/*
* PowerPC emulation helpers for qemu.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include
#include
#include
#include
#include
#include "cpu.h"
#include "helper_regs.h"
#include "qemu-common.h"
#include "kvm.h"
#include "kvm_ppc.h"
#include "cpus.h"
//#define DEBUG_MMU
//#define DEBUG_BATS
//#define DEBUG_SLB
//#define DEBUG_SOFTWARE_TLB
//#define DUMP_PAGE_TABLES
//#define DEBUG_EXCEPTIONS
//#define FLUSH_ALL_TLBS
#ifdef DEBUG_MMU
# define LOG_MMU(...) qemu_log(__VA_ARGS__)
# define LOG_MMU_STATE(env) log_cpu_state((env), 0)
#else
# define LOG_MMU(...) do { } while (0)
# define LOG_MMU_STATE(...) do { } while (0)
#endif
#ifdef DEBUG_SOFTWARE_TLB
# define LOG_SWTLB(...) qemu_log(__VA_ARGS__)
#else
# define LOG_SWTLB(...) do { } while (0)
#endif
#ifdef DEBUG_BATS
# define LOG_BATS(...) qemu_log(__VA_ARGS__)
#else
# define LOG_BATS(...) do { } while (0)
#endif
#ifdef DEBUG_SLB
# define LOG_SLB(...) qemu_log(__VA_ARGS__)
#else
# define LOG_SLB(...) do { } while (0)
#endif
#ifdef DEBUG_EXCEPTIONS
# define LOG_EXCP(...) qemu_log(__VA_ARGS__)
#else
# define LOG_EXCP(...) do { } while (0)
#endif
/*****************************************************************************/
/* PowerPC Hypercall emulation */
void (*cpu_ppc_hypercall)(CPUState *);
/*****************************************************************************/
/* PowerPC MMU emulation */
#if defined(CONFIG_USER_ONLY)
int cpu_ppc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx)
{
int exception, error_code;
if (rw == 2) {
exception = POWERPC_EXCP_ISI;
error_code = 0x40000000;
} else {
exception = POWERPC_EXCP_DSI;
error_code = 0x40000000;
if (rw)
error_code |= 0x02000000;
env->spr[SPR_DAR] = address;
env->spr[SPR_DSISR] = error_code;
}
env->exception_index = exception;
env->error_code = error_code;
return 1;
}
#else
/* Common routines used by software and hardware TLBs emulation */
static inline int pte_is_valid(target_ulong pte0)
{
return pte0 & 0x80000000 ? 1 : 0;
}
static inline void pte_invalidate(target_ulong *pte0)
{
*pte0 &= ~0x80000000;
}
#if defined(TARGET_PPC64)
static inline int pte64_is_valid(target_ulong pte0)
{
return pte0 & 0x0000000000000001ULL ? 1 : 0;
}
static inline void pte64_invalidate(target_ulong *pte0)
{
*pte0 &= ~0x0000000000000001ULL;
}
#endif
#define PTE_PTEM_MASK 0x7FFFFFBF
#define PTE_CHECK_MASK (TARGET_PAGE_MASK | 0x7B)
#if defined(TARGET_PPC64)
#define PTE64_PTEM_MASK 0xFFFFFFFFFFFFFF80ULL
#define PTE64_CHECK_MASK (TARGET_PAGE_MASK | 0x7F)
#endif
static inline int pp_check(int key, int pp, int nx)
{
int access;
/* Compute access rights */
/* When pp is 3/7, the result is undefined. Set it to noaccess */
access = 0;
if (key == 0) {
switch (pp) {
case 0x0:
case 0x1:
case 0x2:
access |= PAGE_WRITE;
/* No break here */
case 0x3:
case 0x6:
access |= PAGE_READ;
break;
}
} else {
switch (pp) {
case 0x0:
case 0x6:
access = 0;
break;
case 0x1:
case 0x3:
access = PAGE_READ;
break;
case 0x2:
access = PAGE_READ | PAGE_WRITE;
break;
}
}
if (nx == 0)
access |= PAGE_EXEC;
return access;
}
static inline int check_prot(int prot, int rw, int access_type)
{
int ret;
if (access_type == ACCESS_CODE) {
if (prot & PAGE_EXEC)
ret = 0;
else
ret = -2;
} else if (rw) {
if (prot & PAGE_WRITE)
ret = 0;
else
ret = -2;
} else {
if (prot & PAGE_READ)
ret = 0;
else
ret = -2;
}
return ret;
}
static inline int _pte_check(mmu_ctx_t *ctx, int is_64b, target_ulong pte0,
target_ulong pte1, int h, int rw, int type)
{
target_ulong ptem, mmask;
int access, ret, pteh, ptev, pp;
ret = -1;
/* Check validity and table match */
#if defined(TARGET_PPC64)
if (is_64b) {
ptev = pte64_is_valid(pte0);
pteh = (pte0 >> 1) & 1;
} else
#endif
{
ptev = pte_is_valid(pte0);
pteh = (pte0 >> 6) & 1;
}
if (ptev && h == pteh) {
/* Check vsid & api */
#if defined(TARGET_PPC64)
if (is_64b) {
ptem = pte0 & PTE64_PTEM_MASK;
mmask = PTE64_CHECK_MASK;
pp = (pte1 & 0x00000003) | ((pte1 >> 61) & 0x00000004);
ctx->nx = (pte1 >> 2) & 1; /* No execute bit */
ctx->nx |= (pte1 >> 3) & 1; /* Guarded bit */
} else
#endif
{
ptem = pte0 & PTE_PTEM_MASK;
mmask = PTE_CHECK_MASK;
pp = pte1 & 0x00000003;
}
if (ptem == ctx->ptem) {
if (ctx->raddr != (target_phys_addr_t)-1ULL) {
/* all matches should have equal RPN, WIMG & PP */
if ((ctx->raddr & mmask) != (pte1 & mmask)) {
qemu_log("Bad RPN/WIMG/PP\n");
return -3;
}
}
/* Compute access rights */
access = pp_check(ctx->key, pp, ctx->nx);
/* Keep the matching PTE informations */
ctx->raddr = pte1;
ctx->prot = access;
ret = check_prot(ctx->prot, rw, type);
if (ret == 0) {
/* Access granted */
LOG_MMU("PTE access granted !\n");
} else {
/* Access right violation */
LOG_MMU("PTE access rejected\n");
}
}
}
return ret;
}
static inline int pte32_check(mmu_ctx_t *ctx, target_ulong pte0,
target_ulong pte1, int h, int rw, int type)
{
return _pte_check(ctx, 0, pte0, pte1, h, rw, type);
}
#if defined(TARGET_PPC64)
static inline int pte64_check(mmu_ctx_t *ctx, target_ulong pte0,
target_ulong pte1, int h, int rw, int type)
{
return _pte_check(ctx, 1, pte0, pte1, h, rw, type);
}
#endif
static inline int pte_update_flags(mmu_ctx_t *ctx, target_ulong *pte1p,
int ret, int rw)
{
int store = 0;
/* Update page flags */
if (!(*pte1p & 0x00000100)) {
/* Update accessed flag */
*pte1p |= 0x00000100;
store = 1;
}
if (!(*pte1p & 0x00000080)) {
if (rw == 1 && ret == 0) {
/* Update changed flag */
*pte1p |= 0x00000080;
store = 1;
} else {
/* Force page fault for first write access */
ctx->prot &= ~PAGE_WRITE;
}
}
return store;
}
/* Software driven TLB helpers */
static inline int ppc6xx_tlb_getnum(CPUState *env, target_ulong eaddr, int way,
int is_code)
{
int nr;
/* Select TLB num in a way from address */
nr = (eaddr >> TARGET_PAGE_BITS) & (env->tlb_per_way - 1);
/* Select TLB way */
nr += env->tlb_per_way * way;
/* 6xx have separate TLBs for instructions and data */
if (is_code && env->id_tlbs == 1)
nr += env->nb_tlb;
return nr;
}
static inline void ppc6xx_tlb_invalidate_all(CPUState *env)
{
ppc6xx_tlb_t *tlb;
int nr, max;
//LOG_SWTLB("Invalidate all TLBs\n");
/* Invalidate all defined software TLB */
max = env->nb_tlb;
if (env->id_tlbs == 1)
max *= 2;
for (nr = 0; nr < max; nr++) {
tlb = &env->tlb.tlb6[nr];
pte_invalidate(&tlb->pte0);
}
tlb_flush(env, 1);
}
static inline void __ppc6xx_tlb_invalidate_virt(CPUState *env,
target_ulong eaddr,
int is_code, int match_epn)
{
#if !defined(FLUSH_ALL_TLBS)
ppc6xx_tlb_t *tlb;
int way, nr;
/* Invalidate ITLB + DTLB, all ways */
for (way = 0; way < env->nb_ways; way++) {
nr = ppc6xx_tlb_getnum(env, eaddr, way, is_code);
tlb = &env->tlb.tlb6[nr];
if (pte_is_valid(tlb->pte0) && (match_epn == 0 || eaddr == tlb->EPN)) {
LOG_SWTLB("TLB invalidate %d/%d " TARGET_FMT_lx "\n", nr,
env->nb_tlb, eaddr);
pte_invalidate(&tlb->pte0);
tlb_flush_page(env, tlb->EPN);
}
}
#else
/* XXX: PowerPC specification say this is valid as well */
ppc6xx_tlb_invalidate_all(env);
#endif
}
static inline void ppc6xx_tlb_invalidate_virt(CPUState *env,
target_ulong eaddr, int is_code)
{
__ppc6xx_tlb_invalidate_virt(env, eaddr, is_code, 0);
}
void ppc6xx_tlb_store (CPUState *env, target_ulong EPN, int way, int is_code,
target_ulong pte0, target_ulong pte1)
{
ppc6xx_tlb_t *tlb;
int nr;
nr = ppc6xx_tlb_getnum(env, EPN, way, is_code);
tlb = &env->tlb.tlb6[nr];
LOG_SWTLB("Set TLB %d/%d EPN " TARGET_FMT_lx " PTE0 " TARGET_FMT_lx
" PTE1 " TARGET_FMT_lx "\n", nr, env->nb_tlb, EPN, pte0, pte1);
/* Invalidate any pending reference in Qemu for this virtual address */
__ppc6xx_tlb_invalidate_virt(env, EPN, is_code, 1);
tlb->pte0 = pte0;
tlb->pte1 = pte1;
tlb->EPN = EPN;
/* Store last way for LRU mechanism */
env->last_way = way;
}
static inline int ppc6xx_tlb_check(CPUState *env, mmu_ctx_t *ctx,
target_ulong eaddr, int rw, int access_type)
{
ppc6xx_tlb_t *tlb;
int nr, best, way;
int ret;
best = -1;
ret = -1; /* No TLB found */
for (way = 0; way < env->nb_ways; way++) {
nr = ppc6xx_tlb_getnum(env, eaddr, way,
access_type == ACCESS_CODE ? 1 : 0);
tlb = &env->tlb.tlb6[nr];
/* This test "emulates" the PTE index match for hardware TLBs */
if ((eaddr & TARGET_PAGE_MASK) != tlb->EPN) {
LOG_SWTLB("TLB %d/%d %s [" TARGET_FMT_lx " " TARGET_FMT_lx
"] <> " TARGET_FMT_lx "\n", nr, env->nb_tlb,
pte_is_valid(tlb->pte0) ? "valid" : "inval",
tlb->EPN, tlb->EPN + TARGET_PAGE_SIZE, eaddr);
continue;
}
LOG_SWTLB("TLB %d/%d %s " TARGET_FMT_lx " <> " TARGET_FMT_lx " "
TARGET_FMT_lx " %c %c\n", nr, env->nb_tlb,
pte_is_valid(tlb->pte0) ? "valid" : "inval",
tlb->EPN, eaddr, tlb->pte1,
rw ? 'S' : 'L', access_type == ACCESS_CODE ? 'I' : 'D');
switch (pte32_check(ctx, tlb->pte0, tlb->pte1, 0, rw, access_type)) {
case -3:
/* TLB inconsistency */
return -1;
case -2:
/* Access violation */
ret = -2;
best = nr;
break;
case -1:
default:
/* No match */
break;
case 0:
/* access granted */
/* XXX: we should go on looping to check all TLBs consistency
* but we can speed-up the whole thing as the
* result would be undefined if TLBs are not consistent.
*/
ret = 0;
best = nr;
goto done;
}
}
if (best != -1) {
done:
LOG_SWTLB("found TLB at addr " TARGET_FMT_plx " prot=%01x ret=%d\n",
ctx->raddr & TARGET_PAGE_MASK, ctx->prot, ret);
/* Update page flags */
pte_update_flags(ctx, &env->tlb.tlb6[best].pte1, ret, rw);
}
return ret;
}
/* Perform BAT hit & translation */
static inline void bat_size_prot(CPUState *env, target_ulong *blp, int *validp,
int *protp, target_ulong *BATu,
target_ulong *BATl)
{
target_ulong bl;
int pp, valid, prot;
bl = (*BATu & 0x00001FFC) << 15;
valid = 0;
prot = 0;
if (((msr_pr == 0) && (*BATu & 0x00000002)) ||
((msr_pr != 0) && (*BATu & 0x00000001))) {
valid = 1;
pp = *BATl & 0x00000003;
if (pp != 0) {
prot = PAGE_READ | PAGE_EXEC;
if (pp == 0x2)
prot |= PAGE_WRITE;
}
}
*blp = bl;
*validp = valid;
*protp = prot;
}
static inline void bat_601_size_prot(CPUState *env, target_ulong *blp,
int *validp, int *protp,
target_ulong *BATu, target_ulong *BATl)
{
target_ulong bl;
int key, pp, valid, prot;
bl = (*BATl & 0x0000003F) << 17;
LOG_BATS("b %02x ==> bl " TARGET_FMT_lx " msk " TARGET_FMT_lx "\n",
(uint8_t)(*BATl & 0x0000003F), bl, ~bl);
prot = 0;
valid = (*BATl >> 6) & 1;
if (valid) {
pp = *BATu & 0x00000003;
if (msr_pr == 0)
key = (*BATu >> 3) & 1;
else
key = (*BATu >> 2) & 1;
prot = pp_check(key, pp, 0);
}
*blp = bl;
*validp = valid;
*protp = prot;
}
static inline int get_bat(CPUState *env, mmu_ctx_t *ctx, target_ulong virtual,
int rw, int type)
{
target_ulong *BATlt, *BATut, *BATu, *BATl;
target_ulong BEPIl, BEPIu, bl;
int i, valid, prot;
int ret = -1;
LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
type == ACCESS_CODE ? 'I' : 'D', virtual);
switch (type) {
case ACCESS_CODE:
BATlt = env->IBAT[1];
BATut = env->IBAT[0];
break;
default:
BATlt = env->DBAT[1];
BATut = env->DBAT[0];
break;
}
for (i = 0; i < env->nb_BATs; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & 0xF0000000;
BEPIl = *BATu & 0x0FFE0000;
if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
bat_601_size_prot(env, &bl, &valid, &prot, BATu, BATl);
} else {
bat_size_prot(env, &bl, &valid, &prot, BATu, BATl);
}
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n", __func__,
type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl);
if ((virtual & 0xF0000000) == BEPIu &&
((virtual & 0x0FFE0000) & ~bl) == BEPIl) {
/* BAT matches */
if (valid != 0) {
/* Get physical address */
ctx->raddr = (*BATl & 0xF0000000) |
((virtual & 0x0FFE0000 & bl) | (*BATl & 0x0FFE0000)) |
(virtual & 0x0001F000);
/* Compute access rights */
ctx->prot = prot;
ret = check_prot(ctx->prot, rw, type);
if (ret == 0)
LOG_BATS("BAT %d match: r " TARGET_FMT_plx " prot=%c%c\n",
i, ctx->raddr, ctx->prot & PAGE_READ ? 'R' : '-',
ctx->prot & PAGE_WRITE ? 'W' : '-');
break;
}
}
}
if (ret < 0) {
#if defined(DEBUG_BATS)
if (qemu_log_enabled()) {
LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", virtual);
for (i = 0; i < 4; i++) {
BATu = &BATut[i];
BATl = &BATlt[i];
BEPIu = *BATu & 0xF0000000;
BEPIl = *BATu & 0x0FFE0000;
bl = (*BATu & 0x00001FFC) << 15;
LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
" BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
TARGET_FMT_lx " " TARGET_FMT_lx "\n",
__func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual,
*BATu, *BATl, BEPIu, BEPIl, bl);
}
}
#endif
}
/* No hit */
return ret;
}
static inline target_phys_addr_t get_pteg_offset(CPUState *env,
target_phys_addr_t hash,
int pte_size)
{
return (hash * pte_size * 8) & env->htab_mask;
}
/* PTE table lookup */
static inline int _find_pte(CPUState *env, mmu_ctx_t *ctx, int is_64b, int h,
int rw, int type, int target_page_bits)
{
target_phys_addr_t pteg_off;
target_ulong pte0, pte1;
int i, good = -1;
int ret, r;
ret = -1; /* No entry found */
pteg_off = get_pteg_offset(env, ctx->hash[h],
is_64b ? HASH_PTE_SIZE_64 : HASH_PTE_SIZE_32);
for (i = 0; i < 8; i++) {
#if defined(TARGET_PPC64)
if (is_64b) {
if (env->external_htab) {
pte0 = ldq_p(env->external_htab + pteg_off + (i * 16));
pte1 = ldq_p(env->external_htab + pteg_off + (i * 16) + 8);
} else {
pte0 = ldq_phys(env->htab_base + pteg_off + (i * 16));
pte1 = ldq_phys(env->htab_base + pteg_off + (i * 16) + 8);
}
/* We have a TLB that saves 4K pages, so let's
* split a huge page to 4k chunks */
if (target_page_bits != TARGET_PAGE_BITS)
pte1 |= (ctx->eaddr & (( 1 << target_page_bits ) - 1))
& TARGET_PAGE_MASK;
r = pte64_check(ctx, pte0, pte1, h, rw, type);
LOG_MMU("Load pte from " TARGET_FMT_lx " => " TARGET_FMT_lx " "
TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n",
pteg_off + (i * 16), pte0, pte1, (int)(pte0 & 1), h,
(int)((pte0 >> 1) & 1), ctx->ptem);
} else
#endif
{
if (env->external_htab) {
pte0 = ldl_p(env->external_htab + pteg_off + (i * 8));
pte1 = ldl_p(env->external_htab + pteg_off + (i * 8) + 4);
} else {
pte0 = ldl_phys(env->htab_base + pteg_off + (i * 8));
pte1 = ldl_phys(env->htab_base + pteg_off + (i * 8) + 4);
}
r = pte32_check(ctx, pte0, pte1, h, rw, type);
LOG_MMU("Load pte from " TARGET_FMT_lx " => " TARGET_FMT_lx " "
TARGET_FMT_lx " %d %d %d " TARGET_FMT_lx "\n",
pteg_off + (i * 8), pte0, pte1, (int)(pte0 >> 31), h,
(int)((pte0 >> 6) & 1), ctx->ptem);
}
switch (r) {
case -3:
/* PTE inconsistency */
return -1;
case -2:
/* Access violation */
ret = -2;
good = i;
break;
case -1:
default:
/* No PTE match */
break;
case 0:
/* access granted */
/* XXX: we should go on looping to check all PTEs consistency
* but if we can speed-up the whole thing as the
* result would be undefined if PTEs are not consistent.
*/
ret = 0;
good = i;
goto done;
}
}
if (good != -1) {
done:
LOG_MMU("found PTE at addr " TARGET_FMT_lx " prot=%01x ret=%d\n",
ctx->raddr, ctx->prot, ret);
/* Update page flags */
pte1 = ctx->raddr;
if (pte_update_flags(ctx, &pte1, ret, rw) == 1) {
#if defined(TARGET_PPC64)
if (is_64b) {
if (env->external_htab) {
stq_p(env->external_htab + pteg_off + (good * 16) + 8,
pte1);
} else {
stq_phys_notdirty(env->htab_base + pteg_off +
(good * 16) + 8, pte1);
}
} else
#endif
{
if (env->external_htab) {
stl_p(env->external_htab + pteg_off + (good * 8) + 4,
pte1);
} else {
stl_phys_notdirty(env->htab_base + pteg_off +
(good * 8) + 4, pte1);
}
}
}
}
return ret;
}
static inline int find_pte(CPUState *env, mmu_ctx_t *ctx, int h, int rw,
int type, int target_page_bits)
{
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64)
return _find_pte(env, ctx, 1, h, rw, type, target_page_bits);
#endif
return _find_pte(env, ctx, 0, h, rw, type, target_page_bits);
}
#if defined(TARGET_PPC64)
static inline ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
{
uint64_t esid_256M, esid_1T;
int n;
LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
for (n = 0; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
LOG_SLB("%s: slot %d %016" PRIx64 " %016"
PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
/* We check for 1T matches on all MMUs here - if the MMU
* doesn't have 1T segment support, we will have prevented 1T
* entries from being inserted in the slbmte code. */
if (((slb->esid == esid_256M) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
|| ((slb->esid == esid_1T) &&
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
return slb;
}
}
return NULL;
}
void ppc_slb_invalidate_all (CPUPPCState *env)
{
int n, do_invalidate;
do_invalidate = 0;
/* XXX: Warning: slbia never invalidates the first segment */
for (n = 1; n < env->slb_nr; n++) {
ppc_slb_t *slb = &env->slb[n];
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in Qemu, we just invalidate all TLBs
*/
do_invalidate = 1;
}
}
if (do_invalidate)
tlb_flush(env, 1);
}
void ppc_slb_invalidate_one (CPUPPCState *env, uint64_t T0)
{
ppc_slb_t *slb;
slb = slb_lookup(env, T0);
if (!slb) {
return;
}
if (slb->esid & SLB_ESID_V) {
slb->esid &= ~SLB_ESID_V;
/* XXX: given the fact that segment size is 256 MB or 1TB,
* and we still don't have a tlb_flush_mask(env, n, mask)
* in Qemu, we just invalidate all TLBs
*/
tlb_flush(env, 1);
}
}
int ppc_store_slb (CPUPPCState *env, target_ulong rb, target_ulong rs)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (rb & (0x1000 - env->slb_nr)) {
return -1; /* Reserved bits set or slot too high */
}
if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
return -1; /* Bad segment size */
}
if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
return -1; /* 1T segment on MMU that doesn't support it */
}
/* Mask out the slot number as we store the entry */
slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
slb->vsid = rs;
LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
" %016" PRIx64 "\n", __func__, slot, rb, rs,
slb->esid, slb->vsid);
return 0;
}
int ppc_load_slb_esid (CPUPPCState *env, target_ulong rb, target_ulong *rt)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->esid;
return 0;
}
int ppc_load_slb_vsid (CPUPPCState *env, target_ulong rb, target_ulong *rt)
{
int slot = rb & 0xfff;
ppc_slb_t *slb = &env->slb[slot];
if (slot >= env->slb_nr) {
return -1;
}
*rt = slb->vsid;
return 0;
}
#endif /* defined(TARGET_PPC64) */
/* Perform segment based translation */
static inline int get_segment(CPUState *env, mmu_ctx_t *ctx,
target_ulong eaddr, int rw, int type)
{
target_phys_addr_t hash;
target_ulong vsid;
int ds, pr, target_page_bits;
int ret, ret2;
pr = msr_pr;
ctx->eaddr = eaddr;
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64) {
ppc_slb_t *slb;
target_ulong pageaddr;
int segment_bits;
LOG_MMU("Check SLBs\n");
slb = slb_lookup(env, eaddr);
if (!slb) {
return -5;
}
if (slb->vsid & SLB_VSID_B) {
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
segment_bits = 40;
} else {
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
segment_bits = 28;
}
target_page_bits = (slb->vsid & SLB_VSID_L)
? TARGET_PAGE_BITS_16M : TARGET_PAGE_BITS;
ctx->key = !!(pr ? (slb->vsid & SLB_VSID_KP)
: (slb->vsid & SLB_VSID_KS));
ds = 0;
ctx->nx = !!(slb->vsid & SLB_VSID_N);
pageaddr = eaddr & ((1ULL << segment_bits)
- (1ULL << target_page_bits));
if (slb->vsid & SLB_VSID_B) {
hash = vsid ^ (vsid << 25) ^ (pageaddr >> target_page_bits);
} else {
hash = vsid ^ (pageaddr >> target_page_bits);
}
/* Only 5 bits of the page index are used in the AVPN */
ctx->ptem = (slb->vsid & SLB_VSID_PTEM) |
((pageaddr >> 16) & ((1ULL << segment_bits) - 0x80));
} else
#endif /* defined(TARGET_PPC64) */
{
target_ulong sr, pgidx;
sr = env->sr[eaddr >> 28];
ctx->key = (((sr & 0x20000000) && (pr != 0)) ||
((sr & 0x40000000) && (pr == 0))) ? 1 : 0;
ds = sr & 0x80000000 ? 1 : 0;
ctx->nx = sr & 0x10000000 ? 1 : 0;
vsid = sr & 0x00FFFFFF;
target_page_bits = TARGET_PAGE_BITS;
LOG_MMU("Check segment v=" TARGET_FMT_lx " %d " TARGET_FMT_lx " nip="
TARGET_FMT_lx " lr=" TARGET_FMT_lx
" ir=%d dr=%d pr=%d %d t=%d\n",
eaddr, (int)(eaddr >> 28), sr, env->nip, env->lr, (int)msr_ir,
(int)msr_dr, pr != 0 ? 1 : 0, rw, type);
pgidx = (eaddr & ~SEGMENT_MASK_256M) >> target_page_bits;
hash = vsid ^ pgidx;
ctx->ptem = (vsid << 7) | (pgidx >> 10);
}
LOG_MMU("pte segment: key=%d ds %d nx %d vsid " TARGET_FMT_lx "\n",
ctx->key, ds, ctx->nx, vsid);
ret = -1;
if (!ds) {
/* Check if instruction fetch is allowed, if needed */
if (type != ACCESS_CODE || ctx->nx == 0) {
/* Page address translation */
LOG_MMU("htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
" hash " TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, hash);
ctx->hash[0] = hash;
ctx->hash[1] = ~hash;
/* Initialize real address with an invalid value */
ctx->raddr = (target_phys_addr_t)-1ULL;
if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_6xx ||
env->mmu_model == POWERPC_MMU_SOFT_74xx)) {
/* Software TLB search */
ret = ppc6xx_tlb_check(env, ctx, eaddr, rw, type);
} else {
LOG_MMU("0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n",
env->htab_base, env->htab_mask, vsid, ctx->ptem,
ctx->hash[0]);
/* Primary table lookup */
ret = find_pte(env, ctx, 0, rw, type, target_page_bits);
if (ret < 0) {
/* Secondary table lookup */
if (eaddr != 0xEFFFFFFF)
LOG_MMU("1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
" vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
" hash=" TARGET_FMT_plx "\n", env->htab_base,
env->htab_mask, vsid, ctx->ptem, ctx->hash[1]);
ret2 = find_pte(env, ctx, 1, rw, type,
target_page_bits);
if (ret2 != -1)
ret = ret2;
}
}
#if defined (DUMP_PAGE_TABLES)
if (qemu_log_enabled()) {
target_phys_addr_t curaddr;
uint32_t a0, a1, a2, a3;
qemu_log("Page table: " TARGET_FMT_plx " len " TARGET_FMT_plx
"\n", sdr, mask + 0x80);
for (curaddr = sdr; curaddr < (sdr + mask + 0x80);
curaddr += 16) {
a0 = ldl_phys(curaddr);
a1 = ldl_phys(curaddr + 4);
a2 = ldl_phys(curaddr + 8);
a3 = ldl_phys(curaddr + 12);
if (a0 != 0 || a1 != 0 || a2 != 0 || a3 != 0) {
qemu_log(TARGET_FMT_plx ": %08x %08x %08x %08x\n",
curaddr, a0, a1, a2, a3);
}
}
}
#endif
} else {
LOG_MMU("No access allowed\n");
ret = -3;
}
} else {
target_ulong sr;
LOG_MMU("direct store...\n");
/* Direct-store segment : absolutely *BUGGY* for now */
/* Direct-store implies a 32-bit MMU.
* Check the Segment Register's bus unit ID (BUID).
*/
sr = env->sr[eaddr >> 28];
if ((sr & 0x1FF00000) >> 20 == 0x07f) {
/* Memory-forced I/O controller interface access */
/* If T=1 and BUID=x'07F', the 601 performs a memory access
* to SR[28-31] LA[4-31], bypassing all protection mechanisms.
*/
ctx->raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF);
ctx->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
switch (type) {
case ACCESS_INT:
/* Integer load/store : only access allowed */
break;
case ACCESS_CODE:
/* No code fetch is allowed in direct-store areas */
return -4;
case ACCESS_FLOAT:
/* Floating point load/store */
return -4;
case ACCESS_RES:
/* lwarx, ldarx or srwcx. */
return -4;
case ACCESS_CACHE:
/* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi */
/* Should make the instruction do no-op.
* As it already do no-op, it's quite easy :-)
*/
ctx->raddr = eaddr;
return 0;
case ACCESS_EXT:
/* eciwx or ecowx */
return -4;
default:
qemu_log("ERROR: instruction should not need "
"address translation\n");
return -4;
}
if ((rw == 1 || ctx->key != 1) && (rw == 0 || ctx->key != 0)) {
ctx->raddr = eaddr;
ret = 2;
} else {
ret = -2;
}
}
return ret;
}
/* Generic TLB check function for embedded PowerPC implementations */
int ppcemb_tlb_check(CPUState *env, ppcemb_tlb_t *tlb,
target_phys_addr_t *raddrp,
target_ulong address, uint32_t pid, int ext,
int i)
{
target_ulong mask;
/* Check valid flag */
if (!(tlb->prot & PAGE_VALID)) {
return -1;
}
mask = ~(tlb->size - 1);
LOG_SWTLB("%s: TLB %d address " TARGET_FMT_lx " PID %u <=> " TARGET_FMT_lx
" " TARGET_FMT_lx " %u %x\n", __func__, i, address, pid, tlb->EPN,
mask, (uint32_t)tlb->PID, tlb->prot);
/* Check PID */
if (tlb->PID != 0 && tlb->PID != pid)
return -1;
/* Check effective address */
if ((address & mask) != tlb->EPN)
return -1;
*raddrp = (tlb->RPN & mask) | (address & ~mask);
#if (TARGET_PHYS_ADDR_BITS >= 36)
if (ext) {
/* Extend the physical address to 36 bits */
*raddrp |= (target_phys_addr_t)(tlb->RPN & 0xF) << 32;
}
#endif
return 0;
}
/* Generic TLB search function for PowerPC embedded implementations */
int ppcemb_tlb_search (CPUPPCState *env, target_ulong address, uint32_t pid)
{
ppcemb_tlb_t *tlb;
target_phys_addr_t raddr;
int i, ret;
/* Default return value is no match */
ret = -1;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
if (ppcemb_tlb_check(env, tlb, &raddr, address, pid, 0, i) == 0) {
ret = i;
break;
}
}
return ret;
}
/* Helpers specific to PowerPC 40x implementations */
static inline void ppc4xx_tlb_invalidate_all(CPUState *env)
{
ppcemb_tlb_t *tlb;
int i;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
tlb->prot &= ~PAGE_VALID;
}
tlb_flush(env, 1);
}
static inline void ppc4xx_tlb_invalidate_virt(CPUState *env,
target_ulong eaddr, uint32_t pid)
{
#if !defined(FLUSH_ALL_TLBS)
ppcemb_tlb_t *tlb;
target_phys_addr_t raddr;
target_ulong page, end;
int i;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
if (ppcemb_tlb_check(env, tlb, &raddr, eaddr, pid, 0, i) == 0) {
end = tlb->EPN + tlb->size;
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
tlb->prot &= ~PAGE_VALID;
break;
}
}
#else
ppc4xx_tlb_invalidate_all(env);
#endif
}
static int mmu40x_get_physical_address (CPUState *env, mmu_ctx_t *ctx,
target_ulong address, int rw, int access_type)
{
ppcemb_tlb_t *tlb;
target_phys_addr_t raddr;
int i, ret, zsel, zpr, pr;
ret = -1;
raddr = (target_phys_addr_t)-1ULL;
pr = msr_pr;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
if (ppcemb_tlb_check(env, tlb, &raddr, address,
env->spr[SPR_40x_PID], 0, i) < 0)
continue;
zsel = (tlb->attr >> 4) & 0xF;
zpr = (env->spr[SPR_40x_ZPR] >> (30 - (2 * zsel))) & 0x3;
LOG_SWTLB("%s: TLB %d zsel %d zpr %d rw %d attr %08x\n",
__func__, i, zsel, zpr, rw, tlb->attr);
/* Check execute enable bit */
switch (zpr) {
case 0x2:
if (pr != 0)
goto check_perms;
/* No break here */
case 0x3:
/* All accesses granted */
ctx->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
ret = 0;
break;
case 0x0:
if (pr != 0) {
/* Raise Zone protection fault. */
env->spr[SPR_40x_ESR] = 1 << 22;
ctx->prot = 0;
ret = -2;
break;
}
/* No break here */
case 0x1:
check_perms:
/* Check from TLB entry */
ctx->prot = tlb->prot;
ret = check_prot(ctx->prot, rw, access_type);
if (ret == -2)
env->spr[SPR_40x_ESR] = 0;
break;
}
if (ret >= 0) {
ctx->raddr = raddr;
LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, ctx->raddr, ctx->prot,
ret);
return 0;
}
}
LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, raddr, ctx->prot, ret);
return ret;
}
void store_40x_sler (CPUPPCState *env, uint32_t val)
{
/* XXX: TO BE FIXED */
if (val != 0x00000000) {
cpu_abort(env, "Little-endian regions are not supported by now\n");
}
env->spr[SPR_405_SLER] = val;
}
static inline int mmubooke_check_tlb (CPUState *env, ppcemb_tlb_t *tlb,
target_phys_addr_t *raddr, int *prot,
target_ulong address, int rw,
int access_type, int i)
{
int ret, _prot;
if (ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID],
!env->nb_pids, i) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID1] &&
ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID1], 0, i) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID2] &&
ppcemb_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID2], 0, i) >= 0) {
goto found_tlb;
}
LOG_SWTLB("%s: TLB entry not found\n", __func__);
return -1;
found_tlb:
if (msr_pr != 0) {
_prot = tlb->prot & 0xF;
} else {
_prot = (tlb->prot >> 4) & 0xF;
}
/* Check the address space */
if (access_type == ACCESS_CODE) {
if (msr_ir != (tlb->attr & 1)) {
LOG_SWTLB("%s: AS doesn't match\n", __func__);
return -1;
}
*prot = _prot;
if (_prot & PAGE_EXEC) {
LOG_SWTLB("%s: good TLB!\n", __func__);
return 0;
}
LOG_SWTLB("%s: no PAGE_EXEC: %x\n", __func__, _prot);
ret = -3;
} else {
if (msr_dr != (tlb->attr & 1)) {
LOG_SWTLB("%s: AS doesn't match\n", __func__);
return -1;
}
*prot = _prot;
if ((!rw && _prot & PAGE_READ) || (rw && (_prot & PAGE_WRITE))) {
LOG_SWTLB("%s: found TLB!\n", __func__);
return 0;
}
LOG_SWTLB("%s: PAGE_READ/WRITE doesn't match: %x\n", __func__, _prot);
ret = -2;
}
return ret;
}
static int mmubooke_get_physical_address (CPUState *env, mmu_ctx_t *ctx,
target_ulong address, int rw,
int access_type)
{
ppcemb_tlb_t *tlb;
target_phys_addr_t raddr;
int i, ret;
ret = -1;
raddr = (target_phys_addr_t)-1ULL;
for (i = 0; i < env->nb_tlb; i++) {
tlb = &env->tlb.tlbe[i];
ret = mmubooke_check_tlb(env, tlb, &raddr, &ctx->prot, address, rw,
access_type, i);
if (!ret) {
break;
}
}
if (ret >= 0) {
ctx->raddr = raddr;
LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, ctx->raddr, ctx->prot,
ret);
} else {
LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, raddr, ctx->prot, ret);
}
return ret;
}
void booke206_flush_tlb(CPUState *env, int flags, const int check_iprot)
{
int tlb_size;
int i, j;
ppcmas_tlb_t *tlb = env->tlb.tlbm;
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
if (flags & (1 << i)) {
tlb_size = booke206_tlb_size(env, i);
for (j = 0; j < tlb_size; j++) {
if (!check_iprot || !(tlb[j].mas1 & MAS1_IPROT)) {
tlb[j].mas1 &= ~MAS1_VALID;
}
}
}
tlb += booke206_tlb_size(env, i);
}
tlb_flush(env, 1);
}
target_phys_addr_t booke206_tlb_to_page_size(CPUState *env, ppcmas_tlb_t *tlb)
{
uint32_t tlbncfg;
int tlbn = booke206_tlbm_to_tlbn(env, tlb);
int tlbm_size;
tlbncfg = env->spr[SPR_BOOKE_TLB0CFG + tlbn];
if (tlbncfg & TLBnCFG_AVAIL) {
tlbm_size = (tlb->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
} else {
tlbm_size = (tlbncfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
tlbm_size <<= 1;
}
return 1024ULL << tlbm_size;
}
/* TLB check function for MAS based SoftTLBs */
int ppcmas_tlb_check(CPUState *env, ppcmas_tlb_t *tlb,
target_phys_addr_t *raddrp,
target_ulong address, uint32_t pid)
{
target_ulong mask;
uint32_t tlb_pid;
/* Check valid flag */
if (!(tlb->mas1 & MAS1_VALID)) {
return -1;
}
mask = ~(booke206_tlb_to_page_size(env, tlb) - 1);
LOG_SWTLB("%s: TLB ADDR=0x" TARGET_FMT_lx " PID=0x%x MAS1=0x%x MAS2=0x%"
PRIx64 " mask=0x" TARGET_FMT_lx " MAS7_3=0x%" PRIx64 " MAS8=%x\n",
__func__, address, pid, tlb->mas1, tlb->mas2, mask, tlb->mas7_3,
tlb->mas8);
/* Check PID */
tlb_pid = (tlb->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT;
if (tlb_pid != 0 && tlb_pid != pid) {
return -1;
}
/* Check effective address */
if ((address & mask) != (tlb->mas2 & MAS2_EPN_MASK)) {
return -1;
}
if (raddrp) {
*raddrp = (tlb->mas7_3 & mask) | (address & ~mask);
}
return 0;
}
static int mmubooke206_check_tlb(CPUState *env, ppcmas_tlb_t *tlb,
target_phys_addr_t *raddr, int *prot,
target_ulong address, int rw,
int access_type)
{
int ret;
int _prot = 0;
if (ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID]) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID1] &&
ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID1]) >= 0) {
goto found_tlb;
}
if (env->spr[SPR_BOOKE_PID2] &&
ppcmas_tlb_check(env, tlb, raddr, address,
env->spr[SPR_BOOKE_PID2]) >= 0) {
goto found_tlb;
}
LOG_SWTLB("%s: TLB entry not found\n", __func__);
return -1;
found_tlb:
if (msr_pr != 0) {
if (tlb->mas7_3 & MAS3_UR) {
_prot |= PAGE_READ;
}
if (tlb->mas7_3 & MAS3_UW) {
_prot |= PAGE_WRITE;
}
if (tlb->mas7_3 & MAS3_UX) {
_prot |= PAGE_EXEC;
}
} else {
if (tlb->mas7_3 & MAS3_SR) {
_prot |= PAGE_READ;
}
if (tlb->mas7_3 & MAS3_SW) {
_prot |= PAGE_WRITE;
}
if (tlb->mas7_3 & MAS3_SX) {
_prot |= PAGE_EXEC;
}
}
/* Check the address space and permissions */
if (access_type == ACCESS_CODE) {
if (msr_ir != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) {
LOG_SWTLB("%s: AS doesn't match\n", __func__);
return -1;
}
*prot = _prot;
if (_prot & PAGE_EXEC) {
LOG_SWTLB("%s: good TLB!\n", __func__);
return 0;
}
LOG_SWTLB("%s: no PAGE_EXEC: %x\n", __func__, _prot);
ret = -3;
} else {
if (msr_dr != ((tlb->mas1 & MAS1_TS) >> MAS1_TS_SHIFT)) {
LOG_SWTLB("%s: AS doesn't match\n", __func__);
return -1;
}
*prot = _prot;
if ((!rw && _prot & PAGE_READ) || (rw && (_prot & PAGE_WRITE))) {
LOG_SWTLB("%s: found TLB!\n", __func__);
return 0;
}
LOG_SWTLB("%s: PAGE_READ/WRITE doesn't match: %x\n", __func__, _prot);
ret = -2;
}
return ret;
}
static int mmubooke206_get_physical_address(CPUState *env, mmu_ctx_t *ctx,
target_ulong address, int rw,
int access_type)
{
ppcmas_tlb_t *tlb;
target_phys_addr_t raddr;
int i, j, ret;
ret = -1;
raddr = (target_phys_addr_t)-1ULL;
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
int ways = booke206_tlb_ways(env, i);
for (j = 0; j < ways; j++) {
tlb = booke206_get_tlbm(env, i, address, j);
if (!tlb) {
continue;
}
ret = mmubooke206_check_tlb(env, tlb, &raddr, &ctx->prot, address,
rw, access_type);
if (ret != -1) {
goto found_tlb;
}
}
}
found_tlb:
if (ret >= 0) {
ctx->raddr = raddr;
LOG_SWTLB("%s: access granted " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, ctx->raddr, ctx->prot,
ret);
} else {
LOG_SWTLB("%s: access refused " TARGET_FMT_lx " => " TARGET_FMT_plx
" %d %d\n", __func__, address, raddr, ctx->prot, ret);
}
return ret;
}
static const char *book3e_tsize_to_str[32] = {
"1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K",
"1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M",
"1G", "2G", "4G", "8G", "16G", "32G", "64G", "128G", "256G", "512G",
"1T", "2T"
};
static void mmubooke206_dump_one_tlb(FILE *f, fprintf_function cpu_fprintf,
CPUState *env, int tlbn, int offset,
int tlbsize)
{
ppcmas_tlb_t *entry;
int i;
cpu_fprintf(f, "\nTLB%d:\n", tlbn);
cpu_fprintf(f, "Effective Physical Size TID TS SRWX URWX WIMGE U0123\n");
entry = &env->tlb.tlbm[offset];
for (i = 0; i < tlbsize; i++, entry++) {
target_phys_addr_t ea, pa, size;
int tsize;
if (!(entry->mas1 & MAS1_VALID)) {
continue;
}
tsize = (entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
size = 1024ULL << tsize;
ea = entry->mas2 & ~(size - 1);
pa = entry->mas7_3 & ~(size - 1);
cpu_fprintf(f, "0x%016" PRIx64 " 0x%016" PRIx64 " %4s %-5u %1u S%c%c%c U%c%c%c %c%c%c%c%c U%c%c%c%c\n",
(uint64_t)ea, (uint64_t)pa,
book3e_tsize_to_str[tsize],
(entry->mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT,
(entry->mas1 & MAS1_TS) >> MAS1_TS_SHIFT,
entry->mas7_3 & MAS3_SR ? 'R' : '-',
entry->mas7_3 & MAS3_SW ? 'W' : '-',
entry->mas7_3 & MAS3_SX ? 'X' : '-',
entry->mas7_3 & MAS3_UR ? 'R' : '-',
entry->mas7_3 & MAS3_UW ? 'W' : '-',
entry->mas7_3 & MAS3_UX ? 'X' : '-',
entry->mas2 & MAS2_W ? 'W' : '-',
entry->mas2 & MAS2_I ? 'I' : '-',
entry->mas2 & MAS2_M ? 'M' : '-',
entry->mas2 & MAS2_G ? 'G' : '-',
entry->mas2 & MAS2_E ? 'E' : '-',
entry->mas7_3 & MAS3_U0 ? '0' : '-',
entry->mas7_3 & MAS3_U1 ? '1' : '-',
entry->mas7_3 & MAS3_U2 ? '2' : '-',
entry->mas7_3 & MAS3_U3 ? '3' : '-');
}
}
static void mmubooke206_dump_mmu(FILE *f, fprintf_function cpu_fprintf,
CPUState *env)
{
int offset = 0;
int i;
if (kvm_enabled() && !env->kvm_sw_tlb) {
cpu_fprintf(f, "Cannot access KVM TLB\n");
return;
}
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
int size = booke206_tlb_size(env, i);
if (size == 0) {
continue;
}
mmubooke206_dump_one_tlb(f, cpu_fprintf, env, i, offset, size);
offset += size;
}
}
#if defined(TARGET_PPC64)
static void mmubooks_dump_mmu(FILE *f, fprintf_function cpu_fprintf,
CPUState *env)
{
int i;
uint64_t slbe, slbv;
cpu_synchronize_state(env);
cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
for (i = 0; i < env->slb_nr; i++) {
slbe = env->slb[i].esid;
slbv = env->slb[i].vsid;
if (slbe == 0 && slbv == 0) {
continue;
}
cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
i, slbe, slbv);
}
}
#endif
void dump_mmu(FILE *f, fprintf_function cpu_fprintf, CPUState *env)
{
switch (env->mmu_model) {
case POWERPC_MMU_BOOKE206:
mmubooke206_dump_mmu(f, cpu_fprintf, env);
break;
#if defined(TARGET_PPC64)
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
mmubooks_dump_mmu(f, cpu_fprintf, env);
break;
#endif
default:
cpu_fprintf(f, "%s: unimplemented\n", __func__);
}
}
static inline int check_physical(CPUState *env, mmu_ctx_t *ctx,
target_ulong eaddr, int rw)
{
int in_plb, ret;
ctx->raddr = eaddr;
ctx->prot = PAGE_READ | PAGE_EXEC;
ret = 0;
switch (env->mmu_model) {
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
case POWERPC_MMU_SOFT_6xx:
case POWERPC_MMU_SOFT_74xx:
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_REAL:
case POWERPC_MMU_BOOKE:
ctx->prot |= PAGE_WRITE;
break;
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
/* Real address are 60 bits long */
ctx->raddr &= 0x0FFFFFFFFFFFFFFFULL;
ctx->prot |= PAGE_WRITE;
break;
#endif
case POWERPC_MMU_SOFT_4xx_Z:
if (unlikely(msr_pe != 0)) {
/* 403 family add some particular protections,
* using PBL/PBU registers for accesses with no translation.
*/
in_plb =
/* Check PLB validity */
(env->pb[0] < env->pb[1] &&
/* and address in plb area */
eaddr >= env->pb[0] && eaddr < env->pb[1]) ||
(env->pb[2] < env->pb[3] &&
eaddr >= env->pb[2] && eaddr < env->pb[3]) ? 1 : 0;
if (in_plb ^ msr_px) {
/* Access in protected area */
if (rw == 1) {
/* Access is not allowed */
ret = -2;
}
} else {
/* Read-write access is allowed */
ctx->prot |= PAGE_WRITE;
}
}
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE206:
cpu_abort(env, "BookE 2.06 MMU doesn't have physical real mode\n");
break;
default:
cpu_abort(env, "Unknown or invalid MMU model\n");
return -1;
}
return ret;
}
int get_physical_address (CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr,
int rw, int access_type)
{
int ret;
#if 0
qemu_log("%s\n", __func__);
#endif
if ((access_type == ACCESS_CODE && msr_ir == 0) ||
(access_type != ACCESS_CODE && msr_dr == 0)) {
if (env->mmu_model == POWERPC_MMU_BOOKE) {
/* The BookE MMU always performs address translation. The
IS and DS bits only affect the address space. */
ret = mmubooke_get_physical_address(env, ctx, eaddr,
rw, access_type);
} else if (env->mmu_model == POWERPC_MMU_BOOKE206) {
ret = mmubooke206_get_physical_address(env, ctx, eaddr, rw,
access_type);
} else {
/* No address translation. */
ret = check_physical(env, ctx, eaddr, rw);
}
} else {
ret = -1;
switch (env->mmu_model) {
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
case POWERPC_MMU_SOFT_6xx:
case POWERPC_MMU_SOFT_74xx:
/* Try to find a BAT */
if (env->nb_BATs != 0)
ret = get_bat(env, ctx, eaddr, rw, access_type);
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
#endif
if (ret < 0) {
/* We didn't match any BAT entry or don't have BATs */
ret = get_segment(env, ctx, eaddr, rw, access_type);
}
break;
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_SOFT_4xx_Z:
ret = mmu40x_get_physical_address(env, ctx, eaddr,
rw, access_type);
break;
case POWERPC_MMU_BOOKE:
ret = mmubooke_get_physical_address(env, ctx, eaddr,
rw, access_type);
break;
case POWERPC_MMU_BOOKE206:
ret = mmubooke206_get_physical_address(env, ctx, eaddr, rw,
access_type);
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_REAL:
cpu_abort(env, "PowerPC in real mode do not do any translation\n");
return -1;
default:
cpu_abort(env, "Unknown or invalid MMU model\n");
return -1;
}
}
#if 0
qemu_log("%s address " TARGET_FMT_lx " => %d " TARGET_FMT_plx "\n",
__func__, eaddr, ret, ctx->raddr);
#endif
return ret;
}
target_phys_addr_t cpu_get_phys_page_debug (CPUState *env, target_ulong addr)
{
mmu_ctx_t ctx;
if (unlikely(get_physical_address(env, &ctx, addr, 0, ACCESS_INT) != 0))
return -1;
return ctx.raddr & TARGET_PAGE_MASK;
}
static void booke206_update_mas_tlb_miss(CPUState *env, target_ulong address,
int rw)
{
env->spr[SPR_BOOKE_MAS0] = env->spr[SPR_BOOKE_MAS4] & MAS4_TLBSELD_MASK;
env->spr[SPR_BOOKE_MAS1] = env->spr[SPR_BOOKE_MAS4] & MAS4_TSIZED_MASK;
env->spr[SPR_BOOKE_MAS2] = env->spr[SPR_BOOKE_MAS4] & MAS4_WIMGED_MASK;
env->spr[SPR_BOOKE_MAS3] = 0;
env->spr[SPR_BOOKE_MAS6] = 0;
env->spr[SPR_BOOKE_MAS7] = 0;
/* AS */
if (((rw == 2) && msr_ir) || ((rw != 2) && msr_dr)) {
env->spr[SPR_BOOKE_MAS1] |= MAS1_TS;
env->spr[SPR_BOOKE_MAS6] |= MAS6_SAS;
}
env->spr[SPR_BOOKE_MAS1] |= MAS1_VALID;
env->spr[SPR_BOOKE_MAS2] |= address & MAS2_EPN_MASK;
switch (env->spr[SPR_BOOKE_MAS4] & MAS4_TIDSELD_PIDZ) {
case MAS4_TIDSELD_PID0:
env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID] << MAS1_TID_SHIFT;
break;
case MAS4_TIDSELD_PID1:
env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID1] << MAS1_TID_SHIFT;
break;
case MAS4_TIDSELD_PID2:
env->spr[SPR_BOOKE_MAS1] |= env->spr[SPR_BOOKE_PID2] << MAS1_TID_SHIFT;
break;
}
env->spr[SPR_BOOKE_MAS6] |= env->spr[SPR_BOOKE_PID] << 16;
/* next victim logic */
env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_ESEL_SHIFT;
env->last_way++;
env->last_way &= booke206_tlb_ways(env, 0) - 1;
env->spr[SPR_BOOKE_MAS0] |= env->last_way << MAS0_NV_SHIFT;
}
/* Perform address translation */
int cpu_ppc_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx)
{
mmu_ctx_t ctx;
int access_type;
int ret = 0;
if (rw == 2) {
/* code access */
rw = 0;
access_type = ACCESS_CODE;
} else {
/* data access */
access_type = env->access_type;
}
ret = get_physical_address(env, &ctx, address, rw, access_type);
if (ret == 0) {
tlb_set_page(env, address & TARGET_PAGE_MASK,
ctx.raddr & TARGET_PAGE_MASK, ctx.prot,
mmu_idx, TARGET_PAGE_SIZE);
ret = 0;
} else if (ret < 0) {
LOG_MMU_STATE(env);
if (access_type == ACCESS_CODE) {
switch (ret) {
case -1:
/* No matches in page tables or TLB */
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
env->exception_index = POWERPC_EXCP_IFTLB;
env->error_code = 1 << 18;
env->spr[SPR_IMISS] = address;
env->spr[SPR_ICMP] = 0x80000000 | ctx.ptem;
goto tlb_miss;
case POWERPC_MMU_SOFT_74xx:
env->exception_index = POWERPC_EXCP_IFTLB;
goto tlb_miss_74xx;
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_SOFT_4xx_Z:
env->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = address;
env->spr[SPR_40x_ESR] = 0x00000000;
break;
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
#endif
env->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x40000000;
break;
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, address, rw);
/* fall through */
case POWERPC_MMU_BOOKE:
env->exception_index = POWERPC_EXCP_ITLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = address;
return -1;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_REAL:
cpu_abort(env, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
return -1;
default:
cpu_abort(env, "Unknown or invalid MMU model\n");
return -1;
}
break;
case -2:
/* Access rights violation */
env->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x08000000;
break;
case -3:
/* No execute protection violation */
if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->spr[SPR_BOOKE_ESR] = 0x00000000;
}
env->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
break;
case -4:
/* Direct store exception */
/* No code fetch is allowed in direct-store areas */
env->exception_index = POWERPC_EXCP_ISI;
env->error_code = 0x10000000;
break;
#if defined(TARGET_PPC64)
case -5:
/* No match in segment table */
if (env->mmu_model == POWERPC_MMU_620) {
env->exception_index = POWERPC_EXCP_ISI;
/* XXX: this might be incorrect */
env->error_code = 0x40000000;
} else {
env->exception_index = POWERPC_EXCP_ISEG;
env->error_code = 0;
}
break;
#endif
}
} else {
switch (ret) {
case -1:
/* No matches in page tables or TLB */
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
if (rw == 1) {
env->exception_index = POWERPC_EXCP_DSTLB;
env->error_code = 1 << 16;
} else {
env->exception_index = POWERPC_EXCP_DLTLB;
env->error_code = 0;
}
env->spr[SPR_DMISS] = address;
env->spr[SPR_DCMP] = 0x80000000 | ctx.ptem;
tlb_miss:
env->error_code |= ctx.key << 19;
env->spr[SPR_HASH1] = env->htab_base +
get_pteg_offset(env, ctx.hash[0], HASH_PTE_SIZE_32);
env->spr[SPR_HASH2] = env->htab_base +
get_pteg_offset(env, ctx.hash[1], HASH_PTE_SIZE_32);
break;
case POWERPC_MMU_SOFT_74xx:
if (rw == 1) {
env->exception_index = POWERPC_EXCP_DSTLB;
} else {
env->exception_index = POWERPC_EXCP_DLTLB;
}
tlb_miss_74xx:
/* Implement LRU algorithm */
env->error_code = ctx.key << 19;
env->spr[SPR_TLBMISS] = (address & ~((target_ulong)0x3)) |
((env->last_way + 1) & (env->nb_ways - 1));
env->spr[SPR_PTEHI] = 0x80000000 | ctx.ptem;
break;
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_SOFT_4xx_Z:
env->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_40x_DEAR] = address;
if (rw)
env->spr[SPR_40x_ESR] = 0x00800000;
else
env->spr[SPR_40x_ESR] = 0x00000000;
break;
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
#endif
env->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
if (rw == 1)
env->spr[SPR_DSISR] = 0x42000000;
else
env->spr[SPR_DSISR] = 0x40000000;
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE206:
booke206_update_mas_tlb_miss(env, address, rw);
/* fall through */
case POWERPC_MMU_BOOKE:
env->exception_index = POWERPC_EXCP_DTLB;
env->error_code = 0;
env->spr[SPR_BOOKE_DEAR] = address;
env->spr[SPR_BOOKE_ESR] = rw ? ESR_ST : 0;
return -1;
case POWERPC_MMU_REAL:
cpu_abort(env, "PowerPC in real mode should never raise "
"any MMU exceptions\n");
return -1;
default:
cpu_abort(env, "Unknown or invalid MMU model\n");
return -1;
}
break;
case -2:
/* Access rights violation */
env->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
if (env->mmu_model == POWERPC_MMU_SOFT_4xx
|| env->mmu_model == POWERPC_MMU_SOFT_4xx_Z) {
env->spr[SPR_40x_DEAR] = address;
if (rw) {
env->spr[SPR_40x_ESR] |= 0x00800000;
}
} else if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
env->spr[SPR_BOOKE_DEAR] = address;
env->spr[SPR_BOOKE_ESR] = rw ? ESR_ST : 0;
} else {
env->spr[SPR_DAR] = address;
if (rw == 1) {
env->spr[SPR_DSISR] = 0x0A000000;
} else {
env->spr[SPR_DSISR] = 0x08000000;
}
}
break;
case -4:
/* Direct store exception */
switch (access_type) {
case ACCESS_FLOAT:
/* Floating point load/store */
env->exception_index = POWERPC_EXCP_ALIGN;
env->error_code = POWERPC_EXCP_ALIGN_FP;
env->spr[SPR_DAR] = address;
break;
case ACCESS_RES:
/* lwarx, ldarx or stwcx. */
env->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
if (rw == 1)
env->spr[SPR_DSISR] = 0x06000000;
else
env->spr[SPR_DSISR] = 0x04000000;
break;
case ACCESS_EXT:
/* eciwx or ecowx */
env->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
if (rw == 1)
env->spr[SPR_DSISR] = 0x06100000;
else
env->spr[SPR_DSISR] = 0x04100000;
break;
default:
printf("DSI: invalid exception (%d)\n", ret);
env->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code =
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL;
env->spr[SPR_DAR] = address;
break;
}
break;
#if defined(TARGET_PPC64)
case -5:
/* No match in segment table */
if (env->mmu_model == POWERPC_MMU_620) {
env->exception_index = POWERPC_EXCP_DSI;
env->error_code = 0;
env->spr[SPR_DAR] = address;
/* XXX: this might be incorrect */
if (rw == 1)
env->spr[SPR_DSISR] = 0x42000000;
else
env->spr[SPR_DSISR] = 0x40000000;
} else {
env->exception_index = POWERPC_EXCP_DSEG;
env->error_code = 0;
env->spr[SPR_DAR] = address;
}
break;
#endif
}
}
#if 0
printf("%s: set exception to %d %02x\n", __func__,
env->exception, env->error_code);
#endif
ret = 1;
}
return ret;
}
/*****************************************************************************/
/* BATs management */
#if !defined(FLUSH_ALL_TLBS)
static inline void do_invalidate_BAT(CPUPPCState *env, target_ulong BATu,
target_ulong mask)
{
target_ulong base, end, page;
base = BATu & ~0x0001FFFF;
end = base + mask + 0x00020000;
LOG_BATS("Flush BAT from " TARGET_FMT_lx " to " TARGET_FMT_lx " ("
TARGET_FMT_lx ")\n", base, end, mask);
for (page = base; page != end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
LOG_BATS("Flush done\n");
}
#endif
static inline void dump_store_bat(CPUPPCState *env, char ID, int ul, int nr,
target_ulong value)
{
LOG_BATS("Set %cBAT%d%c to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", ID,
nr, ul == 0 ? 'u' : 'l', value, env->nip);
}
void ppc_store_ibatu (CPUPPCState *env, int nr, target_ulong value)
{
target_ulong mask;
dump_store_bat(env, 'I', 0, nr, value);
if (env->IBAT[0][nr] != value) {
mask = (value << 15) & 0x0FFE0000UL;
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#endif
/* When storing valid upper BAT, mask BEPI and BRPN
* and invalidate all TLBs covered by this BAT
*/
mask = (value << 15) & 0x0FFE0000UL;
env->IBAT[0][nr] = (value & 0x00001FFFUL) |
(value & ~0x0001FFFFUL & ~mask);
env->IBAT[1][nr] = (env->IBAT[1][nr] & 0x0000007B) |
(env->IBAT[1][nr] & ~0x0001FFFF & ~mask);
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#else
tlb_flush(env, 1);
#endif
}
}
void ppc_store_ibatl (CPUPPCState *env, int nr, target_ulong value)
{
dump_store_bat(env, 'I', 1, nr, value);
env->IBAT[1][nr] = value;
}
void ppc_store_dbatu (CPUPPCState *env, int nr, target_ulong value)
{
target_ulong mask;
dump_store_bat(env, 'D', 0, nr, value);
if (env->DBAT[0][nr] != value) {
/* When storing valid upper BAT, mask BEPI and BRPN
* and invalidate all TLBs covered by this BAT
*/
mask = (value << 15) & 0x0FFE0000UL;
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->DBAT[0][nr], mask);
#endif
mask = (value << 15) & 0x0FFE0000UL;
env->DBAT[0][nr] = (value & 0x00001FFFUL) |
(value & ~0x0001FFFFUL & ~mask);
env->DBAT[1][nr] = (env->DBAT[1][nr] & 0x0000007B) |
(env->DBAT[1][nr] & ~0x0001FFFF & ~mask);
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->DBAT[0][nr], mask);
#else
tlb_flush(env, 1);
#endif
}
}
void ppc_store_dbatl (CPUPPCState *env, int nr, target_ulong value)
{
dump_store_bat(env, 'D', 1, nr, value);
env->DBAT[1][nr] = value;
}
void ppc_store_ibatu_601 (CPUPPCState *env, int nr, target_ulong value)
{
target_ulong mask;
#if defined(FLUSH_ALL_TLBS)
int do_inval;
#endif
dump_store_bat(env, 'I', 0, nr, value);
if (env->IBAT[0][nr] != value) {
#if defined(FLUSH_ALL_TLBS)
do_inval = 0;
#endif
mask = (env->IBAT[1][nr] << 17) & 0x0FFE0000UL;
if (env->IBAT[1][nr] & 0x40) {
/* Invalidate BAT only if it is valid */
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#else
do_inval = 1;
#endif
}
/* When storing valid upper BAT, mask BEPI and BRPN
* and invalidate all TLBs covered by this BAT
*/
env->IBAT[0][nr] = (value & 0x00001FFFUL) |
(value & ~0x0001FFFFUL & ~mask);
env->DBAT[0][nr] = env->IBAT[0][nr];
if (env->IBAT[1][nr] & 0x40) {
#if !defined(FLUSH_ALL_TLBS)
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#else
do_inval = 1;
#endif
}
#if defined(FLUSH_ALL_TLBS)
if (do_inval)
tlb_flush(env, 1);
#endif
}
}
void ppc_store_ibatl_601 (CPUPPCState *env, int nr, target_ulong value)
{
target_ulong mask;
#if defined(FLUSH_ALL_TLBS)
int do_inval;
#endif
dump_store_bat(env, 'I', 1, nr, value);
if (env->IBAT[1][nr] != value) {
#if defined(FLUSH_ALL_TLBS)
do_inval = 0;
#endif
if (env->IBAT[1][nr] & 0x40) {
#if !defined(FLUSH_ALL_TLBS)
mask = (env->IBAT[1][nr] << 17) & 0x0FFE0000UL;
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#else
do_inval = 1;
#endif
}
if (value & 0x40) {
#if !defined(FLUSH_ALL_TLBS)
mask = (value << 17) & 0x0FFE0000UL;
do_invalidate_BAT(env, env->IBAT[0][nr], mask);
#else
do_inval = 1;
#endif
}
env->IBAT[1][nr] = value;
env->DBAT[1][nr] = value;
#if defined(FLUSH_ALL_TLBS)
if (do_inval)
tlb_flush(env, 1);
#endif
}
}
/*****************************************************************************/
/* TLB management */
void ppc_tlb_invalidate_all (CPUPPCState *env)
{
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
case POWERPC_MMU_SOFT_74xx:
ppc6xx_tlb_invalidate_all(env);
break;
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_SOFT_4xx_Z:
ppc4xx_tlb_invalidate_all(env);
break;
case POWERPC_MMU_REAL:
cpu_abort(env, "No TLB for PowerPC 4xx in real mode\n");
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE:
tlb_flush(env, 1);
break;
case POWERPC_MMU_BOOKE206:
booke206_flush_tlb(env, -1, 0);
break;
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
#endif /* defined(TARGET_PPC64) */
tlb_flush(env, 1);
break;
default:
/* XXX: TODO */
cpu_abort(env, "Unknown MMU model\n");
break;
}
}
void ppc_tlb_invalidate_one (CPUPPCState *env, target_ulong addr)
{
#if !defined(FLUSH_ALL_TLBS)
addr &= TARGET_PAGE_MASK;
switch (env->mmu_model) {
case POWERPC_MMU_SOFT_6xx:
case POWERPC_MMU_SOFT_74xx:
ppc6xx_tlb_invalidate_virt(env, addr, 0);
if (env->id_tlbs == 1)
ppc6xx_tlb_invalidate_virt(env, addr, 1);
break;
case POWERPC_MMU_SOFT_4xx:
case POWERPC_MMU_SOFT_4xx_Z:
ppc4xx_tlb_invalidate_virt(env, addr, env->spr[SPR_40x_PID]);
break;
case POWERPC_MMU_REAL:
cpu_abort(env, "No TLB for PowerPC 4xx in real mode\n");
break;
case POWERPC_MMU_MPC8xx:
/* XXX: TODO */
cpu_abort(env, "MPC8xx MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE:
/* XXX: TODO */
cpu_abort(env, "BookE MMU model is not implemented\n");
break;
case POWERPC_MMU_BOOKE206:
/* XXX: TODO */
cpu_abort(env, "BookE 2.06 MMU model is not implemented\n");
break;
case POWERPC_MMU_32B:
case POWERPC_MMU_601:
/* tlbie invalidate TLBs for all segments */
addr &= ~((target_ulong)-1ULL << 28);
/* XXX: this case should be optimized,
* giving a mask to tlb_flush_page
*/
tlb_flush_page(env, addr | (0x0 << 28));
tlb_flush_page(env, addr | (0x1 << 28));
tlb_flush_page(env, addr | (0x2 << 28));
tlb_flush_page(env, addr | (0x3 << 28));
tlb_flush_page(env, addr | (0x4 << 28));
tlb_flush_page(env, addr | (0x5 << 28));
tlb_flush_page(env, addr | (0x6 << 28));
tlb_flush_page(env, addr | (0x7 << 28));
tlb_flush_page(env, addr | (0x8 << 28));
tlb_flush_page(env, addr | (0x9 << 28));
tlb_flush_page(env, addr | (0xA << 28));
tlb_flush_page(env, addr | (0xB << 28));
tlb_flush_page(env, addr | (0xC << 28));
tlb_flush_page(env, addr | (0xD << 28));
tlb_flush_page(env, addr | (0xE << 28));
tlb_flush_page(env, addr | (0xF << 28));
break;
#if defined(TARGET_PPC64)
case POWERPC_MMU_620:
case POWERPC_MMU_64B:
case POWERPC_MMU_2_06:
/* tlbie invalidate TLBs for all segments */
/* XXX: given the fact that there are too many segments to invalidate,
* and we still don't have a tlb_flush_mask(env, n, mask) in Qemu,
* we just invalidate all TLBs
*/
tlb_flush(env, 1);
break;
#endif /* defined(TARGET_PPC64) */
default:
/* XXX: TODO */
cpu_abort(env, "Unknown MMU model\n");
break;
}
#else
ppc_tlb_invalidate_all(env);
#endif
}
/*****************************************************************************/
/* Special registers manipulation */
#if defined(TARGET_PPC64)
void ppc_store_asr (CPUPPCState *env, target_ulong value)
{
if (env->asr != value) {
env->asr = value;
tlb_flush(env, 1);
}
}
#endif
void ppc_store_sdr1 (CPUPPCState *env, target_ulong value)
{
LOG_MMU("%s: " TARGET_FMT_lx "\n", __func__, value);
if (env->spr[SPR_SDR1] != value) {
env->spr[SPR_SDR1] = value;
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64) {
target_ulong htabsize = value & SDR_64_HTABSIZE;
if (htabsize > 28) {
fprintf(stderr, "Invalid HTABSIZE 0x" TARGET_FMT_lx
" stored in SDR1\n", htabsize);
htabsize = 28;
}
env->htab_mask = (1ULL << (htabsize + 18)) - 1;
env->htab_base = value & SDR_64_HTABORG;
} else
#endif /* defined(TARGET_PPC64) */
{
/* FIXME: Should check for valid HTABMASK values */
env->htab_mask = ((value & SDR_32_HTABMASK) << 16) | 0xFFFF;
env->htab_base = value & SDR_32_HTABORG;
}
tlb_flush(env, 1);
}
}
#if defined(TARGET_PPC64)
target_ulong ppc_load_sr (CPUPPCState *env, int slb_nr)
{
// XXX
return 0;
}
#endif
void ppc_store_sr (CPUPPCState *env, int srnum, target_ulong value)
{
LOG_MMU("%s: reg=%d " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__,
srnum, value, env->sr[srnum]);
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64) {
uint64_t rb = 0, rs = 0;
/* ESID = srnum */
rb |= ((uint32_t)srnum & 0xf) << 28;
/* Set the valid bit */
rb |= 1 << 27;
/* Index = ESID */
rb |= (uint32_t)srnum;
/* VSID = VSID */
rs |= (value & 0xfffffff) << 12;
/* flags = flags */
rs |= ((value >> 27) & 0xf) << 8;
ppc_store_slb(env, rb, rs);
} else
#endif
if (env->sr[srnum] != value) {
env->sr[srnum] = value;
/* Invalidating 256MB of virtual memory in 4kB pages is way longer than
flusing the whole TLB. */
#if !defined(FLUSH_ALL_TLBS) && 0
{
target_ulong page, end;
/* Invalidate 256 MB of virtual memory */
page = (16 << 20) * srnum;
end = page + (16 << 20);
for (; page != end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
}
#else
tlb_flush(env, 1);
#endif
}
}
#endif /* !defined (CONFIG_USER_ONLY) */
/* GDBstub can read and write MSR... */
void ppc_store_msr (CPUPPCState *env, target_ulong value)
{
hreg_store_msr(env, value, 0);
}
/*****************************************************************************/
/* Exception processing */
#if defined (CONFIG_USER_ONLY)
void do_interrupt (CPUState *env)
{
env->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
}
void ppc_hw_interrupt (CPUState *env)
{
env->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
}
#else /* defined (CONFIG_USER_ONLY) */
static inline void dump_syscall(CPUState *env)
{
qemu_log_mask(CPU_LOG_INT, "syscall r0=%016" PRIx64 " r3=%016" PRIx64
" r4=%016" PRIx64 " r5=%016" PRIx64 " r6=%016" PRIx64
" nip=" TARGET_FMT_lx "\n",
ppc_dump_gpr(env, 0), ppc_dump_gpr(env, 3),
ppc_dump_gpr(env, 4), ppc_dump_gpr(env, 5),
ppc_dump_gpr(env, 6), env->nip);
}
/* Note that this function should be greatly optimized
* when called with a constant excp, from ppc_hw_interrupt
*/
static inline void powerpc_excp(CPUState *env, int excp_model, int excp)
{
target_ulong msr, new_msr, vector;
int srr0, srr1, asrr0, asrr1;
int lpes0, lpes1, lev;
if (0) {
/* XXX: find a suitable condition to enable the hypervisor mode */
lpes0 = (env->spr[SPR_LPCR] >> 1) & 1;
lpes1 = (env->spr[SPR_LPCR] >> 2) & 1;
} else {
/* Those values ensure we won't enter the hypervisor mode */
lpes0 = 0;
lpes1 = 1;
}
qemu_log_mask(CPU_LOG_INT, "Raise exception at " TARGET_FMT_lx
" => %08x (%02x)\n", env->nip, excp, env->error_code);
/* new srr1 value excluding must-be-zero bits */
msr = env->msr & ~0x783f0000ULL;
/* new interrupt handler msr */
new_msr = env->msr & ((target_ulong)1 << MSR_ME);
/* target registers */
srr0 = SPR_SRR0;
srr1 = SPR_SRR1;
asrr0 = -1;
asrr1 = -1;
switch (excp) {
case POWERPC_EXCP_NONE:
/* Should never happen */
return;
case POWERPC_EXCP_CRITICAL: /* Critical input */
switch (excp_model) {
case POWERPC_EXCP_40x:
srr0 = SPR_40x_SRR2;
srr1 = SPR_40x_SRR3;
break;
case POWERPC_EXCP_BOOKE:
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
case POWERPC_EXCP_G2:
break;
default:
goto excp_invalid;
}
goto store_next;
case POWERPC_EXCP_MCHECK: /* Machine check exception */
if (msr_me == 0) {
/* Machine check exception is not enabled.
* Enter checkstop state.
*/
if (qemu_log_enabled()) {
qemu_log("Machine check while not allowed. "
"Entering checkstop state\n");
} else {
fprintf(stderr, "Machine check while not allowed. "
"Entering checkstop state\n");
}
env->halted = 1;
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
if (0) {
/* XXX: find a suitable condition to enable the hypervisor mode */
new_msr |= (target_ulong)MSR_HVB;
}
/* machine check exceptions don't have ME set */
new_msr &= ~((target_ulong)1 << MSR_ME);
/* XXX: should also have something loaded in DAR / DSISR */
switch (excp_model) {
case POWERPC_EXCP_40x:
srr0 = SPR_40x_SRR2;
srr1 = SPR_40x_SRR3;
break;
case POWERPC_EXCP_BOOKE:
srr0 = SPR_BOOKE_MCSRR0;
srr1 = SPR_BOOKE_MCSRR1;
asrr0 = SPR_BOOKE_CSRR0;
asrr1 = SPR_BOOKE_CSRR1;
break;
default:
break;
}
goto store_next;
case POWERPC_EXCP_DSI: /* Data storage exception */
LOG_EXCP("DSI exception: DSISR=" TARGET_FMT_lx" DAR=" TARGET_FMT_lx
"\n", env->spr[SPR_DSISR], env->spr[SPR_DAR]);
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_ISI: /* Instruction storage exception */
LOG_EXCP("ISI exception: msr=" TARGET_FMT_lx ", nip=" TARGET_FMT_lx
"\n", msr, env->nip);
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
msr |= env->error_code;
goto store_next;
case POWERPC_EXCP_EXTERNAL: /* External input */
if (lpes0 == 1)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_ALIGN: /* Alignment exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
/* XXX: this is false */
/* Get rS/rD and rA from faulting opcode */
env->spr[SPR_DSISR] |= (ldl_code((env->nip - 4)) & 0x03FF0000) >> 16;
goto store_current;
case POWERPC_EXCP_PROGRAM: /* Program exception */
switch (env->error_code & ~0xF) {
case POWERPC_EXCP_FP:
if ((msr_fe0 == 0 && msr_fe1 == 0) || msr_fp == 0) {
LOG_EXCP("Ignore floating point exception\n");
env->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
return;
}
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
msr |= 0x00100000;
if (msr_fe0 == msr_fe1)
goto store_next;
msr |= 0x00010000;
break;
case POWERPC_EXCP_INVAL:
LOG_EXCP("Invalid instruction at " TARGET_FMT_lx "\n", env->nip);
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
msr |= 0x00080000;
env->spr[SPR_BOOKE_ESR] = ESR_PIL;
break;
case POWERPC_EXCP_PRIV:
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
msr |= 0x00040000;
env->spr[SPR_BOOKE_ESR] = ESR_PPR;
break;
case POWERPC_EXCP_TRAP:
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
msr |= 0x00020000;
env->spr[SPR_BOOKE_ESR] = ESR_PTR;
break;
default:
/* Should never occur */
cpu_abort(env, "Invalid program exception %d. Aborting\n",
env->error_code);
break;
}
goto store_current;
case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_current;
case POWERPC_EXCP_SYSCALL: /* System call exception */
dump_syscall(env);
lev = env->error_code;
if ((lev == 1) && cpu_ppc_hypercall) {
cpu_ppc_hypercall(env);
return;
}
if (lev == 1 || (lpes0 == 0 && lpes1 == 0))
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
goto store_current;
case POWERPC_EXCP_DECR: /* Decrementer exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
/* FIT on 4xx */
LOG_EXCP("FIT exception\n");
goto store_next;
case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
LOG_EXCP("WDT exception\n");
switch (excp_model) {
case POWERPC_EXCP_BOOKE:
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
default:
break;
}
goto store_next;
case POWERPC_EXCP_DTLB: /* Data TLB error */
goto store_next;
case POWERPC_EXCP_ITLB: /* Instruction TLB error */
goto store_next;
case POWERPC_EXCP_DEBUG: /* Debug interrupt */
switch (excp_model) {
case POWERPC_EXCP_BOOKE:
srr0 = SPR_BOOKE_DSRR0;
srr1 = SPR_BOOKE_DSRR1;
asrr0 = SPR_BOOKE_CSRR0;
asrr1 = SPR_BOOKE_CSRR1;
break;
default:
break;
}
/* XXX: TODO */
cpu_abort(env, "Debug exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavailable */
env->spr[SPR_BOOKE_ESR] = ESR_SPV;
goto store_current;
case POWERPC_EXCP_EFPDI: /* Embedded floating-point data interrupt */
/* XXX: TODO */
cpu_abort(env, "Embedded floating point data exception "
"is not implemented yet !\n");
env->spr[SPR_BOOKE_ESR] = ESR_SPV;
goto store_next;
case POWERPC_EXCP_EFPRI: /* Embedded floating-point round interrupt */
/* XXX: TODO */
cpu_abort(env, "Embedded floating point round exception "
"is not implemented yet !\n");
env->spr[SPR_BOOKE_ESR] = ESR_SPV;
goto store_next;
case POWERPC_EXCP_EPERFM: /* Embedded performance monitor interrupt */
/* XXX: TODO */
cpu_abort(env,
"Performance counter exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
/* XXX: TODO */
cpu_abort(env,
"Embedded doorbell interrupt is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
switch (excp_model) {
case POWERPC_EXCP_BOOKE:
srr0 = SPR_BOOKE_CSRR0;
srr1 = SPR_BOOKE_CSRR1;
break;
default:
break;
}
/* XXX: TODO */
cpu_abort(env, "Embedded doorbell critical interrupt "
"is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_RESET: /* System reset exception */
if (msr_pow) {
/* indicate that we resumed from power save mode */
msr |= 0x10000;
} else {
new_msr &= ~((target_ulong)1 << MSR_ME);
}
if (0) {
/* XXX: find a suitable condition to enable the hypervisor mode */
new_msr |= (target_ulong)MSR_HVB;
}
goto store_next;
case POWERPC_EXCP_DSEG: /* Data segment exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_ISEG: /* Instruction segment exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
goto store_next;
case POWERPC_EXCP_TRACE: /* Trace exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_next;
case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
goto store_next;
case POWERPC_EXCP_HISI: /* Hypervisor instruction storage exception */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
goto store_next;
case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
goto store_next;
case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment exception */
srr0 = SPR_HSRR0;
srr1 = SPR_HSRR1;
new_msr |= (target_ulong)MSR_HVB;
new_msr |= env->msr & ((target_ulong)1 << MSR_RI);
goto store_next;
case POWERPC_EXCP_VPU: /* Vector unavailable exception */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
goto store_current;
case POWERPC_EXCP_PIT: /* Programmable interval timer interrupt */
LOG_EXCP("PIT exception\n");
goto store_next;
case POWERPC_EXCP_IO: /* IO error exception */
/* XXX: TODO */
cpu_abort(env, "601 IO error exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_RUNM: /* Run mode exception */
/* XXX: TODO */
cpu_abort(env, "601 run mode exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_EMUL: /* Emulation trap exception */
/* XXX: TODO */
cpu_abort(env, "602 emulation trap exception "
"is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
if (lpes1 == 0) /* XXX: check this */
new_msr |= (target_ulong)MSR_HVB;
switch (excp_model) {
case POWERPC_EXCP_602:
case POWERPC_EXCP_603:
case POWERPC_EXCP_603E:
case POWERPC_EXCP_G2:
goto tlb_miss_tgpr;
case POWERPC_EXCP_7x5:
goto tlb_miss;
case POWERPC_EXCP_74xx:
goto tlb_miss_74xx;
default:
cpu_abort(env, "Invalid instruction TLB miss exception\n");
break;
}
break;
case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
if (lpes1 == 0) /* XXX: check this */
new_msr |= (target_ulong)MSR_HVB;
switch (excp_model) {
case POWERPC_EXCP_602:
case POWERPC_EXCP_603:
case POWERPC_EXCP_603E:
case POWERPC_EXCP_G2:
goto tlb_miss_tgpr;
case POWERPC_EXCP_7x5:
goto tlb_miss;
case POWERPC_EXCP_74xx:
goto tlb_miss_74xx;
default:
cpu_abort(env, "Invalid data load TLB miss exception\n");
break;
}
break;
case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
if (lpes1 == 0) /* XXX: check this */
new_msr |= (target_ulong)MSR_HVB;
switch (excp_model) {
case POWERPC_EXCP_602:
case POWERPC_EXCP_603:
case POWERPC_EXCP_603E:
case POWERPC_EXCP_G2:
tlb_miss_tgpr:
/* Swap temporary saved registers with GPRs */
if (!(new_msr & ((target_ulong)1 << MSR_TGPR))) {
new_msr |= (target_ulong)1 << MSR_TGPR;
hreg_swap_gpr_tgpr(env);
}
goto tlb_miss;
case POWERPC_EXCP_7x5:
tlb_miss:
#if defined (DEBUG_SOFTWARE_TLB)
if (qemu_log_enabled()) {
const char *es;
target_ulong *miss, *cmp;
int en;
if (excp == POWERPC_EXCP_IFTLB) {
es = "I";
en = 'I';
miss = &env->spr[SPR_IMISS];
cmp = &env->spr[SPR_ICMP];
} else {
if (excp == POWERPC_EXCP_DLTLB)
es = "DL";
else
es = "DS";
en = 'D';
miss = &env->spr[SPR_DMISS];
cmp = &env->spr[SPR_DCMP];
}
qemu_log("6xx %sTLB miss: %cM " TARGET_FMT_lx " %cC "
TARGET_FMT_lx " H1 " TARGET_FMT_lx " H2 "
TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp,
env->spr[SPR_HASH1], env->spr[SPR_HASH2],
env->error_code);
}
#endif
msr |= env->crf[0] << 28;
msr |= env->error_code; /* key, D/I, S/L bits */
/* Set way using a LRU mechanism */
msr |= ((env->last_way + 1) & (env->nb_ways - 1)) << 17;
break;
case POWERPC_EXCP_74xx:
tlb_miss_74xx:
#if defined (DEBUG_SOFTWARE_TLB)
if (qemu_log_enabled()) {
const char *es;
target_ulong *miss, *cmp;
int en;
if (excp == POWERPC_EXCP_IFTLB) {
es = "I";
en = 'I';
miss = &env->spr[SPR_TLBMISS];
cmp = &env->spr[SPR_PTEHI];
} else {
if (excp == POWERPC_EXCP_DLTLB)
es = "DL";
else
es = "DS";
en = 'D';
miss = &env->spr[SPR_TLBMISS];
cmp = &env->spr[SPR_PTEHI];
}
qemu_log("74xx %sTLB miss: %cM " TARGET_FMT_lx " %cC "
TARGET_FMT_lx " %08x\n", es, en, *miss, en, *cmp,
env->error_code);
}
#endif
msr |= env->error_code; /* key bit */
break;
default:
cpu_abort(env, "Invalid data store TLB miss exception\n");
break;
}
goto store_next;
case POWERPC_EXCP_FPA: /* Floating-point assist exception */
/* XXX: TODO */
cpu_abort(env, "Floating point assist exception "
"is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_DABR: /* Data address breakpoint */
/* XXX: TODO */
cpu_abort(env, "DABR exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
/* XXX: TODO */
cpu_abort(env, "IABR exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_SMI: /* System management interrupt */
/* XXX: TODO */
cpu_abort(env, "SMI exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_THERM: /* Thermal interrupt */
/* XXX: TODO */
cpu_abort(env, "Thermal management exception "
"is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_PERFM: /* Embedded performance monitor interrupt */
if (lpes1 == 0)
new_msr |= (target_ulong)MSR_HVB;
/* XXX: TODO */
cpu_abort(env,
"Performance counter exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_VPUA: /* Vector assist exception */
/* XXX: TODO */
cpu_abort(env, "VPU assist exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_SOFTP: /* Soft patch exception */
/* XXX: TODO */
cpu_abort(env,
"970 soft-patch exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_MAINT: /* Maintenance exception */
/* XXX: TODO */
cpu_abort(env,
"970 maintenance exception is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_MEXTBR: /* Maskable external breakpoint */
/* XXX: TODO */
cpu_abort(env, "Maskable external exception "
"is not implemented yet !\n");
goto store_next;
case POWERPC_EXCP_NMEXTBR: /* Non maskable external breakpoint */
/* XXX: TODO */
cpu_abort(env, "Non maskable external exception "
"is not implemented yet !\n");
goto store_next;
default:
excp_invalid:
cpu_abort(env, "Invalid PowerPC exception %d. Aborting\n", excp);
break;
store_current:
/* save current instruction location */
env->spr[srr0] = env->nip - 4;
break;
store_next:
/* save next instruction location */
env->spr[srr0] = env->nip;
break;
}
/* Save MSR */
env->spr[srr1] = msr;
/* If any alternate SRR register are defined, duplicate saved values */
if (asrr0 != -1)
env->spr[asrr0] = env->spr[srr0];
if (asrr1 != -1)
env->spr[asrr1] = env->spr[srr1];
/* If we disactivated any translation, flush TLBs */
if (new_msr & ((1 << MSR_IR) | (1 << MSR_DR)))
tlb_flush(env, 1);
if (msr_ile) {
new_msr |= (target_ulong)1 << MSR_LE;
}
/* Jump to handler */
vector = env->excp_vectors[excp];
if (vector == (target_ulong)-1ULL) {
cpu_abort(env, "Raised an exception without defined vector %d\n",
excp);
}
vector |= env->excp_prefix;
#if defined(TARGET_PPC64)
if (excp_model == POWERPC_EXCP_BOOKE) {
if (!msr_icm) {
vector = (uint32_t)vector;
} else {
new_msr |= (target_ulong)1 << MSR_CM;
}
} else {
if (!msr_isf && !(env->mmu_model & POWERPC_MMU_64)) {
vector = (uint32_t)vector;
} else {
new_msr |= (target_ulong)1 << MSR_SF;
}
}
#endif
/* XXX: we don't use hreg_store_msr here as already have treated
* any special case that could occur. Just store MSR and update hflags
*/
env->msr = new_msr & env->msr_mask;
hreg_compute_hflags(env);
env->nip = vector;
/* Reset exception state */
env->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
if ((env->mmu_model == POWERPC_MMU_BOOKE) ||
(env->mmu_model == POWERPC_MMU_BOOKE206)) {
/* XXX: The BookE changes address space when switching modes,
we should probably implement that as different MMU indexes,
but for the moment we do it the slow way and flush all. */
tlb_flush(env, 1);
}
}
void do_interrupt (CPUState *env)
{
powerpc_excp(env, env->excp_model, env->exception_index);
}
void ppc_hw_interrupt (CPUPPCState *env)
{
int hdice;
#if 0
qemu_log_mask(CPU_LOG_INT, "%s: %p pending %08x req %08x me %d ee %d\n",
__func__, env, env->pending_interrupts,
env->interrupt_request, (int)msr_me, (int)msr_ee);
#endif
/* External reset */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_RESET)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_RESET);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_RESET);
return;
}
/* Machine check exception */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_MCK)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_MCK);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_MCHECK);
return;
}
#if 0 /* TODO */
/* External debug exception */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_DEBUG)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DEBUG);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_DEBUG);
return;
}
#endif
if (0) {
/* XXX: find a suitable condition to enable the hypervisor mode */
hdice = env->spr[SPR_LPCR] & 1;
} else {
hdice = 0;
}
if ((msr_ee != 0 || msr_hv == 0 || msr_pr != 0) && hdice != 0) {
/* Hypervisor decrementer exception */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_HDECR)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_HDECR);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_HDECR);
return;
}
}
if (msr_ce != 0) {
/* External critical interrupt */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_CEXT)) {
/* Taking a critical external interrupt does not clear the external
* critical interrupt status
*/
#if 0
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_CEXT);
#endif
powerpc_excp(env, env->excp_model, POWERPC_EXCP_CRITICAL);
return;
}
}
if (msr_ee != 0) {
/* Watchdog timer on embedded PowerPC */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_WDT)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_WDT);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_WDT);
return;
}
if (env->pending_interrupts & (1 << PPC_INTERRUPT_CDOORBELL)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_CDOORBELL);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_DOORCI);
return;
}
/* Fixed interval timer on embedded PowerPC */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_FIT)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_FIT);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_FIT);
return;
}
/* Programmable interval timer on embedded PowerPC */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_PIT)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PIT);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_PIT);
return;
}
/* Decrementer exception */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_DECR)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DECR);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_DECR);
return;
}
/* External interrupt */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_EXT)) {
/* Taking an external interrupt does not clear the external
* interrupt status
*/
#if 0
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_EXT);
#endif
powerpc_excp(env, env->excp_model, POWERPC_EXCP_EXTERNAL);
return;
}
if (env->pending_interrupts & (1 << PPC_INTERRUPT_DOORBELL)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_DOORBELL);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_DOORI);
return;
}
if (env->pending_interrupts & (1 << PPC_INTERRUPT_PERFM)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_PERFM);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_PERFM);
return;
}
/* Thermal interrupt */
if (env->pending_interrupts & (1 << PPC_INTERRUPT_THERM)) {
env->pending_interrupts &= ~(1 << PPC_INTERRUPT_THERM);
powerpc_excp(env, env->excp_model, POWERPC_EXCP_THERM);
return;
}
}
}
#endif /* !CONFIG_USER_ONLY */
void cpu_dump_rfi (target_ulong RA, target_ulong msr)
{
qemu_log("Return from exception at " TARGET_FMT_lx " with flags "
TARGET_FMT_lx "\n", RA, msr);
}
void cpu_reset(CPUPPCState *env)
{
target_ulong msr;
if (qemu_loglevel_mask(CPU_LOG_RESET)) {
qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
log_cpu_state(env, 0);
}
msr = (target_ulong)0;
if (0) {
/* XXX: find a suitable condition to enable the hypervisor mode */
msr |= (target_ulong)MSR_HVB;
}
msr |= (target_ulong)0 << MSR_AP; /* TO BE CHECKED */
msr |= (target_ulong)0 << MSR_SA; /* TO BE CHECKED */
msr |= (target_ulong)1 << MSR_EP;
#if defined (DO_SINGLE_STEP) && 0
/* Single step trace mode */
msr |= (target_ulong)1 << MSR_SE;
msr |= (target_ulong)1 << MSR_BE;
#endif
#if defined(CONFIG_USER_ONLY)
msr |= (target_ulong)1 << MSR_FP; /* Allow floating point usage */
msr |= (target_ulong)1 << MSR_VR; /* Allow altivec usage */
msr |= (target_ulong)1 << MSR_SPE; /* Allow SPE usage */
msr |= (target_ulong)1 << MSR_PR;
#else
env->excp_prefix = env->hreset_excp_prefix;
env->nip = env->hreset_vector | env->excp_prefix;
if (env->mmu_model != POWERPC_MMU_REAL)
ppc_tlb_invalidate_all(env);
#endif
env->msr = msr & env->msr_mask;
#if defined(TARGET_PPC64)
if (env->mmu_model & POWERPC_MMU_64)
env->msr |= (1ULL << MSR_SF);
#endif
hreg_compute_hflags(env);
env->reserve_addr = (target_ulong)-1ULL;
/* Be sure no exception or interrupt is pending */
env->pending_interrupts = 0;
env->exception_index = POWERPC_EXCP_NONE;
env->error_code = 0;
/* Flush all TLBs */
tlb_flush(env, 1);
}
CPUPPCState *cpu_ppc_init (const char *cpu_model)
{
CPUPPCState *env;
const ppc_def_t *def;
def = cpu_ppc_find_by_name(cpu_model);
if (!def)
return NULL;
env = g_malloc0(sizeof(CPUPPCState));
cpu_exec_init(env);
if (tcg_enabled()) {
ppc_translate_init();
}
/* Adjust cpu index for SMT */
#if !defined(CONFIG_USER_ONLY)
if (kvm_enabled()) {
int smt = kvmppc_smt_threads();
env->cpu_index = (env->cpu_index / smp_threads)*smt
+ (env->cpu_index % smp_threads);
}
#endif /* !CONFIG_USER_ONLY */
env->cpu_model_str = cpu_model;
cpu_ppc_register_internal(env, def);
qemu_init_vcpu(env);
return env;
}
void cpu_ppc_close (CPUPPCState *env)
{
/* Should also remove all opcode tables... */
g_free(env);
}