) do { } while (0) #endif /*****************************************************************************/ /* PowerPC Hypercall emulation */ void (*cpu_ppc_hypercall)(CPUState *); /*****************************************************************************/ /* PowerPC MMU emulation */ #if defined(CONFIG_USER_ONLY) int cpu_ppc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx) { int exception, error_code; if (rw == 2) { exception = POWERPC_EXCP_ISI; error_code = 0x40000000; } else { exception = POWERPC_EXCP_DSI; error_code = 0x40000000; if (rw) error_code |= 0x02000000; env->spr[SPR_DAR] = address; env->spr[SPR_DSISR] = error_code; } env->exception_index = exception; env->error_code = error_code; return 1; } #else /* Common routines used by software and hardware TLBs emulation */ static inline int pte_is_valid(target_ulong pte0) { return pte0 & 0x80000000 ? 1 : 0; } static inline void pte_invalidate(target_ulong *pte0) { *pte0 &= ~0x80000000; } #if defined(TARGET_PPC64) static inline int pte64_is_valid(target_ulong pte0) { return pte0 & 0x0000000000000001ULL ? 1 : 0; } static inline void pte64_invalidate(target_ulong *pte0) { *pte0 &= ~0x0000000000000001ULL; } #endif #define PTE_PTEM_MASK 0x7FFFFFBF #define PTE_CHECK_MASK (TARGET_PAGE_MASK | 0x7B) #if defined(TARGET_PPC64) #define PTE64_PTEM_MASK 0xFFFFFFFFFFFFFF80ULL #define PTE64_CHECK_MASK (TARGET_PAGE_MASK | 0x7F) #endif static inline int pp_check(int key, int pp, int nx) { int access; /* Compute access rights */ /* When pp is 3/7, the result is undefined. Set it to noaccess */ access = 0; if (key == 0) { switch (pp) { case 0x0: case 0x1: case 0x2: access |= PAGE_WRITE; /* No break here */ case 0x3: case 0x6: access |= PAGE_READ; break; } } else { switch (pp) { case 0x0: case 0x6: access = 0; break; case 0x1: case 0x3: access = PAGE_READ; break; case 0x2: access = PAGE_READ | PAGE_WRITE; break; } } if (nx == 0) access |= PAGE_EXEC; return access; } static inline int check_prot(int prot, int rw, int access_type) { int ret; if (access_type == ACCESS_CODE) { if (prot & PAGE_EXEC) ret = 0; else ret = -2; } else if (rw) { if (prot & PAGE_WRITE) ret = 0; else ret = -2; } else { if (prot & PAGE_READ) ret = 0; else ret = -2; } return ret; } static inline int _pte_check(mmu_ctx_t *ctx, int is_64b, target_ulong pte0, target_ulong pte1, int h, int rw, int type) { target_ulong ptem, mmask; int access, ret, pteh, ptev, pp; ret = -1; /* Check validity and table match */ #if defined(TARGET_PPC64) if (is_64b) { ptev = pte64_is_valid(pte0); pteh = (pte0 >> 1) & 1; } else #endif { ptev = pte_is_valid(pte0); pteh = (pte0 >> 6) & 1; } if (ptev && h == pteh) { /* Check vsid & api */ #if defined(TARGET_PPC64) if (is_64b) { ptem = pte0 & PTE64_PTEM_MASK; mmask = PTE64_CHECK_MASK; pp = (pte1 & 0x00000003) | ((pte1 >> 61) & 0x00000004); ctx->nx = (pte1 >> 2) & 1; /* No execute bit */ ctx->nx |= (pte1 >> 3) & 1; /* Guarded bit */ } else #endif { ptem = pte0 & PTE_PTEM_MASK; mmask = PTE_CHECK_MASK; pp = pte1 & 0x00000003; } if (ptem == ctx->ptem) { if (ctx->raddr != (target_phys_addr_t)-1ULL) { /* all matches should have equal RPN, WIMG & PP */ if ((ctx->raddr & mmask) != (pte1 & mmask)) { qemu_log("Bad RPN/WIMG/PP\n"); return -3; } } /* Compute access rights */ access = pp_check(ctx->key, pp, ctx->nx); /* Keep the matching PTE informations */ ctx->raddr = pte1; ctx->prot = access; ret = check_prot(ctx->prot, rw, type); if (ret == 0) { /* Access granted */ LOG_MMU("PTE access granted !\n"); } else { /* Access right violation */ LOG_MMU("PTE access rejected\n"); } } } return ret; } static inline int pte32_check(mmu_ctx_t *ctx, target_ulong pte0, target_ulong pte1, int h, int rw, int type) { return _pte_check(ctx, 0, pte0, pte1, h, rw, type); } #if defined(TARGET_PPC64) static inline int pte64_check(mmu_ctx_t *ctx, target_ulong pte0, target_ulong pte1, int h, int rw, int type) { return _pte_check(ctx, 1, pte0, pte1, h, rw, type); } #endif static inline int pte_update_flags(mmu_ctx_t *ctx, target_ulong *pte1p, int ret, int rw) { int store = 0; /* Update page flags */ if (!(*pte1p & 0x00000100)) { /* Update accessed flag */ *pte1p |= 0x00000100; store = 1; } if (!(*pte1p & 0x00000080)) { if (rw == 1 && ret == 0) { /* Update changed flag */ *pte1p |= 0x00000080; store = 1; } else { /* Force page fault for first write access */ ctx->prot &= ~PAGE_WRITE; } } return store; } /* Software driven TLB helpers */ static inline int ppc6xx_tlb_getnum(CPUState *env, target_ulong eaddr, int way, int is_code) { int nr; /* Select TLB num in a way from address */ nr = (eaddr >> TARGET_PAGE_BITS) & (env->tlb_per_way - 1); /* Select TLB way */ nr += env->tlb_per_way * way; /* 6xx have separate TLBs for instructions and data */ if (is_code && env->id_tlbs == 1) nr += env->nb_tlb; return nr; } static inline void ppc6xx_tlb_invalidate_all(CPUState *env) { ppc6xx_tlb_t *tlb; int nr, max; //LOG_SWTLB("Invalidate all TLBs\n"); /* Invalidate all defined software TLB */ max = env->nb_tlb; if (env->id_tlbs == 1) max *= 2; for (nr = 0; nr < max; nr++) { tlb = &env->tlb.tlb6[nr]; pte_invalidate(&tlb->pte0); } tlb_flush(env, 1); } static inline void __ppc6xx_tlb_invalidate_virt(CPUState *env, target_ulong eaddr, int is_code, int match_epn) { #if !defined(FLUSH_ALL_TLBS) ppc6xx_tlb_t *tlb; int way, nr; /* Invalidate ITLB + DTLB, all ways */ for (way = 0; way < env->nb_ways; way++) { nr = ppc6xx_tlb_getnum(env, eaddr, way, is_code); tlb = &env->tlb.tlb6[nr]; if (pte_is_valid(tlb->pte0) && (match_epn == 0 || eaddr == tlb->EPN)) { LOG_SWTLB("TLB invalidate %d/%d " TARGET_FMT_lx "\n", nr, env->nb_tlb, eaddr); pte_invalidate(&tlb->pte0); tlb_flush_page(env, tlb->EPN); } } #else /* XXX: PowerPC specification say this is valid as well */ ppc6xx_tlb_invalidate_all(env); #endif } static inline void ppc6xx_tlb_invalidate_virt(CPUState *env, target_ulong eaddr, int is_code) { __ppc6xx_tlb_invalidate_virt(env, eaddr, is_code, 0); } void ppc6xx_tlb_store (CPUState *env, target_ulong EPN, int way, int is_code, target_ulong pte0, target_ulong pte1) { ppc6xx_tlb_t *tlb; int nr; nr = ppc6xx_tlb_getnum(env, EPN, way, is_code); tlb = &env->tlb.tlb6[nr]; LOG_SWTLB("Set TLB %d/%d EPN " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx " PTE1 " TARGET_FMT_lx "\n", nr, env->nb_tlb, EPN, pte0, pte1); /* Invalidate any pending reference in Qemu for this virtual address */ __ppc6xx_tlb_invalidate_virt(env, EPN, is_code, 1); tlb->pte0 = pte0; tlb->pte1 = pte1; tlb->EPN = EPN; /* Store last way for LRU mechanism */ env->last_way = way; } static inline int ppc6xx_tlb_check(CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw, int access_type) { ppc6xx_tlb_t *tlb; int nr, best, way; int ret; best = -1; ret = -1; /* No TLB found */ for (way = 0; way < env->nb_ways; way++) { nr = ppc6xx_tlb_getnum(env, eaddr, way, access_type == ACCESS_CODE ? 1 : 0); tlb = &env->tlb.tlb6[nr]; /* This test "emulates" the PTE index match for hardware TLBs */ if ((eaddr & TARGET_PAGE_MASK) != tlb->EPN) { LOG_SWTLB("TLB %d/%d %s [" TARGET_FMT_lx " " TARGET_FMT_lx "] <> " TARGET_FMT_lx "\n", nr, env->nb_tlb, pte_is_valid(tlb->pte0) ? "valid" : "inval", tlb->EPN, tlb->EPN + TARGET_PAGE_SIZE, eaddr); continue; } LOG_SWTLB("TLB %d/%d %s " TARGET_FMT_lx " <> " TARGET_FMT_lx " " TARGET_FMT_lx " %c %c\n", nr, env->nb_tlb, pte_is_valid(tlb->pte0) ? "valid" : "inval", tlb->EPN, eaddr, tlb->pte1, rw ? 'S' : 'L', access_type == ACCESS_CODE ? 'I' : 'D'); switch (pte32_check(ctx, tlb->pte0, tlb->pte1, 0, rw, access_type)) { case -3: /* TLB inconsistency */ return -1; case -2: /* Access violation */ ret = -2; best = nr; break; case -1: default: /* No match */ break; case 0: /* access granted */ /* XXX: we should go on looping to check all TLBs consistency * but we can speed-up the whole thing as the * result would be undefined if TLBs are not consistent. */ ret = 0; best = nr; goto done; } } if (best != -1) { done: LOG_SWTLB("found TLB at addr " TARGET_FMT_plx " prot=%01x ret=%d\n", ctx->raddr & TARGET_PAGE_MASK, ctx->prot, ret); /* Update page flags */ pte_update_flags(ctx, &env->tlb.tlb6[best].pte1, ret, rw); } return ret; } /* Perform BAT hit & translation */ static inline void bat_size_prot(CPUState *env, target_ulong *blp, int *validp, int *protp, target_ulong *BATu, target_ulong *BATl) { target_ulong bl; int pp, valid, prot; bl = (*BATu & 0x00001FFC) << 15; valid = 0; prot = 0; if (((msr_pr == 0) && (*BATu & 0x00000002)) || ((msr_pr != 0) && (*BATu & 0x00000001))) { valid = 1; pp = *BATl & 0x00000003; if (pp != 0) { prot = PAGE_READ | PAGE_EXEC; if (pp == 0x2) prot |= PAGE_WRITE; } } *blp = bl; *validp = valid; *protp = prot; } static inline void bat_601_size_prot(CPUState *env, target_ulong *blp, int *validp, int *protp, target_ulong *BATu, target_ulong *BATl) { target_ulong bl; int key, pp, valid, prot; bl = (*BATl & 0x0000003F) << 17; LOG_BATS("b %02x ==> bl " TARGET_FMT_lx " msk " TARGET_FMT_lx "\n", (uint8_t)(*BATl & 0x0000003F), bl, ~bl); prot = 0; valid = (*BATl >> 6) & 1; if (valid) { pp = *BATu & 0x00000003; if (msr_pr == 0) key = (*BATu >> 3) & 1; else key = (*BATu >> 2) & 1; prot = pp_check(key, pp, 0); } *blp = bl; *validp = valid; *protp = prot; } static inline int get_bat(CPUState *env, mmu_ctx_t *ctx, target_ulong virtual, int rw, int type) { target_ulong *BATlt, *BATut, *BATu, *BATl; target_ulong BEPIl, BEPIu, bl; int i, valid, prot; int ret = -1; LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', virtual); switch (type) { case ACCESS_CODE: BATlt = env->IBAT[1]; BATut = env->IBAT[0]; break; default: BATlt = env->DBAT[1]; BATut = env->DBAT[0]; break; } for (i = 0; i < env->nb_BATs; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & 0xF0000000; BEPIl = *BATu & 0x0FFE0000; if (unlikely(env->mmu_model == POWERPC_MMU_601)) { bat_601_size_prot(env, &bl, &valid, &prot, BATu, BATl); } else { bat_size_prot(env, &bl, &valid, &prot, BATu, BATl); } LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl); if ((virtual & 0xF0000000) == BEPIu && ((virtual & 0x0FFE0000) & ~bl) == BEPIl) { /* BAT matches */ if (valid != 0) { /* Get physical address */ ctx->raddr = (*BATl & 0xF0000000) | ((virtual & 0x0FFE0000 & bl) | (*BATl & 0x0FFE0000)) | (virtual & 0x0001F000); /* Compute access rights */ ctx->prot = prot; ret = check_prot(ctx->prot, rw, type); if (ret == 0) LOG_BATS("BAT %d match: r " TARGET_FMT_plx " prot=%c%c\n", i, ctx->raddr, ctx->prot & PAGE_READ ? 'R' : '-', ctx->prot & PAGE_WRITE ? 'W' : '-'); break; } } } if (ret < 0) { #if defined(DEBUG_BATS) if (qemu_log_enabled()) { LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", virtual); for (i = 0; i < 4; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & 0xF0000000; BEPIl = *BATu & 0x0FFE0000; bl = (*BATu & 0x00001FFC) << 15; LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl, BEPIu, BEPIl, bl); } } #endif } /* No hit */ return ret; } static inline target_phys_addr_t get_pteg_offset(CPUState *env, target_phys_addr_t hash, int pte_size) { return (hash * pte_size * 8) & env->htab_mask; } /* PTE table lookup */ static inline int _find_pte(CPUState *env, mmu_ctx_t *ctx, int is_64b, int h, int rw, int type, int target_page_bits) { target_phys_addr_t pteg_off; target_ulong pte0, pte1; int i, good = -1; int ret, r; ret = -1; /* No entry found */ pteg_off = get_pteg_offset(env, ctx->hash[h], is_64b ? HASH_PTE_SIZE_64 : HASH_PTE_SIZE_32); for (i = 0; i < 8; i++) { #if defined(TARGET_PPC64) if (is_64b) { if (env->external_htab) { pte0 = ldq_p(env->external_htab + pteg_off + (i * 16)); pte1 = ldq_p(env->external_htab + pteg_off + (i * 16) + 8); } else { pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16)); pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8); } /* We have a TLB that saves 4K pages, so let's * split a huge page to 4k chunks */ if (target_page_bits != TARGET_PAGE_BITS) pte1 |= (ctx->eaddr & (( 1 << target_page_bits ) - 1)) & TARGET_PAGE_MASK; r = pte64_check(ctx, pte0, pte1, h, rw, type); LOG_MMU("Load pte from " TARGET_FMT_lx " => " TARGET_FMT_lx " " TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n", pteg_off + (i * 16), pte0, pte1, (int)(pte0 & 1), h, (int)((pte0 >> 1) & 1), ctx->ptem); } else #endif { if (env->external_htab) { pte0 = ldl_p(env->external_htab + pteg_off + (i * 8)); pte1 = ldl_p(env->external_htab + pteg_off + (i * 8) + 4); } else { pte0 = ldl_phys(env->htab_base + pteg_off + (i * 8)); pte1 = ldl_phys(env->htab_base + pteg_off + (i * 8) + 4); } r = pte32_check(ctx, pte0, pte1, h, rw, type); LOG_MMU("Load pte from " TARGET_FMT_lx " => " TARGET_FMT_lx " " TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n", pteg_off + (i * 8), pte0, pte1, (int)(pte0 >> 31), h, (int)((pte0 >> 6) & 1), ctx->ptem); } switch (r) { case -3: /* PTE inconsistency */ return -1; case -2: /* Access violation */ ret = -2; good = i; break; case -1: default: /* No PTE match */ break; case 0: /* access granted */ /* XXX: we should go on looping to check all PTEs consistency * but if we can speed-up the whole thing as the * result would be undefined if PTEs are not consistent. */ ret = 0; good = i; goto done; } } if (good != -1) { done: LOG_MMU("found PTE at addr " TARGET_FMT_lx " prot=%01x ret=%d\n", ctx->raddr, ctx->prot, ret); /* Update page flags */ pte1 = ctx->raddr; if (pte_update_flags(ctx, &pte1, ret, rw) == 1) { #if defined(TARGET_PPC64) if (is_64b) { if (env->external_htab) { stq_p(env->external_htab + pteg_off + (good * 16) + 8, pte1); } else { stq_phys_notdirty(env->htab_base + pteg_off + (good * 16) + 8, pte1); } } else #endif { if (env->external_htab) { stl_p(env->external_htab + pteg_off + (good * 8) + 4, pte1); } else { stl_phys_notdirty(env->htab_base + pteg_off + (good * 8) + 4, pte1); } } } } return ret; } static inline int find_pte(CPUState *env, mmu_ctx_t *ctx, int h, int rw, int type, int target_page_bits) { #if defined(TARGET_PPC64) if (env->mmu_model & POWERPC_MMU_64) return _find_pte(env, ctx, 1, h, rw, type, target_page_bits); #endif return _find_pte(env, ctx, 0, h, rw, type, target_page_bits); } #if defined(TARGET_PPC64) static inline ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr) { uint64_t esid_256M, esid_1T; int n; LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; for (n = 0; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; LOG_SLB("%s: slot %d %016" PRIx64 " %016" PRIx64 "\n", __func__, n, slb->esid, slb->vsid); /* We check for 1T matches on all MMUs here - if the MMU * doesn't have 1T segment support, we will have prevented 1T * entries from being inserted in the slbmte code. */ if (((slb->esid == esid_256M) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) || ((slb->esid == esid_1T) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { return slb; } } return NULL; } void ppc_slb_invalidate_all (CPUPPCState *env) { int n, do_invalidate; do_invalidate = 0; /* XXX: Warning: slbia never invalidates the first segment */ for (n = 1; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in Qemu, we just invalidate all TLBs */ do_invalidate = 1; } } if (do_invalidate) tlb_flush(env, 1); } void ppc_slb_invalidate_one (CPUPPCState *env, uint64_t T0) { ppc_slb_t *slb; slb = slb_lookup(env, T0); if (!slb) { return; } if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in Qemu, we just invalidate all TLBs */ tlb_flush(env, 1); } } int ppc_store_slb (CPUPPCState *env, target_ulong rb, target_ulong rs) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (rb & (0x1000 - env->slb_nr)) { return -1; /* Reserved bits set or slot too high */ } if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) { return -1; /* Bad segment size */ } if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { return -1; /* 1T segment on MMU that doesn't support it */ } /* Mask out the slot number as we store the entry */ slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V); slb->vsid = rs; LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, rb, rs, slb->esid, slb->vsid); return 0; } int ppc_load_slb_esid (CPUPPCState *env, target_ulong rb, target_ulong *rt) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->esid; return 0; } int ppc_load_slb_vsid (CPUPPCState *env, target_ulong rb, target_ulong *rt) { int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->vsid; return 0; } #endif /* defined(TARGET_PPC64) */ /* Perform segment based translation */ static inline int get_segment(CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw, int type) { target_phys_addr_t hash; target_ulong vsid; int ds, pr, target_page_bits; int ret, ret2; pr = msr_pr; ctx->eaddr = eaddr; #if defined(TARGET_PPC64) if (env->mmu_model & POWERPC_MMU_64) { ppc_slb_t *slb; target_ulong pageaddr; int segment_bits; LOG_MMU("Check SLBs\n"); slb = slb_lookup(env, eaddr); if (!slb) { return -5; } if (slb->vsid & SLB_VSID_B) { vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; segment_bits = 40; } else { vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; segment_bits = 28; } target_page_bits = (slb->vsid & SLB_VSID_L) ? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS; ctx->key = !!(pr ? (slb->vsid & SLB_VSID_KP) : (slb->vsid & SLB_VSID_KS)); ds = 0; ctx->nx = !!(slb->vsid & SLB_VSID_N); pageaddr = eaddr & ((1ULL << segment_bits) - (1ULL << target_page_bits)); if (slb->vsid & SLB_VSID_B) { hash = vsid ^ (vsid << 25) ^ (pageaddr >> target_page_bits); } else { hash = vsid ^ (pageaddr >> target_page_bits); } /* Only 5 bits of the page index are used in the AVPN */ ctx->ptem = (slb->vsid & SLB_VSID_PTEM) | ((pageaddr >> 16) & ((1ULL << segment_bits) - 0x80)); } else #endif /* defined(TARGET_PPC64) */ { target_ulong sr, pgidx; sr = env->sr[eaddr >> 28]; ctx->key = (((sr & 0x20000000) && (pr != 0)) || ((sr & 0x40000000) && (pr == 0))) ? 1 : 0; ds = sr & 0x80000000 ? 1 : 0; ctx->nx = sr & 0x10000000 ? 1 : 0; vsid = sr & 0x00FFFFFF; target_page_bits = TARGET_PAGE_BITS; LOG_MMU("Check segment v=" TARGET_FMT_lx " %d " TARGET_FMT_lx " nip=" TARGET_FMT_lx " lr=" TARGET_FMT_lx " ir=%d dr=%d pr=%d %d t=%d\n", eaddr, (int)(eaddr >> 28), sr, env->nip, env->lr, (int)msr_ir, (int)msr_dr, pr != 0 ? 1 : 0, rw, type); pgidx = (eaddr & ~SEGMENT_MASK_256M) >> target_page_bits; hash = vsid ^ pgidx; ctx->ptem = (vsid << 7) | (pgidx >> 10); } LOG_MMU("pte segment: key=%d ds %d nx %d vsid " TARGET_FMT_lx "\n", ctx->key, ds, ctx->nx, vsid); ret = -1; if (!ds) { /* Check if instruction fetch is allowed, if needed */ if (type != ACCESS_CODE || ctx->nx == 0) { /* Page address translation */ LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx " hash " TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, hash); ctx->hash[0] = hash; ctx->hash[1] = ~hash; /* Initialize real address with an invalid value */ ctx->raddr = (target_phys_addr_t)-1ULL; if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_6xx || env->mmu_model == POWERPC_MMU_SOFT_74xx)) { /* Software TLB search */ ret = ppc6xx_tlb_check(env, ctx, eaddr, rw, type); } else { LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ctx->ptem, ctx->hash[0]); /* Primary table lookup */ ret = find_pte(env, ctx, 0, rw, type, target_page_bits); if (ret < 0) { /* Secondary table lookup */ if (eaddr != 0xEFFFFFFF) LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ctx->ptem, ctx->hash[1]); ret2 = find_pte(env, ctx, 1, rw, type, target_page_bits); if (ret2 != -1) ret = ret2; } } #if defined (DUMP_PAGE_TABLES) if (qemu_log_enabled()) { target_phys_addr_t curaddr; uint32_t a0, a1, a2, a3; qemu_log("Page table: " TARGET_FMT_plx " len " TARGET_FMT_plx "\n", sdr, mask + 0x80); for (curaddr = sdr; curaddr < (sdr + mask + 0x80); curaddr += 16) { a0 = ldl_phys(curaddr); a1 = ldl_phys(curaddr + 4); a2 = ldl_phys(curaddr + 8); a3 = ldl_phys(curaddr + 12); if (a0 != 0 || a1 != 0 || a2 != 0 || a3 != 0) { qemu_log(TARGET_FMT_plx ": %08x %08x %08x %08x\n", curaddr, a0, a1, a2, a3); } } } #endif } else { LOG_MMU("No access allowed\n"); ret = -3; } } else { target_ulong sr; LOG_MMU("direct store...\n"); /* Direct-store segment : absolutely *BUGGY* for now */ /* Direct-store implies a 32-bit MMU. * Check the Segment Register's bus unit ID (BUID). */ sr = env->sr[eaddr >> 28]; if ((sr & 0x1FF00000) >> 20 == 0x07f) { /* Memory-forced I/O controller interface access */ /* If T=1 and BUID=x'07F', the 601 performs a memory access * to SR[28-31] LA[4-31], bypassing all protection mechanisms. */ ctx->raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF); ctx->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; return 0; } switch (type) { case ACCESS_INT: /* Integer load/store : only access allowed */ break; case ACCESS_CODE: /* No code fetch is allowed in direct-store areas */ return -4; case ACCESS_FLOAT: /* Floating point load/store */ return -4; case ACCESS_RES: /* lwarx, ldarx or srwcx. */ return -4; case ACCESS_CACHE: /* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi */ /* Should make the instruction do no-op. * As it already do no-op, it's quite easy :-) */ ctx->raddr = eaddr; return 0; case ACCESS_EXT: /* eciwx or ecowx */ return -4; default: qemu_log("ERROR: instruction should not need " "address translation\n"); return -4; } if ((rw == 1 || ctx->key != 1) && (rw == 0 || ctx->key != 0)) { ctx->raddr = eaddr; ret = 2; } else { ret = -2; } } return ret; } /* Generic TLB check function for embedded PowerPC implementations */ int ppcemb_tlb_check(CPUState *env, ppcemb_tlb_t *tlb, target_phys_addr_t *raddrp, target_ulong address, uint32_t pid, int ext, int i) { target_ulong mask; /* Check valid flag */ if (!(tlb->prot & PAGE_VALID)) { return -1; } mask = ~(tlb->size - 1); LOG_SWTLB("%s: TLB %d address " TARGET_FMT_lx " PID %u <=> " TARGET_FMT_lx " " TARGET_FMT_lx " %u %x\n", __func__, i, address, pid, tlb->EPN, mask, (uint32_t)tlb->PID, tlb->prot); /* Check PID */ if (tlb->PID != 0 && tlb->PID != pid) return -1; /* Check effective address */ if ((address & mask) != tlb->EPN) return -1; *raddrp = (tlb->RPN & mask) | (address & ~mask); #if (TARGET_PHYS_ADDR_BITS >= 36) if (ext) { /* Extend the physical address to 36 bits */ *raddrp |= (target_phys_addr_t)(tlb->RPN & 0xF) << 32; } #endif return 0; } /* Generic TLB search function for PowerPC embedded implementations */ int ppcemb_tlb_search (CPUPPCState *env, target_ulong address, uint32_t pid) { ppcemb_tlb_t *tlb; target_phys_addr_t raddr; int i, ret; /* Default return value is no match */ ret = -1; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->tlb.tlbe[i]; if (ppcemb_tlb_check(env, tlb, &raddr, address, pid, 0, i) == 0) { ret = i; break; } } return ret; } /* Helpers specific to PowerPC 40x implementations */ static inline void ppc4xx_tlb_invalidate_all(CPUState *env) { ppcemb_tlb_t *tlb; int i; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->tlb.tlbe[i]; tlb->prot &= ~PAGE_VALID; } tlb_flush(env, 1); } static inline void ppc4xx_tlb_invalidate_virt(CPUState *env, target_ulong eaddr, uint32_t pid) { #if !defined(FLUSH_ALL_TLBS) ppcemb_tlb_t *tlb; target_phys_addr_t raddr; target_ulong page, end; int i; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->tlb.tlbe[i]; if (ppcemb_tlb_check(env, tlb, &raddr, eaddr, pid, 0, i) == 0) { end = tlb->EPN + tlb->size; for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); tlb->prot &= ~PAGE_VALID; break; } } #else ppc4xx_tlb_invalidate_all(env); #endif } static int mmu40x_get_physical_address (CPUState *env, mmu_ctx_t *ctx, target_ulong address, int rw, int access_type) { ppcemb_tlb_t *tlb; target_phys_addr_t raddr; int i, ret, zsel, zpr, pr; ret = -1; raddr = (target_phys_addr_t)-1ULL; pr = msr_pr; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->tlb.tlbe[i]; if (ppcemb_tlb_check(env, tlb, &raddr, address, env->spr[SPR_40x_PID], 0, i) < 0) continue; zsel = (tlb->attr >> 4) & 0xF; zpr = (env->spr[SPR_40x_ZPR] >> (30 - (2 * zsel))) & 0x3; LOG_SWTLB("%s: TLB %d zsel %d zpr %d rw %d attr %08x\n", __func__, i, zsel, zpr, rw, tlb->attr); /* Check execute enable bit */ switch (zpr) { case 0x2: if (pr != 0) goto check_perms; /* No break here */ case 0x3: /* All accesses granted */ ctx->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; ret = 0; break; case 0x0: if (pr != 0) { /* Raise Zone protection fault. */ env->spr[SPR_40x_ESR] = 1 << 22; ctx->prot = 0; ret = -2; break; } /* No break here */ case 0x1: check_perms: /* Check from TLB entry */ ctx->prot = tlb->prot; ret = check_prot(ctx->prot, rw, access_type); if (ret == -2) env->spr[SPR_40x_ESR] = 0; break; } if (ret >= 0) { ctx->raddr = raddr; LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, ctx->raddr, ctx->prot, ret); return 0; } } LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, raddr, ctx->prot, ret); return ret; } void store_40x_sler (CPUPPCState *env, uint32_t val) { /* XXX: TO BE FIXED */ if (val != 0x00000000) { cpu_abort(env, "Little-endian regions are not supported by now\n"); } env->spr[SPR_405_SLER] = val; } static inline int mmubooke_check_tlb (CPUState *env, ppcemb_tlb_t *tlb, target_phys_addr_t *raddr, int *prot, target_ulong address, int rw, int access_type, int i) { int ret, _prot; if (ppcemb_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID], !env->nb_pids, i) >= 0) { goto found_tlb; } if (env->spr[SPR_BOOKE_PID1] && ppcemb_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID1], 0, i) >= 0) { goto found_tlb; } if (env->spr[SPR_BOOKE_PID2] && ppcemb_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID2], 0, i) >= 0) { goto found_tlb; } LOG_SWTLB("%s: TLB entry not found\n", __func__); return -1; found_tlb: if (msr_pr != 0) { _prot = tlb->prot & 0xF; } else { _prot = (tlb->prot >> 4) & 0xF; } /* Check the address space */ if (access_type == ACCESS_CODE) { if (msr_ir != (tlb->attr & 1)) { LOG_SWTLB("%s: AS doesn't match\n", __func__); return -1; } *prot = _prot; if (_prot & PAGE_EXEC) { LOG_SWTLB("%s: good TLB!\n", __func__); return 0; } LOG_SWTLB("%s: no PAGE_EXEC: %x\n", __func__, _prot); ret = -3; } else { if (msr_dr != (tlb->attr & 1)) { LOG_SWTLB("%s: AS doesn't match\n", __func__); return -1; } *prot = _prot; if ((!rw && _prot & PAGE_READ) || (rw && (_prot & PAGE_WRITE))) { LOG_SWTLB("%s: found TLB!\n", __func__); return 0; } LOG_SWTLB("%s: PAGE_READ/WRITE doesn't match: %x\n", __func__, _prot); ret = -2; } return ret; } static int mmubooke_get_physical_address (CPUState *env, mmu_ctx_t *ctx, target_ulong address, int rw, int access_type) { ppcemb_tlb_t *tlb; target_phys_addr_t raddr; int i, ret; ret = -1; raddr = (target_phys_addr_t)-1ULL; for (i = 0; i < env->nb_tlb; i++) { tlb = &env->tlb.tlbe[i]; ret = mmubooke_check_tlb(env, tlb, &raddr, &ctx->prot, address, rw, access_type, i); if (!ret) { break; } } if (ret >= 0) { ctx->raddr = raddr; LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, ctx->raddr, ctx->prot, ret); } else { LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, raddr, ctx->prot, ret); } return ret; } void booke206_flush_tlb(CPUState *env, int flags, const int check_iprot) { int tlb_size; int i, j; ppcmas_tlb_t *tlb = env->tlb.tlbm; for (i = 0; i < BOOKE206_MAX_TLBN; i++) { if (flags & (1 << i)) { tlb_size = booke206_tlb_size(env, i); for (j = 0; j < tlb_size; j++) { if (!check_iprot || !(tlb[j].mas1 & MAS1_IPROT)) { tlb[j].mas1 &= ~MAS1_VALID; } } } tlb += booke206_tlb_size(env, i); } tlb_flush(env, 1); } target_phys_addr_t booke206_tlb_to_page_size(CPUState *env, ppcmas_tlb_t *tlb) { uint32_t tlbncfg; int tlbn = booke206_tlbm_to_tlbn(env, tlb); int tlbm_size; tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlbn]; if (tlbncfg & TLBnCFG_AVAIL) { tlbm_size = (tlb->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; } else { tlbm_size = (tlbncfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT; tlbm_size <<= 1; } return 1024ULL << tlbm_size; } /* TLB check function for MAS based SoftTLBs */ int ppcmas_tlb_check(CPUState *env, ppcmas_tlb_t *tlb, target_phys_addr_t *raddrp, target_ulong address, uint32_t pid) { target_ulong mask; uint32_t tlb_pid; /* Check valid flag */ if (!(tlb->mas1 & MAS1_VALID)) { return -1; } mask = ~(booke206_tlb_to_page_size(env, tlb) - 1); LOG_SWTLB("%s: TLB ADDR=0x" TARGET_FMT_lx " PID=0x%x MAS1=0x%x MAS2=0x%" PRIx64 " mask=0x" TARGET_FMT_lx " MAS7_3=0x%" PRIx64 " MAS8=%x\n", __func__, address, pid, tlb->mas1, tlb->mas2, mask, tlb->mas7_3, tlb->mas8); /* Check PID */ tlb_pid = (tlb->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT; if (tlb_pid != 0 && tlb_pid != pid) { return -1; } /* Check effective address */ if ((address & mask) != (tlb->mas2 & MAS2_EPN_MASK)) { return -1; } if (raddrp) { *raddrp = (tlb->mas7_3 & mask) | (address & ~mask); } return 0; } static int mmubooke206_check_tlb(CPUState *env, ppcmas_tlb_t *tlb, target_phys_addr_t *raddr, int *prot, target_ulong address, int rw, int access_type) { int ret; int _prot = 0; if (ppcmas_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID]) >= 0) { goto found_tlb; } if (env->spr[SPR_BOOKE_PID1] && ppcmas_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID1]) >= 0) { goto found_tlb; } if (env->spr[SPR_BOOKE_PID2] && ppcmas_tlb_check(env, tlb, raddr, address, env->spr[SPR_BOOKE_PID2]) >= 0) { goto found_tlb; } LOG_SWTLB("%s: TLB entry not found\n", __func__); return -1; found_tlb: if (msr_pr != 0) { if (tlb->mas7_3 & MAS3_UR) { _prot |= PAGE_READ; } if (tlb->mas7_3 & MAS3_UW) { _prot |= PAGE_WRITE; } if (tlb->mas7_3 & MAS3_UX) { _prot |= PAGE_EXEC; } } else { if (tlb->mas7_3 & MAS3_SR) { _prot |= PAGE_READ; } if (tlb->mas7_3 & MAS3_SW) { _prot |= PAGE_WRITE; } if (tlb->mas7_3 & MAS3_SX) { _prot |= PAGE_EXEC; } } /* Check the address space and permissions */ if (access_type == ACCESS_CODE) { if (msr_ir != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) { LOG_SWTLB("%s: AS doesn't match\n", __func__); return -1; } *prot = _prot; if (_prot & PAGE_EXEC) { LOG_SWTLB("%s: good TLB!\n", __func__); return 0; } LOG_SWTLB("%s: no PAGE_EXEC: %x\n", __func__, _prot); ret = -3; } else { if (msr_dr != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) { LOG_SWTLB("%s: AS doesn't match\n", __func__); return -1; } *prot = _prot; if ((!rw && _prot & PAGE_READ) || (rw && (_prot & PAGE_WRITE))) { LOG_SWTLB("%s: found TLB!\n", __func__); return 0; } LOG_SWTLB("%s: PAGE_READ/WRITE doesn't match: %x\n", __func__, _prot); ret = -2; } return ret; } static int mmubooke206_get_physical_address(CPUState *env, mmu_ctx_t *ctx, target_ulong address, int rw, int access_type) { ppcmas_tlb_t *tlb; target_phys_addr_t raddr; int i, j, ret; ret = -1; raddr = (target_phys_addr_t)-1ULL; for (i = 0; i < BOOKE206_MAX_TLBN; i++) { int ways = booke206_tlb_ways(env, i); for (j = 0; j < ways; j++) { tlb = booke206_get_tlbm(env, i, address, j); if (!tlb) { continue; } ret = mmubooke206_check_tlb(env, tlb, &raddr, &ctx->prot, address, rw, access_type); if (ret != -1) { goto found_tlb; } } } found_tlb: if (ret >= 0) { ctx->raddr = raddr; LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, ctx->raddr, ctx->prot, ret); } else { LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx " %d %d\n", __func__, address, raddr, ctx->prot, ret); } return ret; } static const char *book3e_tsize_to_str[32] = { "1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K", "1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M", "1G", "2G", "4G", "8G", "16G", "32G", "64G", "128G", "256G", "512G", "1T", "2T" }; static void mmubooke206_dump_one_tlb(FILE *f, fprintf_function cpu_fprintf, CPUState *env, int tlbn, int offset, int tlbsize) { ppcmas_tlb_t *entry; int i; cpu_fprintf(f, "\nTLB%d:\n", tlbn); cpu_fprintf(f, "Effective Physical Size TID TS SRWX URWX WIMGE U0123\n"); entry = &env->tlb.tlbm[offset]; for (i = 0; i < tlbsize; i++, entry++) { target_phys_addr_t ea, pa, size; int tsize; if (!(entry->mas1 & MAS1_VALID)) { continue; } tsize = (entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; size = 1024ULL << tsize; ea = entry->mas2 & ~(size - 1); pa = entry->mas7_3 & ~(size - 1); cpu_fprintf(f, "0x%016" PRIx64 " 0x%016" PRIx64 " %4s %-5u %1u S%c%c%c U%c%c%c %c%c%c%c%c U%c%c%c%c\n", (uint64_t)ea, (uint64_t)pa, book3e_tsize_to_str[tsize], (entry->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT, (entry->mas1 & MAS1_TS) >> MAS1_TS_SHIFT, entry->mas7_3 & MAS3_SR ? 'R' : '-', entry->mas7_3 & MAS3_SW ? 'W' : '-', entry->mas7_3 & MAS3_SX ? 'X' : '-', entry->mas7_3 & MAS3_UR ? 'R' : '-', entry->mas7_3 & MAS3_UW ? 'W' : '-', entry->mas7_3 & MAS3_UX ? 'X' : '-', entry->mas2 & MAS2_W ? 'W' : '-', entry->mas2 & MAS2_I ? 'I' : '-', entry->mas2 & MAS2_M ? 'M' : '-', entry->mas2 & MAS2_G ? 'G' : '-', entry->mas2 & MAS2_E ? 'E' : '-', entry->mas7_3 & MAS3_U0 ? '0' : '-', entry->mas7_3 & MAS3_U1 ? '1' : '-', entry->mas7_3 & MAS3_U2 ? '2' : '-', entry->mas7_3 & MAS3_U3 ? '3' : '-'); } } static void mmubooke206_dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env) { int offset = 0; int i; if (kvm_enabled() && !env->kvm_sw_tlb) { cpu_fprintf(f, "Cannot access KVM TLB\n"); return; } for (i = 0; i < BOOKE206_MAX_TLBN; i++) { int size = booke206_tlb_size(env, i); if (size == 0) { continue; } mmubooke206_dump_one_tlb(f, cpu_fprintf, env, i, offset, size); offset += size; } } #if defined(TARGET_PPC64) static void mmubooks_dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env) { int i; uint64_t slbe, slbv; cpu_synchronize_state(env); cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); for (i = 0; i < env->slb_nr; i++) { slbe = env->slb[i].esid; slbv = env->slb[i].vsid; if (slbe == 0 && slbv == 0) { continue; } cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", i, slbe, slbv); } } #endif void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env) { switch (env->mmu_model) { case POWERPC_MMU_BOOKE206: mmubooke206_dump_mmu(f, cpu_fprintf, env); break; #if defined(TARGET_PPC64) case POWERPC_MMU_64B: case POWERPC_MMU_2_06: mmubooks_dump_mmu(f, cpu_fprintf, env); break; #endif default: cpu_fprintf(f, "%s: unimplemented\n", __func__); } } static inline int check_physical(CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw) { int in_plb, ret; ctx->raddr = eaddr; ctx->prot = PAGE_READ | PAGE_EXEC; ret = 0; switch (env->mmu_model) { case POWERPC_MMU_32B: case POWERPC_MMU_601: case POWERPC_MMU_SOFT_6xx: case POWERPC_MMU_SOFT_74xx: case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_REAL: case POWERPC_MMU_BOOKE: ctx->prot |= PAGE_WRITE; break; #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: /* Real address are 60 bits long */ ctx->raddr &= 0x0FFFFFFFFFFFFFFFULL; ctx->prot |= PAGE_WRITE; break; #endif case POWERPC_MMU_SOFT_4xx_Z: if (unlikely(msr_pe != 0)) { /* 403 family add some particular protections, * using PBL/PBU registers for accesses with no translation. */ in_plb = /* Check PLB validity */ (env->pb[0] < env->pb[1] && /* and address in plb area */ eaddr >= env->pb[0] && eaddr < env->pb[1]) || (env->pb[2] < env->pb[3] && eaddr >= env->pb[2] && eaddr < env->pb[3]) ? 1 : 0; if (in_plb ^ msr_px) { /* Access in protected area */ if (rw == 1) { /* Access is not allowed */ ret = -2; } } else { /* Read-write access is allowed */ ctx->prot |= PAGE_WRITE; } } break; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_BOOKE206: cpu_abort(env, "BookE 2.06 MMU doesn't have physical real mode\n"); break; default: cpu_abort(env, "Unknown or invalid MMU model\n"); return -1; } return ret; } int get_physical_address (CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw, int access_type) { int ret; #if 0 qemu_log("%s\n", __func__); #endif if ((access_type == ACCESS_CODE && msr_ir == 0) || (access_type != ACCESS_CODE && msr_dr == 0)) { if (env->mmu_model == POWERPC_MMU_BOOKE) { /* The BookE MMU always performs address translation. The IS and DS bits only affect the address space. */ ret = mmubooke_get_physical_address(env, ctx, eaddr, rw, access_type); } else if (env->mmu_model == POWERPC_MMU_BOOKE206) { ret = mmubooke206_get_physical_address(env, ctx, eaddr, rw, access_type); } else { /* No address translation. */ ret = check_physical(env, ctx, eaddr, rw); } } else { ret = -1; switch (env->mmu_model) { case POWERPC_MMU_32B: case POWERPC_MMU_601: case POWERPC_MMU_SOFT_6xx: case POWERPC_MMU_SOFT_74xx: /* Try to find a BAT */ if (env->nb_BATs != 0) ret = get_bat(env, ctx, eaddr, rw, access_type); #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: #endif if (ret < 0) { /* We didn't match any BAT entry or don't have BATs */ ret = get_segment(env, ctx, eaddr, rw, access_type); } break; case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_SOFT_4xx_Z: ret = mmu40x_get_physical_address(env, ctx, eaddr, rw, access_type); break; case POWERPC_MMU_BOOKE: ret = mmubooke_get_physical_address(env, ctx, eaddr, rw, access_type); break; case POWERPC_MMU_BOOKE206: ret = mmubooke206_get_physical_address(env, ctx, eaddr, rw, access_type); break; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_REAL: cpu_abort(env, "PowerPC in real mode do not do any translation\n"); return -1; default: cpu_abort(env, "Unknown or invalid MMU model\n"); return -1; } } #if 0 qemu_log("%s address " TARGET_FMT_lx " => %d " TARGET_FMT_plx "\n", __func__, eaddr, ret, ctx->raddr); #endif return ret; } target_phys_addr_t cpu_get_phys_page_debug (CPUState *env, target_ulong addr) { mmu_ctx_t ctx; if (unlikely(get_physical_address(env, &ctx, addr, 0, ACCESS_INT) != 0)) return -1; return ctx.raddr & TARGET_PAGE_MASK; } static void booke206_update_mas_tlb_miss(CPUState *env, target_ulong address, int rw) { env->spr[SPR_BOOKE_MAS0] = env->spr[SPR_BOOKE_MAS4] & MAS4_TLBSELD_MASK; env->spr[SPR_BOOKE_MAS1] = env->spr[SPR_BOOKE_MAS4] & MAS4_TSIZED_MASK; env->spr[SPR_BOOKE_MAS2] = env->spr[SPR_BOOKE_MAS4] & MAS4_WIMGED_MASK; env->spr[SPR_BOOKE_MAS3] = 0; env->spr[SPR_BOOKE_MAS6] = 0; env->spr[SPR_BOOKE_MAS7] = 0; /* AS */ if (((rw == 2) && msr_ir) || ((rw != 2) && msr_dr)) { env->spr[SPR_BOOKE_MAS1] |= MAS1_TS; env->spr[SPR_BOOKE_MAS6] |= MAS6_SAS; } env->spr[SPR_BOOKE_MAS1] |= MAS1_VALID; env->spr[SPR_BOOKE_MAS2] |= address & MAS2_EPN_MASK; switch (env->spr[SPR_BOOKE_MAS4] & MAS4_TIDSELD_PIDZ) { case MAS4_TIDSELD_PID0: env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID] << MAS1_TID_SHIFT; break; case MAS4_TIDSELD_PID1: env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID1] << MAS1_TID_SHIFT; break; case MAS4_TIDSELD_PID2: env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID2] << MAS1_TID_SHIFT; break; } env->spr[SPR_BOOKE_MAS6] |= env->spr[SPR_BOOKE_PID] << 16; /* next victim logic */ env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_ESEL_SHIFT; env->last_way++; env->last_way &= booke206_tlb_ways(env, 0) - 1; env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT; } /* Perform address translation */ int cpu_ppc_handle_mmu_fault (CPUState *env, target_ulong address, int rw, int mmu_idx) { mmu_ctx_t ctx; int access_type; int ret = 0; if (rw == 2) { /* code access */ rw = 0; access_type = ACCESS_CODE; } else { /* data access */ access_type = env->access_type; } ret = get_physical_address(env, &ctx, address, rw, access_type); if (ret == 0) { tlb_set_page(env, address & TARGET_PAGE_MASK, ctx.raddr & TARGET_PAGE_MASK, ctx.prot, mmu_idx, TARGET_PAGE_SIZE); ret = 0; } else if (ret < 0) { LOG_MMU_STATE(env); if (access_type == ACCESS_CODE) { switch (ret) { case -1: /* No matches in page tables or TLB */ switch (env->mmu_model) { case POWERPC_MMU_SOFT_6xx: env->exception_index = POWERPC_EXCP_IFTLB; env->error_code = 1 << 18; env->spr[SPR_IMISS] = address; env->spr[SPR_ICMP] = 0x80000000 | ctx.ptem; goto tlb_miss; case POWERPC_MMU_SOFT_74xx: env->exception_index = POWERPC_EXCP_IFTLB; goto tlb_miss_74xx; case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_SOFT_4xx_Z: env->exception_index = POWERPC_EXCP_ITLB; env->error_code = 0; env->spr[SPR_40x_DEAR] = address; env->spr[SPR_40x_ESR] = 0x00000000; break; case POWERPC_MMU_32B: case POWERPC_MMU_601: #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: #endif env->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x40000000; break; case POWERPC_MMU_BOOKE206: booke206_update_mas_tlb_miss(env, address, rw); /* fall through */ case POWERPC_MMU_BOOKE: env->exception_index = POWERPC_EXCP_ITLB; env->error_code = 0; env->spr[SPR_BOOKE_DEAR] = address; return -1; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_REAL: cpu_abort(env, "PowerPC in real mode should never raise " "any MMU exceptions\n"); return -1; default: cpu_abort(env, "Unknown or invalid MMU model\n"); return -1; } break; case -2: /* Access rights violation */ env->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x08000000; break; case -3: /* No execute protection violation */ if ((env->mmu_model == POWERPC_MMU_BOOKE) || (env->mmu_model == POWERPC_MMU_BOOKE206)) { env->spr[SPR_BOOKE_ESR] = 0x00000000; } env->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x10000000; break; case -4: /* Direct store exception */ /* No code fetch is allowed in direct-store areas */ env->exception_index = POWERPC_EXCP_ISI; env->error_code = 0x10000000; break; #if defined(TARGET_PPC64) case -5: /* No match in segment table */ if (env->mmu_model == POWERPC_MMU_620) { env->exception_index = POWERPC_EXCP_ISI; /* XXX: this might be incorrect */ env->error_code = 0x40000000; } else { env->exception_index = POWERPC_EXCP_ISEG; env->error_code = 0; } break; #endif } } else { switch (ret) { case -1: /* No matches in page tables or TLB */ switch (env->mmu_model) { case POWERPC_MMU_SOFT_6xx: if (rw == 1) { env->exception_index = POWERPC_EXCP_DSTLB; env->error_code = 1 << 16; } else { env->exception_index = POWERPC_EXCP_DLTLB; env->error_code = 0; } env->spr[SPR_DMISS] = address; env->spr[SPR_DCMP] = 0x80000000 | ctx.ptem; tlb_miss: env->error_code |= ctx.key << 19; env->spr[SPR_HASH1] = env->htab_base + get_pteg_offset(env, ctx.hash[0], HASH_PTE_SIZE_32); env->spr[SPR_HASH2] = env->htab_base + get_pteg_offset(env, ctx.hash[1], HASH_PTE_SIZE_32); break; case POWERPC_MMU_SOFT_74xx: if (rw == 1) { env->exception_index = POWERPC_EXCP_DSTLB; } else { env->exception_index = POWERPC_EXCP_DLTLB; } tlb_miss_74xx: /* Implement LRU algorithm */ env->error_code = ctx.key << 19; env->spr[SPR_TLBMISS] = (address & ~((target_ulong)0x3)) | ((env->last_way + 1) & (env->nb_ways - 1)); env->spr[SPR_PTEHI] = 0x80000000 | ctx.ptem; break; case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_SOFT_4xx_Z: env->exception_index = POWERPC_EXCP_DTLB; env->error_code = 0; env->spr[SPR_40x_DEAR] = address; if (rw) env->spr[SPR_40x_ESR] = 0x00800000; else env->spr[SPR_40x_ESR] = 0x00000000; break; case POWERPC_MMU_32B: case POWERPC_MMU_601: #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: #endif env->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = address; if (rw == 1) env->spr[SPR_DSISR] = 0x42000000; else env->spr[SPR_DSISR] = 0x40000000; break; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_BOOKE206: booke206_update_mas_tlb_miss(env, address, rw); /* fall through */ case POWERPC_MMU_BOOKE: env->exception_index = POWERPC_EXCP_DTLB; env->error_code = 0; env->spr[SPR_BOOKE_DEAR] = address; env->spr[SPR_BOOKE_ESR] = rw ? ESR_ST : 0; return -1; case POWERPC_MMU_REAL: cpu_abort(env, "PowerPC in real mode should never raise " "any MMU exceptions\n"); return -1; default: cpu_abort(env, "Unknown or invalid MMU model\n"); return -1; } break; case -2: /* Access rights violation */ env->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; if (env->mmu_model == POWERPC_MMU_SOFT_4xx || env->mmu_model == POWERPC_MMU_SOFT_4xx_Z) { env->spr[SPR_40x_DEAR] = address; if (rw) { env->spr[SPR_40x_ESR] |= 0x00800000; } } else if ((env->mmu_model == POWERPC_MMU_BOOKE) || (env->mmu_model == POWERPC_MMU_BOOKE206)) { env->spr[SPR_BOOKE_DEAR] = address; env->spr[SPR_BOOKE_ESR] = rw ? ESR_ST : 0; } else { env->spr[SPR_DAR] = address; if (rw == 1) { env->spr[SPR_DSISR] = 0x0A000000; } else { env->spr[SPR_DSISR] = 0x08000000; } } break; case -4: /* Direct store exception */ switch (access_type) { case ACCESS_FLOAT: /* Floating point load/store */ env->exception_index = POWERPC_EXCP_ALIGN; env->error_code = POWERPC_EXCP_ALIGN_FP; env->spr[SPR_DAR] = address; break; case ACCESS_RES: /* lwarx, ldarx or stwcx. */ env->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = address; if (rw == 1) env->spr[SPR_DSISR] = 0x06000000; else env->spr[SPR_DSISR] = 0x04000000; break; case ACCESS_EXT: /* eciwx or ecowx */ env->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = address; if (rw == 1) env->spr[SPR_DSISR] = 0x06100000; else env->spr[SPR_DSISR] = 0x04100000; break; default: printf("DSI: invalid exception (%d)\n", ret); env->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL; env->spr[SPR_DAR] = address; break; } break; #if defined(TARGET_PPC64) case -5: /* No match in segment table */ if (env->mmu_model == POWERPC_MMU_620) { env->exception_index = POWERPC_EXCP_DSI; env->error_code = 0; env->spr[SPR_DAR] = address; /* XXX: this might be incorrect */ if (rw == 1) env->spr[SPR_DSISR] = 0x42000000; else env->spr[SPR_DSISR] = 0x40000000; } else { env->exception_index = POWERPC_EXCP_DSEG; env->error_code = 0; env->spr[SPR_DAR] = address; } break; #endif } } #if 0 printf("%s: set exception to %d %02x\n", __func__, env->exception, env->error_code); #endif ret = 1; } return ret; } /*****************************************************************************/ /* BATs management */ #if !defined(FLUSH_ALL_TLBS) static inline void do_invalidate_BAT(CPUPPCState *env, target_ulong BATu, target_ulong mask) { target_ulong base, end, page; base = BATu & ~0x0001FFFF; end = base + mask + 0x00020000; LOG_BATS("Flush BAT from " TARGET_FMT_lx " to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", base, end, mask); for (page = base; page != end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); LOG_BATS("Flush done\n"); } #endif static inline void dump_store_bat(CPUPPCState *env, char ID, int ul, int nr, target_ulong value) { LOG_BATS("Set %cBAT%d%c to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", ID, nr, ul == 0 ? 'u' : 'l', value, env->nip); } void ppc_store_ibatu (CPUPPCState *env, int nr, target_ulong value) { target_ulong mask; dump_store_bat(env, 'I', 0, nr, value); if (env->IBAT[0][nr] != value) { mask = (value << 15) & 0x0FFE0000UL; #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->IBAT[0][nr], mask); #endif /* When storing valid upper BAT, mask BEPI and BRPN * and invalidate all TLBs covered by this BAT */ mask = (value << 15) & 0x0FFE0000UL; env->IBAT[0][nr] = (value & 0x00001FFFUL) | (value & ~0x0001FFFFUL & ~mask); env->IBAT[1][nr] = (env->IBAT[1][nr] & 0x0000007B) | (env->IBAT[1][nr] & ~0x0001FFFF & ~mask); #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->IBAT[0][nr], mask); #else tlb_flush(env, 1); #endif } } void ppc_store_ibatl (CPUPPCState *env, int nr, target_ulong value) { dump_store_bat(env, 'I', 1, nr, value); env->IBAT[1][nr] = value; } void ppc_store_dbatu (CPUPPCState *env, int nr, target_ulong value) { target_ulong mask; dump_store_bat(env, 'D', 0, nr, value); if (env->DBAT[0][nr] != value) { /* When storing valid upper BAT, mask BEPI and BRPN * and invalidate all TLBs covered by this BAT */ mask = (value << 15) & 0x0FFE0000UL; #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->DBAT[0][nr], mask); #endif mask = (value << 15) & 0x0FFE0000UL; env->DBAT[0][nr] = (value & 0x00001FFFUL) | (value & ~0x0001FFFFUL & ~mask); env->DBAT[1][nr] = (env->DBAT[1][nr] & 0x0000007B) | (env->DBAT[1][nr] & ~0x0001FFFF & ~mask); #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->DBAT[0][nr], mask); #else tlb_flush(env, 1); #endif } } void ppc_store_dbatl (CPUPPCState *env, int nr, target_ulong value) { dump_store_bat(env, 'D', 1, nr, value); env->DBAT[1][nr] = value; } void ppc_store_ibatu_601 (CPUPPCState *env, int nr, target_ulong value) { target_ulong mask; #if defined(FLUSH_ALL_TLBS) int do_inval; #endif dump_store_bat(env, 'I', 0, nr, value); if (env->IBAT[0][nr] != value) { #if defined(FLUSH_ALL_TLBS) do_inval = 0; #endif mask = (env->IBAT[1][nr] << 17) & 0x0FFE0000UL; if (env->IBAT[1][nr] & 0x40) { /* Invalidate BAT only if it is valid */ #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->IBAT[0][nr], mask); #else do_inval = 1; #endif } /* When storing valid upper BAT, mask BEPI and BRPN * and invalidate all TLBs covered by this BAT */ env->IBAT[0][nr] = (value & 0x00001FFFUL) | (value & ~0x0001FFFFUL & ~mask); env->DBAT[0][nr] = env->IBAT[0][nr]; if (env->IBAT[1][nr] & 0x40) { #if !defined(FLUSH_ALL_TLBS) do_invalidate_BAT(env, env->IBAT[0][nr], mask); #else do_inval = 1; #endif } #if defined(FLUSH_ALL_TLBS) if (do_inval) tlb_flush(env, 1); #endif } } void ppc_store_ibatl_601 (CPUPPCState *env, int nr, target_ulong value) { target_ulong mask; #if defined(FLUSH_ALL_TLBS) int do_inval; #endif dump_store_bat(env, 'I', 1, nr, value); if (env->IBAT[1][nr] != value) { #if defined(FLUSH_ALL_TLBS) do_inval = 0; #endif if (env->IBAT[1][nr] & 0x40) { #if !defined(FLUSH_ALL_TLBS) mask = (env->IBAT[1][nr] << 17) & 0x0FFE0000UL; do_invalidate_BAT(env, env->IBAT[0][nr], mask); #else do_inval = 1; #endif } if (value & 0x40) { #if !defined(FLUSH_ALL_TLBS) mask = (value << 17) & 0x0FFE0000UL; do_invalidate_BAT(env, env->IBAT[0][nr], mask); #else do_inval = 1; #endif } env->IBAT[1][nr] = value; env->DBAT[1][nr] = value; #if defined(FLUSH_ALL_TLBS) if (do_inval) tlb_flush(env, 1); #endif } } /*****************************************************************************/ /* TLB management */ void ppc_tlb_invalidate_all (CPUPPCState *env) { switch (env->mmu_model) { case POWERPC_MMU_SOFT_6xx: case POWERPC_MMU_SOFT_74xx: ppc6xx_tlb_invalidate_all(env); break; case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_SOFT_4xx_Z: ppc4xx_tlb_invalidate_all(env); break; case POWERPC_MMU_REAL: cpu_abort(env, "No TLB for PowerPC 4xx in real mode\n"); break; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_BOOKE: tlb_flush(env, 1); break; case POWERPC_MMU_BOOKE206: booke206_flush_tlb(env, -1, 0); break; case POWERPC_MMU_32B: case POWERPC_MMU_601: #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: #endif /* defined(TARGET_PPC64) */ tlb_flush(env, 1); break; default: /* XXX: TODO */ cpu_abort(env, "Unknown MMU model\n"); break; } } void ppc_tlb_invalidate_one (CPUPPCState *env, target_ulong addr) { #if !defined(FLUSH_ALL_TLBS) addr &= TARGET_PAGE_MASK; switch (env->mmu_model) { case POWERPC_MMU_SOFT_6xx: case POWERPC_MMU_SOFT_74xx: ppc6xx_tlb_invalidate_virt(env, addr, 0); if (env->id_tlbs == 1) ppc6xx_tlb_invalidate_virt(env, addr, 1); break; case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_SOFT_4xx_Z: ppc4xx_tlb_invalidate_virt(env, addr, env->spr[SPR_40x_PID]); break; case POWERPC_MMU_REAL: cpu_abort(env, "No TLB for PowerPC 4xx in real mode\n"); break; case POWERPC_MMU_MPC8xx: /* XXX: TODO */ cpu_abort(env, "MPC8xx MMU model is not implemented\n"); break; case POWERPC_MMU_BOOKE: /* XXX: TODO */ cpu_abort(env, "BookE MMU model is not implemented\n"); break; case POWERPC_MMU_BOOKE206: /* XXX: TODO */ cpu_abort(env, "BookE 2.06 MMU model is not implemented\n"); break; case POWERPC_MMU_32B: case POWERPC_MMU_601: /* tlbie invalidate TLBs for all segments */ addr &= ~((target_ulong)-1ULL << 28); /* XXX: this case should be optimized, * giving a mask to tlb_flush_page */ tlb_flush_page(env, addr | (0x0 << 28)); tlb_flush_page(env, addr | (0x1 << 28)); tlb_flush_page(env, addr | (0x2 << 28)); tlb_flush_page(env, addr | (0x3 << 28)); tlb_flush_page(env, addr | (0x4 << 28)); tlb_flush_page(env, addr | (0x5 << 28)); tlb_flush_page(env, addr | (0x6 << 28)); tlb_flush_page(env, addr | (0x7 << 28)); tlb_flush_page(env, addr | (0x8 << 28)); tlb_flush_page(env, addr | (0x9 << 28)); tlb_flush_page(env, addr | (0xA << 28)); tlb_flush_page(env, addr | (0xB << 28)); tlb_flush_page(env, addr | (0xC << 28)); tlb_flush_page(env, addr | (0xD << 28)); tlb_flush_page(env, addr | (0xE << 28)); tlb_flush_page(env, addr | (0xF << 28)); break; #if defined(TARGET_PPC64) case POWERPC_MMU_620: case POWERPC_MMU_64B: case POWERPC_MMU_2_06: /* tlbie invalidate TLBs for all segments */ /* XXX: given the fact that there are too many segments to invalidate, * and we still don't have a tlb_flush_mask(env, n, mask) in Qemu, * we just invalidate all TLBs */ tlb_flush(env, 1); break; #endif /* defined(TARGET_PPC64) */ default: /* XXX: TODO */ cpu_abort(env, "Unknown MMU model\n"); break; } #else ppc_tlb_invalidate_all(env); #endif } /*****************************************************************************/ /* Special registers manipulation */ #if defined(TARGET_PPC64) void ppc_store_asr (CPUPPCState *env, target_ulong value) { if (env->asr != value) { env->asr = value; tlb_flush(env, 1); } } #endif void ppc_store_sdr1 (CPUPPCState *env, target_ulong value) { LOG_MMU("%s: " TARGET_FMT_lx "\n", __func__, value); if (env->spr[SPR_SDR1] != value) { env->spr[SPR_SDR1] = value; #if defined(TARGET_PPC64) if (env->mmu_model & POWERPC_MMU_64) { target_ulong htabsize = value & SDR_64_HTABSIZE; if (htabsize > 28) { fprintf(stderr, "Invalid HTABSIZE 0x" TARGET_FMT_lx " stored in SDR1\n", htabsize); htabsize = 28; } env->htab_mask = (1ULL << (htabsize + 18)) - 1; env->htab_base = value & SDR_64_HTABORG; } else #endif /* defined(TARGET_PPC64) */ { /* FIXME: Should check for valid HTABMASK values */ env->htab_mask = ((value & SDR_32_HTABMASK) << 16) | 0xFFFF; env->htab_base = value & SDR_32_HTABORG; } tlb_flush(env, 1); } } #if defined(TARGET_PPC64) target_ulong ppc_load_sr (CPUPPCState *env, int slb_nr) { // XXX return 0; } #endif void ppc_store_sr (CPUPPCState *env, int srnum, target_ulong value) { LOG_MMU("%s: reg=%d " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, srnum, value, env->sr[srnum]); #if defined(TARGET_PPC64) if (env->mmu_model & POWERPC_MMU_64) { uint64_t rb = 0, rs = 0; /* ESID = srnum */ rb |= ((uint32_t)srnum & 0xf) << 28; /* Set the valid bit */ rb |= 1 << 27; /* Index = ESID */ rb |= (uint32_t)srnum; /* VSID = VSID */ rs |= (value & 0xfffffff) << 12; /* flags = flags */ rs |= ((value >> 27) & 0xf) << 8; ppc_store_slb(env, rb, rs); } else #endif if (env->sr[srnum] != value) { env->sr[srnum] = value; /* Invalidating 256MB of virtual memory in 4kB pages is way longer than flusing the whole TLB. */ #if !defined(FLUSH_ALL_TLBS) && 0 { target_ulong page, end; /* Invalidate 256 MB of virtual memory */ page = (16 << 20) * srnum; end = page + (16 << 20); for (; page != end; page += TARGET_PAGE_SIZE) tlb_flush_page(env, page); } #else tlb_flush(env, 1); #endif } } #endif /* !defined (CONFIG_USER_ONLY) */ /* GDBstub can read and write MSR... */ void ppc_store_msr (CPUPPCState *env, target_ulong value) { hreg_store_msr(env, value, 0); } /*****************************************************************************/ /* Exception processing */ #if defined (CONFIG_USER_ONLY) void do_interrupt (CPUState *env) { env->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; } void ppc_hw_interrupt (CPUState *env) { env->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; } #else /* defined (CONFIG_USER_ONLY) */ static inline void dump_syscall(CPUState *env) { qemu_log_mask(CPU_LOG_INT, "syscall r0=%016" PRIx64 " r3=%016" PRIx64 " r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64 " nip=" TARGET_FMT_lx "\n", ppc_dump_gpr(env, 0), ppc_dump_gpr(env, 3), ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5), ppc_dump_gpr(env, 6), env->nip); } /* Note that this function should be greatly optimized * when called with a constant excp, from ppc_hw_interrupt */ static inline void powerpc_excp(CPUState *env, int excp_model, int excp) { target_ulong msr, new_msr, vector; int srr0, srr1, asrr0, asrr1; int lpes0, lpes1, lev; if (0) { /* XXX: find a suitable condition to enable the hypervisor mode */ lpes0 = (env->spr[SPR_LPCR] >> 1) & 1; lpes1 = (env->spr[SPR_LPCR] >> 2) & 1; } else { /* Those values ensure we won't enter the hypervisor mode */ lpes0 = 0; lpes1 = 1; } qemu_log_mask(CPU_LOG_INT, "Raise exception at " TARGET_FMT_lx " => %08x (%02x)\n", env->nip, excp, env->error_code); /* new srr1 value excluding must-be-zero bits */ msr = env->msr & ~0x783f0000ULL; /* new interrupt handler msr */ new_msr = env->msr & ((target_ulong)1 << MSR_ME); /* target registers */ srr0 = SPR_SRR0; srr1 = SPR_SRR1; asrr0 = -1; asrr1 = -1; switch (excp) { case POWERPC_EXCP_NONE: /* Should never happen */ return; case POWERPC_EXCP_CRITICAL: /* Critical input */ switch (excp_model) { case POWERPC_EXCP_40x: srr0 = SPR_40x_SRR2; srr1 = SPR_40x_SRR3; break; case POWERPC_EXCP_BOOKE: srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; case POWERPC_EXCP_G2: break; default: goto excp_invalid; } goto store_next; case POWERPC_EXCP_MCHECK: /* Machine check exception */ if (msr_me == 0) { /* Machine check exception is not enabled. * Enter checkstop state. */ if (qemu_log_enabled()) { qemu_log("Machine check while not allowed. " "Entering checkstop state\n"); } else { fprintf(stderr, "Machine check while not allowed. " "Entering checkstop state\n"); } env->halted = 1; env->interrupt_request |= CPU_INTERRUPT_EXITTB; } if (0) { /* XXX: find a suitable condition to enable the hypervisor mode */ new_msr |= (target_ulong)MSR_HVB; } /* machine check exceptions don't have ME set */ new_msr &= ~((target_ulong)1 << MSR_ME); /* XXX: should also have something loaded in DAR / DSISR */ switch (excp_model) { case POWERPC_EXCP_40x: srr0 = SPR_40x_SRR2; srr1 = SPR_40x_SRR3; break; case POWERPC_EXCP_BOOKE: srr0 = SPR_BOOKE_MCSRR0; srr1 = SPR_BOOKE_MCSRR1; asrr0 = SPR_BOOKE_CSRR0; asrr1 = SPR_BOOKE_CSRR1; break; default: break; } goto store_next; case POWERPC_EXCP_DSI: /* Data storage exception */ LOG_EXCP("DSI exception: DSISR=" TARGET_FMT_lx" DAR=" TARGET_FMT_lx "\n", env->spr[SPR_DSISR], env->spr[SPR_DAR]); if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_ISI: /* Instruction storage exception */ LOG_EXCP("ISI exception: msr=" TARGET_FMT_lx ", nip=" TARGET_FMT_lx "\n", msr, env->nip); if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; msr |= env->error_code; goto store_next; case POWERPC_EXCP_EXTERNAL: /* External input */ if (lpes0 == 1) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_ALIGN: /* Alignment exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; /* XXX: this is false */ /* Get rS/rD and rA from faulting opcode */ env->spr[SPR_DSISR] |= (ldl_code((env->nip - 4)) & 0x03FF0000) >> 16; goto store_current; case POWERPC_EXCP_PROGRAM: /* Program exception */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: if ((msr_fe0 == 0 && msr_fe1 == 0) || msr_fp == 0) { LOG_EXCP("Ignore floating point exception\n"); env->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; return; } if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; msr |= 0x00100000; if (msr_fe0 == msr_fe1) goto store_next; msr |= 0x00010000; break; case POWERPC_EXCP_INVAL: LOG_EXCP("Invalid instruction at " TARGET_FMT_lx "\n", env->nip); if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; msr |= 0x00080000; env->spr[SPR_BOOKE_ESR] = ESR_PIL; break; case POWERPC_EXCP_PRIV: if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; msr |= 0x00040000; env->spr[SPR_BOOKE_ESR] = ESR_PPR; break; case POWERPC_EXCP_TRAP: if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; msr |= 0x00020000; env->spr[SPR_BOOKE_ESR] = ESR_PTR; break; default: /* Should never occur */ cpu_abort(env, "Invalid program exception %d. Aborting\n", env->error_code); break; } goto store_current; case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_current; case POWERPC_EXCP_SYSCALL: /* System call exception */ dump_syscall(env); lev = env->error_code; if ((lev == 1) && cpu_ppc_hypercall) { cpu_ppc_hypercall(env); return; } if (lev == 1 || (lpes0 == 0 && lpes1 == 0)) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ goto store_current; case POWERPC_EXCP_DECR: /* Decrementer exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ /* FIT on 4xx */ LOG_EXCP("FIT exception\n"); goto store_next; case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ LOG_EXCP("WDT exception\n"); switch (excp_model) { case POWERPC_EXCP_BOOKE: srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; default: break; } goto store_next; case POWERPC_EXCP_DTLB: /* Data TLB error */ goto store_next; case POWERPC_EXCP_ITLB: /* Instruction TLB error */ goto store_next; case POWERPC_EXCP_DEBUG: /* Debug interrupt */ switch (excp_model) { case POWERPC_EXCP_BOOKE: srr0 = SPR_BOOKE_DSRR0; srr1 = SPR_BOOKE_DSRR1; asrr0 = SPR_BOOKE_CSRR0; asrr1 = SPR_BOOKE_CSRR1; break; default: break; } /* XXX: TODO */ cpu_abort(env, "Debug exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavailable */ env->spr[SPR_BOOKE_ESR] = ESR_SPV; goto store_current; case POWERPC_EXCP_EFPDI: /* Embedded floating-point data interrupt */ /* XXX: TODO */ cpu_abort(env, "Embedded floating point data exception " "is not implemented yet !\n"); env->spr[SPR_BOOKE_ESR] = ESR_SPV; goto store_next; case POWERPC_EXCP_EFPRI: /* Embedded floating-point round interrupt */ /* XXX: TODO */ cpu_abort(env, "Embedded floating point round exception " "is not implemented yet !\n"); env->spr[SPR_BOOKE_ESR] = ESR_SPV; goto store_next; case POWERPC_EXCP_EPERFM: /* Embedded performance monitor interrupt */ /* XXX: TODO */ cpu_abort(env, "Performance counter exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ /* XXX: TODO */ cpu_abort(env, "Embedded doorbell interrupt is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ switch (excp_model) { case POWERPC_EXCP_BOOKE: srr0 = SPR_BOOKE_CSRR0; srr1 = SPR_BOOKE_CSRR1; break; default: break; } /* XXX: TODO */ cpu_abort(env, "Embedded doorbell critical interrupt " "is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_RESET: /* System reset exception */ if (msr_pow) { /* indicate that we resumed from power save mode */ msr |= 0x10000; } else { new_msr &= ~((target_ulong)1 << MSR_ME); } if (0) { /* XXX: find a suitable condition to enable the hypervisor mode */ new_msr |= (target_ulong)MSR_HVB; } goto store_next; case POWERPC_EXCP_DSEG: /* Data segment exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_ISEG: /* Instruction segment exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); goto store_next; case POWERPC_EXCP_TRACE: /* Trace exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_next; case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); goto store_next; case POWERPC_EXCP_HISI: /* Hypervisor instruction storage exception */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); goto store_next; case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); goto store_next; case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment exception */ srr0 = SPR_HSRR0; srr1 = SPR_HSRR1; new_msr |= (target_ulong)MSR_HVB; new_msr |= env->msr & ((target_ulong)1 << MSR_RI); goto store_next; case POWERPC_EXCP_VPU: /* Vector unavailable exception */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; goto store_current; case POWERPC_EXCP_PIT: /* Programmable interval timer interrupt */ LOG_EXCP("PIT exception\n"); goto store_next; case POWERPC_EXCP_IO: /* IO error exception */ /* XXX: TODO */ cpu_abort(env, "601 IO error exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_RUNM: /* Run mode exception */ /* XXX: TODO */ cpu_abort(env, "601 run mode exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_EMUL: /* Emulation trap exception */ /* XXX: TODO */ cpu_abort(env, "602 emulation trap exception " "is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ if (lpes1 == 0) /* XXX: check this */ new_msr |= (target_ulong)MSR_HVB; switch (excp_model) { case POWERPC_EXCP_602: case POWERPC_EXCP_603: case POWERPC_EXCP_603E: case POWERPC_EXCP_G2: goto tlb_miss_tgpr; case POWERPC_EXCP_7x5: goto tlb_miss; case POWERPC_EXCP_74xx: goto tlb_miss_74xx; default: cpu_abort(env, "Invalid instruction TLB miss exception\n"); break; } break; case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ if (lpes1 == 0) /* XXX: check this */ new_msr |= (target_ulong)MSR_HVB; switch (excp_model) { case POWERPC_EXCP_602: case POWERPC_EXCP_603: case POWERPC_EXCP_603E: case POWERPC_EXCP_G2: goto tlb_miss_tgpr; case POWERPC_EXCP_7x5: goto tlb_miss; case POWERPC_EXCP_74xx: goto tlb_miss_74xx; default: cpu_abort(env, "Invalid data load TLB miss exception\n"); break; } break; case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ if (lpes1 == 0) /* XXX: check this */ new_msr |= (target_ulong)MSR_HVB; switch (excp_model) { case POWERPC_EXCP_602: case POWERPC_EXCP_603: case POWERPC_EXCP_603E: case POWERPC_EXCP_G2: tlb_miss_tgpr: /* Swap temporary saved registers with GPRs */ if (!(new_msr & ((target_ulong)1 << MSR_TGPR))) { new_msr |= (target_ulong)1 << MSR_TGPR; hreg_swap_gpr_tgpr(env); } goto tlb_miss; case POWERPC_EXCP_7x5: tlb_miss: #if defined (DEBUG_SOFTWARE_TLB) if (qemu_log_enabled()) { const char *es; target_ulong *miss, *cmp; int en; if (excp == POWERPC_EXCP_IFTLB) { es = "I"; en = 'I'; miss = &env->spr[SPR_IMISS]; cmp = &env->spr[SPR_ICMP]; } else { if (excp == POWERPC_EXCP_DLTLB) es = "DL"; else es = "DS"; en = 'D'; miss = &env->spr[SPR_DMISS]; cmp = &env->spr[SPR_DCMP]; } qemu_log("6xx %sTLB miss: %cM " TARGET_FMT_lx " %cC " TARGET_FMT_lx " H1 " TARGET_FMT_lx " H2 " TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp, env->spr[SPR_HASH1], env->spr[SPR_HASH2], env->error_code); } #endif msr |= env->crf[0] << 28; msr |= env->error_code; /* key, D/I, S/L bits */ /* Set way using a LRU mechanism */ msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17; break; case POWERPC_EXCP_74xx: tlb_miss_74xx: #if defined (DEBUG_SOFTWARE_TLB) if (qemu_log_enabled()) { const char *es; target_ulong *miss, *cmp; int en; if (excp == POWERPC_EXCP_IFTLB) { es = "I"; en = 'I'; miss = &env->spr[SPR_TLBMISS]; cmp = &env->spr[SPR_PTEHI]; } else { if (excp == POWERPC_EXCP_DLTLB) es = "DL"; else es = "DS"; en = 'D'; miss = &env->spr[SPR_TLBMISS]; cmp = &env->spr[SPR_PTEHI]; } qemu_log("74xx %sTLB miss: %cM " TARGET_FMT_lx " %cC " TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp, env->error_code); } #endif msr |= env->error_code; /* key bit */ break; default: cpu_abort(env, "Invalid data store TLB miss exception\n"); break; } goto store_next; case POWERPC_EXCP_FPA: /* Floating-point assist exception */ /* XXX: TODO */ cpu_abort(env, "Floating point assist exception " "is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_DABR: /* Data address breakpoint */ /* XXX: TODO */ cpu_abort(env, "DABR exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ /* XXX: TODO */ cpu_abort(env, "IABR exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_SMI: /* System management interrupt */ /* XXX: TODO */ cpu_abort(env, "SMI exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_THERM: /* Thermal interrupt */ /* XXX: TODO */ cpu_abort(env, "Thermal management exception " "is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */ if (lpes1 == 0) new_msr |= (target_ulong)MSR_HVB; /* XXX: TODO */ cpu_abort(env, "Performance counter exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_VPUA: /* Vector assist exception */ /* XXX: TODO */ cpu_abort(env, "VPU assist exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_SOFTP: /* Soft patch exception */ /* XXX: TODO */ cpu_abort(env, "970 soft-patch exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_MAINT: /* Maintenance exception */ /* XXX: TODO */ cpu_abort(env, "970 maintenance exception is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_MEXTBR: /* Maskable external breakpoint */ /* XXX: TODO */ cpu_abort(env, "Maskable external exception " "is not implemented yet !\n"); goto store_next; case POWERPC_EXCP_NMEXTBR: /* Non maskable external breakpoint */ /* XXX: TODO */ cpu_abort(env, "Non maskable external exception " "is not implemented yet !\n"); goto store_next; default: excp_invalid: cpu_abort(env, "Invalid PowerPC exception %d. Aborting\n", excp); break; store_current: /* save current instruction location */ env->spr[srr0] = env->nip - 4; break; store_next: /* save next instruction location */ env->spr[srr0] = env->nip; break; } /* Save MSR */ env->spr[srr1] = msr; /* If any alternate SRR register are defined, duplicate saved values */ if (asrr0 != -1) env->spr[asrr0] = env->spr[srr0]; if (asrr1 != -1) env->spr[asrr1] = env->spr[srr1]; /* If we disactivated any translation, flush TLBs */ if (new_msr & ((1 << MSR_IR) | (1 << MSR_DR))) tlb_flush(env, 1); if (msr_ile) { new_msr |= (target_ulong)1 << MSR_LE; } /* Jump to handler */ vector = env->excp_vectors[excp]; if (vector == (target_ulong)-1ULL) { cpu_abort(env, "Raised an exception without defined vector %d\n", excp); } vector |= env->excp_prefix; #if defined(TARGET_PPC64) if (excp_model == POWERPC_EXCP_BOOKE) { if (!msr_icm) { vector = (uint32_t)vector; } else { new_msr |= (target_ulong)1 << MSR_CM; } } else { if (!msr_isf && !(env->mmu_model & POWERPC_MMU_64)) { vector = (uint32_t)vector; } else { new_msr |= (target_ulong)1 << MSR_SF; } } #endif /* XXX: we don't use hreg_store_msr here as already have treated * any special case that could occur. Just store MSR and update hflags */ env->msr = new_msr & env->msr_mask; hreg_compute_hflags(env); env->nip = vector; /* Reset exception state */ env->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; if ((env->mmu_model == POWERPC_MMU_BOOKE) || (env->mmu_model == POWERPC_MMU_BOOKE206)) { /* XXX: The BookE changes address space when switching modes, we should probably implement that as different MMU indexes, but for the moment we do it the slow way and flush all. */ tlb_flush(env, 1); } } void do_interrupt (CPUState *env) { powerpc_excp(env, env->excp_model, env->exception_index); } void ppc_hw_interrupt (CPUPPCState *env) { int hdice; #if 0 qemu_log_mask(CPU_LOG_INT, "%s: %p pending %08x req %08x me %d ee %d\n", __func__, env, env->pending_interrupts, env->interrupt_request, (int)msr_me, (int)msr_ee); #endif /* External reset */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_RESET)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_RESET); powerpc_excp(env, env->excp_model, POWERPC_EXCP_RESET); return; } /* Machine check exception */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_MCK)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_MCK); powerpc_excp(env, env->excp_model, POWERPC_EXCP_MCHECK); return; } #if 0 /* TODO */ /* External debug exception */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_DEBUG)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DEBUG); powerpc_excp(env, env->excp_model, POWERPC_EXCP_DEBUG); return; } #endif if (0) { /* XXX: find a suitable condition to enable the hypervisor mode */ hdice = env->spr[SPR_LPCR] & 1; } else { hdice = 0; } if ((msr_ee != 0 || msr_hv == 0 || msr_pr != 0) && hdice != 0) { /* Hypervisor decrementer exception */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_HDECR)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_HDECR); powerpc_excp(env, env->excp_model, POWERPC_EXCP_HDECR); return; } } if (msr_ce != 0) { /* External critical interrupt */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_CEXT)) { /* Taking a critical external interrupt does not clear the external * critical interrupt status */ #if 0 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_CEXT); #endif powerpc_excp(env, env->excp_model, POWERPC_EXCP_CRITICAL); return; } } if (msr_ee != 0) { /* Watchdog timer on embedded PowerPC */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_WDT)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_WDT); powerpc_excp(env, env->excp_model, POWERPC_EXCP_WDT); return; } if (env->pending_interrupts & (1 << PPC_INTERRUPT_CDOORBELL)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_CDOORBELL); powerpc_excp(env, env->excp_model, POWERPC_EXCP_DOORCI); return; } /* Fixed interval timer on embedded PowerPC */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_FIT)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_FIT); powerpc_excp(env, env->excp_model, POWERPC_EXCP_FIT); return; } /* Programmable interval timer on embedded PowerPC */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_PIT)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PIT); powerpc_excp(env, env->excp_model, POWERPC_EXCP_PIT); return; } /* Decrementer exception */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_DECR)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DECR); powerpc_excp(env, env->excp_model, POWERPC_EXCP_DECR); return; } /* External interrupt */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_EXT)) { /* Taking an external interrupt does not clear the external * interrupt status */ #if 0 env->pending_interrupts &= ~(1 << PPC_INTERRUPT_EXT); #endif powerpc_excp(env, env->excp_model, POWERPC_EXCP_EXTERNAL); return; } if (env->pending_interrupts & (1 << PPC_INTERRUPT_DOORBELL)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DOORBELL); powerpc_excp(env, env->excp_model, POWERPC_EXCP_DOORI); return; } if (env->pending_interrupts & (1 << PPC_INTERRUPT_PERFM)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PERFM); powerpc_excp(env, env->excp_model, POWERPC_EXCP_PERFM); return; } /* Thermal interrupt */ if (env->pending_interrupts & (1 << PPC_INTERRUPT_THERM)) { env->pending_interrupts &= ~(1 << PPC_INTERRUPT_THERM); powerpc_excp(env, env->excp_model, POWERPC_EXCP_THERM); return; } } } #endif /* !CONFIG_USER_ONLY */ void cpu_dump_rfi (target_ulong RA, target_ulong msr) { qemu_log("Return from exception at " TARGET_FMT_lx " with flags " TARGET_FMT_lx "\n", RA, msr); } void cpu_reset(CPUPPCState *env) { target_ulong msr; if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, 0); } msr = (target_ulong)0; if (0) { /* XXX: find a suitable condition to enable the hypervisor mode */ msr |= (target_ulong)MSR_HVB; } msr |= (target_ulong)0 << MSR_AP; /* TO BE CHECKED */ msr |= (target_ulong)0 << MSR_SA; /* TO BE CHECKED */ msr |= (target_ulong)1 << MSR_EP; #if defined (DO_SINGLE_STEP) && 0 /* Single step trace mode */ msr |= (target_ulong)1 << MSR_SE; msr |= (target_ulong)1 << MSR_BE; #endif #if defined(CONFIG_USER_ONLY) msr |= (target_ulong)1 << MSR_FP; /* Allow floating point usage */ msr |= (target_ulong)1 << MSR_VR; /* Allow altivec usage */ msr |= (target_ulong)1 << MSR_SPE; /* Allow SPE usage */ msr |= (target_ulong)1 << MSR_PR; #else env->excp_prefix = env->hreset_excp_prefix; env->nip = env->hreset_vector | env->excp_prefix; if (env->mmu_model != POWERPC_MMU_REAL) ppc_tlb_invalidate_all(env); #endif env->msr = msr & env->msr_mask; #if defined(TARGET_PPC64) if (env->mmu_model & POWERPC_MMU_64) env->msr |= (1ULL << MSR_SF); #endif hreg_compute_hflags(env); env->reserve_addr = (target_ulong)-1ULL; /* Be sure no exception or interrupt is pending */ env->pending_interrupts = 0; env->exception_index = POWERPC_EXCP_NONE; env->error_code = 0; /* Flush all TLBs */ tlb_flush(env, 1); } CPUPPCState *cpu_ppc_init (const char *cpu_model) { CPUPPCState *env; const ppc_def_t *def; def = cpu_ppc_find_by_name(cpu_model); if (!def) return NULL; env = g_malloc0(sizeof(CPUPPCState)); cpu_exec_init(env); if (tcg_enabled()) { ppc_translate_init(); } /* Adjust cpu index for SMT */ #if !defined(CONFIG_USER_ONLY) if (kvm_enabled()) { int smt = kvmppc_smt_threads(); env->cpu_index = (env->cpu_index / smp_threads)*smt + (env->cpu_index % smp_threads); } #endif /* !CONFIG_USER_ONLY */ env->cpu_model_str = cpu_model; cpu_ppc_register_internal(env, def); qemu_init_vcpu(env); return env; } void cpu_ppc_close (CPUPPCState *env) { /* Should also remove all opcode tables... */ g_free(env); }