/* * PowerPC floating point and SPE emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "helper.h" /*****************************************************************************/ /* Floating point operations helpers */ uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg) { CPU_FloatU f; CPU_DoubleU d; f.l = arg; d.d = float32_to_float64(f.f, &env->fp_status); return d.ll; } uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg) { CPU_FloatU f; CPU_DoubleU d; d.ll = arg; f.f = float64_to_float32(d.d, &env->fp_status); return f.l; } static inline int isden(float64 d) { CPU_DoubleU u; u.d = d; return ((u.ll >> 52) & 0x7FF) == 0; } static inline int ppc_float32_get_unbiased_exp(float32 f) { return ((f >> 23) & 0xFF) - 127; } static inline int ppc_float64_get_unbiased_exp(float64 f) { return ((f >> 52) & 0x7FF) - 1023; } uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf) { CPU_DoubleU farg; int isneg; int ret; farg.ll = arg; isneg = float64_is_neg(farg.d); if (unlikely(float64_is_any_nan(farg.d))) { if (float64_is_signaling_nan(farg.d)) { /* Signaling NaN: flags are undefined */ ret = 0x00; } else { /* Quiet NaN */ ret = 0x11; } } else if (unlikely(float64_is_infinity(farg.d))) { /* +/- infinity */ if (isneg) { ret = 0x09; } else { ret = 0x05; } } else { if (float64_is_zero(farg.d)) { /* +/- zero */ if (isneg) { ret = 0x12; } else { ret = 0x02; } } else { if (isden(farg.d)) { /* Denormalized numbers */ ret = 0x10; } else { /* Normalized numbers */ ret = 0x00; } if (isneg) { ret |= 0x08; } else { ret |= 0x04; } } } if (set_fprf) { /* We update FPSCR_FPRF */ env->fpscr &= ~(0x1F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; } /* We just need fpcc to update Rc1 */ return ret & 0xF; } /* Floating-point invalid operations exception */ static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc) { CPUState *cs = CPU(ppc_env_get_cpu(env)); uint64_t ret = 0; int ve; ve = fpscr_ve; switch (op) { case POWERPC_EXCP_FP_VXSNAN: env->fpscr |= 1 << FPSCR_VXSNAN; break; case POWERPC_EXCP_FP_VXSOFT: env->fpscr |= 1 << FPSCR_VXSOFT; break; case POWERPC_EXCP_FP_VXISI: /* Magnitude subtraction of infinities */ env->fpscr |= 1 << FPSCR_VXISI; goto update_arith; case POWERPC_EXCP_FP_VXIDI: /* Division of infinity by infinity */ env->fpscr |= 1 << FPSCR_VXIDI; goto update_arith; case POWERPC_EXCP_FP_VXZDZ: /* Division of zero by zero */ env->fpscr |= 1 << FPSCR_VXZDZ; goto update_arith; case POWERPC_EXCP_FP_VXIMZ: /* Multiplication of zero by infinity */ env->fpscr |= 1 << FPSCR_VXIMZ; goto update_arith; case POWERPC_EXCP_FP_VXVC: /* Ordered comparison of NaN */ env->fpscr |= 1 << FPSCR_VXVC; if (set_fpcc) { env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } /* We must update the target FPR before raising the exception */ if (ve != 0) { cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* Exception is differed */ ve = 0; } break; case POWERPC_EXCP_FP_VXSQRT: /* Square root of a negative number */ env->fpscr |= 1 << FPSCR_VXSQRT; update_arith: env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ ret = 0x7FF8000000000000ULL; if (set_fpcc) { env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } } break; case POWERPC_EXCP_FP_VXCVI: /* Invalid conversion */ env->fpscr |= 1 << FPSCR_VXCVI; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); if (ve == 0) { /* Set the result to quiet NaN */ ret = 0x7FF8000000000000ULL; if (set_fpcc) { env->fpscr &= ~(0xF << FPSCR_FPCC); env->fpscr |= 0x11 << FPSCR_FPCC; } } break; } /* Update the floating-point invalid operation summary */ env->fpscr |= 1 << FPSCR_VX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (ve != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); } } return ret; } static inline void float_zero_divide_excp(CPUPPCState *env) { env->fpscr |= 1 << FPSCR_ZX; env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; if (msr_fe0 != 0 || msr_fe1 != 0) { helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); } } } static inline void float_overflow_excp(CPUPPCState *env) { CPUState *cs = CPU(ppc_env_get_cpu(env)); env->fpscr |= 1 << FPSCR_OX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; } else { env->fpscr |= 1 << FPSCR_XX; env->fpscr |= 1 << FPSCR_FI; } } static inline void float_underflow_excp(CPUPPCState *env) { CPUState *cs = CPU(ppc_env_get_cpu(env)); env->fpscr |= 1 << FPSCR_UX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue != 0) { /* XXX: should adjust the result */ /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; } } static inline void float_inexact_excp(CPUPPCState *env) { CPUState *cs = CPU(ppc_env_get_cpu(env)); env->fpscr |= 1 << FPSCR_XX; /* Update the floating-point exception summary */ env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe != 0) { /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We must update the target FPR before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; } } static inline void fpscr_set_rounding_mode(CPUPPCState *env) { int rnd_type; /* Set rounding mode */ switch (fpscr_rn) { case 0: /* Best approximation (round to nearest) */ rnd_type = float_round_nearest_even; break; case 1: /* Smaller magnitude (round toward zero) */ rnd_type = float_round_to_zero; break; case 2: /* Round toward +infinite */ rnd_type = float_round_up; break; default: case 3: /* Round toward -infinite */ rnd_type = float_round_down; break; } set_float_rounding_mode(rnd_type, &env->fp_status); } void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) { int prev; prev = (env->fpscr >> bit) & 1; env->fpscr &= ~(1 << bit); if (prev == 1) { switch (bit) { case FPSCR_RN1: case FPSCR_RN: fpscr_set_rounding_mode(env); break; default: break; } } } void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) { CPUState *cs = CPU(ppc_env_get_cpu(env)); int prev; prev = (env->fpscr >> bit) & 1; env->fpscr |= 1 << bit; if (prev == 0) { switch (bit) { case FPSCR_VX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve) { goto raise_ve; } break; case FPSCR_OX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_oe) { goto raise_oe; } break; case FPSCR_UX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ue) { goto raise_ue; } break; case FPSCR_ZX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_ze) { goto raise_ze; } break; case FPSCR_XX: env->fpscr |= 1 << FPSCR_FX; if (fpscr_xe) { goto raise_xe; } break; case FPSCR_VXSNAN: case FPSCR_VXISI: case FPSCR_VXIDI: case FPSCR_VXZDZ: case FPSCR_VXIMZ: case FPSCR_VXVC: case FPSCR_VXSOFT: case FPSCR_VXSQRT: case FPSCR_VXCVI: env->fpscr |= 1 << FPSCR_VX; env->fpscr |= 1 << FPSCR_FX; if (fpscr_ve != 0) { goto raise_ve; } break; case FPSCR_VE: if (fpscr_vx != 0) { raise_ve: env->error_code = POWERPC_EXCP_FP; if (fpscr_vxsnan) { env->error_code |= POWERPC_EXCP_FP_VXSNAN; } if (fpscr_vxisi) { env->error_code |= POWERPC_EXCP_FP_VXISI; } if (fpscr_vxidi) { env->error_code |= POWERPC_EXCP_FP_VXIDI; } if (fpscr_vxzdz) { env->error_code |= POWERPC_EXCP_FP_VXZDZ; } if (fpscr_vximz) { env->error_code |= POWERPC_EXCP_FP_VXIMZ; } if (fpscr_vxvc) { env->error_code |= POWERPC_EXCP_FP_VXVC; } if (fpscr_vxsoft) { env->error_code |= POWERPC_EXCP_FP_VXSOFT; } if (fpscr_vxsqrt) { env->error_code |= POWERPC_EXCP_FP_VXSQRT; } if (fpscr_vxcvi) { env->error_code |= POWERPC_EXCP_FP_VXCVI; } goto raise_excp; } break; case FPSCR_OE: if (fpscr_ox != 0) { raise_oe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; goto raise_excp; } break; case FPSCR_UE: if (fpscr_ux != 0) { raise_ue: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; goto raise_excp; } break; case FPSCR_ZE: if (fpscr_zx != 0) { raise_ze: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; goto raise_excp; } break; case FPSCR_XE: if (fpscr_xx != 0) { raise_xe: env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; goto raise_excp; } break; case FPSCR_RN1: case FPSCR_RN: fpscr_set_rounding_mode(env); break; default: break; raise_excp: /* Update the floating-point enabled exception summary */ env->fpscr |= 1 << FPSCR_FEX; /* We have to update Rc1 before raising the exception */ cs->exception_index = POWERPC_EXCP_PROGRAM; break; } } } void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) { CPUState *cs = CPU(ppc_env_get_cpu(env)); target_ulong prev, new; int i; prev = env->fpscr; new = (target_ulong)arg; new &= ~0x60000000LL; new |= prev & 0x60000000LL; for (i = 0; i < sizeof(target_ulong) * 2; i++) { if (mask & (1 << i)) { env->fpscr &= ~(0xFLL << (4 * i)); env->fpscr |= new & (0xFLL << (4 * i)); } } /* Update VX and FEX */ if (fpscr_ix != 0) { env->fpscr |= 1 << FPSCR_VX; } else { env->fpscr &= ~(1 << FPSCR_VX); } if ((fpscr_ex & fpscr_eex) != 0) { env->fpscr |= 1 << FPSCR_FEX; cs->exception_index = POWERPC_EXCP_PROGRAM; /* XXX: we should compute it properly */ env->error_code = POWERPC_EXCP_FP; } else { env->fpscr &= ~(1 << FPSCR_FEX); } fpscr_set_rounding_mode(env); } void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask) { helper_store_fpscr(env, arg, mask); } void helper_float_check_status(CPUPPCState *env) { CPUState *cs = CPU(ppc_env_get_cpu(env)); int status = get_float_exception_flags(&env->fp_status); if (status & float_flag_divbyzero) { float_zero_divide_excp(env); } else if (status & float_flag_overflow) { float_overflow_excp(env); } else if (status & float_flag_underflow) { float_underflow_excp(env); } else if (status & float_flag_inexact) { float_inexact_excp(env); } if (cs->exception_index == POWERPC_EXCP_PROGRAM && (env->error_code & POWERPC_EXCP_FP)) { /* Differred floating-point exception after target FPR update */ if (msr_fe0 != 0 || msr_fe1 != 0) { helper_raise_exception_err(env, cs->exception_index, env->error_code); } } } void helper_reset_fpstatus(CPUPPCState *env) { set_float_exception_flags(0, &env->fp_status); } /* fadd - fadd. */ uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN addition */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status); } return farg1.ll; } /* fsub - fsub. */ uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) && float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN subtraction */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status); } return farg1.ll; } /* fmul - fmul. */ uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN multiplication */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status); } return farg1.ll; } /* fdiv - fdiv. */ uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2) { CPU_DoubleU farg1, farg2; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) { /* Division of infinity by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1); } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) { /* Division of zero by zero */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d))) { /* sNaN division */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status); } return farg1.ll; } #define FPU_FCTI(op, cvt, nanval) \ uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ { \ CPU_DoubleU farg; \ \ farg.ll = arg; \ farg.ll = float64_to_##cvt(farg.d, &env->fp_status); \ \ if (unlikely(env->fp_status.float_exception_flags)) { \ if (float64_is_any_nan(arg)) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \ if (float64_is_signaling_nan(arg)) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \ } \ farg.ll = nanval; \ } else if (env->fp_status.float_exception_flags & \ float_flag_invalid) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1); \ } \ helper_float_check_status(env); \ } \ return farg.ll; \ } FPU_FCTI(fctiw, int32, 0x80000000U) FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) FPU_FCTI(fctiwu, uint32, 0x00000000U) FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) #if defined(TARGET_PPC64) FPU_FCTI(fctid, int64, 0x8000000000000000ULL) FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) #endif #if defined(TARGET_PPC64) #define FPU_FCFI(op, cvtr, is_single) \ uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ { \ CPU_DoubleU farg; \ \ if (is_single) { \ float32 tmp = cvtr(arg, &env->fp_status); \ farg.d = float32_to_float64(tmp, &env->fp_status); \ } else { \ farg.d = cvtr(arg, &env->fp_status); \ } \ helper_float_check_status(env); \ return farg.ll; \ } FPU_FCFI(fcfid, int64_to_float64, 0) FPU_FCFI(fcfids, int64_to_float32, 1) FPU_FCFI(fcfidu, uint64_to_float64, 0) FPU_FCFI(fcfidus, uint64_to_float32, 1) #endif static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg, int rounding_mode) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN round */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); farg.ll = arg | 0x0008000000000000ULL; } else { int inexact = get_float_exception_flags(&env->fp_status) & float_flag_inexact; set_float_rounding_mode(rounding_mode, &env->fp_status); farg.ll = float64_round_to_int(farg.d, &env->fp_status); /* Restore rounding mode from FPSCR */ fpscr_set_rounding_mode(env); /* fri* does not set FPSCR[XX] */ if (!inexact) { env->fp_status.float_exception_flags &= ~float_flag_inexact; } } helper_float_check_status(env); return farg.ll; } uint64_t helper_frin(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_ties_away); } uint64_t helper_friz(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_to_zero); } uint64_t helper_frip(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_up); } uint64_t helper_frim(CPUPPCState *env, uint64_t arg) { return do_fri(env, arg, float_round_down); } /* fmadd - fmadd. */ uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); } } return farg1.ll; } /* fmsub - fmsub. */ uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); } } return farg1.ll; } /* fnmadd - fnmadd. */ uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); } if (likely(!float64_is_any_nan(farg1.d))) { farg1.d = float64_chs(farg1.d); } } return farg1.ll; } /* fnmsub - fnmsub. */ uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1, farg2, farg3; farg1.ll = arg1; farg2.ll = arg2; farg3.ll = arg3; if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) || (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) { /* Multiplication of zero by infinity */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1); } else { if (unlikely(float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d) || float64_is_signaling_nan(farg3.d))) { /* sNaN operation */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } /* This is the way the PowerPC specification defines it */ float128 ft0_128, ft1_128; ft0_128 = float64_to_float128(farg1.d, &env->fp_status); ft1_128 = float64_to_float128(farg2.d, &env->fp_status); ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) && float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) { /* Magnitude subtraction of infinities */ farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1); } else { ft1_128 = float64_to_float128(farg3.d, &env->fp_status); ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); farg1.d = float128_to_float64(ft0_128, &env->fp_status); } if (likely(!float64_is_any_nan(farg1.d))) { farg1.d = float64_chs(farg1.d); } } return farg1.ll; } /* frsp - frsp. */ uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; float32 f32; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN square root */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); return farg.ll; } /* fsqrt - fsqrt. */ uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { /* Square root of a negative nonzero number */ farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); } else { if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN square root */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg.d = float64_sqrt(farg.d, &env->fp_status); } return farg.ll; } /* fre - fre. */ uint64_t helper_fre(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg.d = float64_div(float64_one, farg.d, &env->fp_status); return farg.d; } /* fres - fres. */ uint64_t helper_fres(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; float32 f32; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg.d = float64_div(float64_one, farg.d, &env->fp_status); f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); return farg.ll; } /* frsqrte - frsqrte. */ uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; float32 f32; farg.ll = arg; if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) { /* Reciprocal square root of a negative nonzero number */ farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1); } else { if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN reciprocal square root */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } farg.d = float64_sqrt(farg.d, &env->fp_status); farg.d = float64_div(float64_one, farg.d, &env->fp_status); f32 = float64_to_float32(farg.d, &env->fp_status); farg.d = float32_to_float64(f32, &env->fp_status); } return farg.ll; } /* fsel - fsel. */ uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint64_t arg3) { CPU_DoubleU farg1; farg1.ll = arg1; if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_any_nan(farg1.d)) { return arg2; } else { return arg3; } } uint32_t helper_ftdiv(uint64_t fra, uint64_t frb) { int fe_flag = 0; int fg_flag = 0; if (unlikely(float64_is_infinity(fra) || float64_is_infinity(frb) || float64_is_zero(frb))) { fe_flag = 1; fg_flag = 1; } else { int e_a = ppc_float64_get_unbiased_exp(fra); int e_b = ppc_float64_get_unbiased_exp(frb); if (unlikely(float64_is_any_nan(fra) || float64_is_any_nan(frb))) { fe_flag = 1; } else if ((e_b <= -1022) || (e_b >= 1021)) { fe_flag = 1; } else if (!float64_is_zero(fra) && (((e_a - e_b) >= 1023) || ((e_a - e_b) <= -1021) || (e_a <= -970))) { fe_flag = 1; } if (unlikely(float64_is_zero_or_denormal(frb))) { /* XB is not zero because of the above check and */ /* so must be denormalized. */ fg_flag = 1; } } return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); } uint32_t helper_ftsqrt(uint64_t frb) { int fe_flag = 0; int fg_flag = 0; if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { fe_flag = 1; fg_flag = 1; } else { int e_b = ppc_float64_get_unbiased_exp(frb); if (unlikely(float64_is_any_nan(frb))) { fe_flag = 1; } else if (unlikely(float64_is_zero(frb))) { fe_flag = 1; } else if (unlikely(float64_is_neg(frb))) { fe_flag = 1; } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) { fe_flag = 1; } if (unlikely(float64_is_zero_or_denormal(frb))) { /* XB is not zero because of the above check and */ /* therefore must be denormalized. */ fg_flag = 1; } } return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); } void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_any_nan(farg1.d) || float64_is_any_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; env->crf[crfD] = ret; if (unlikely(ret == 0x01UL && (float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d)))) { /* sNaN comparison */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); } } void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, uint32_t crfD) { CPU_DoubleU farg1, farg2; uint32_t ret = 0; farg1.ll = arg1; farg2.ll = arg2; if (unlikely(float64_is_any_nan(farg1.d) || float64_is_any_nan(farg2.d))) { ret = 0x01UL; } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { ret = 0x08UL; } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { ret = 0x04UL; } else { ret = 0x02UL; } env->fpscr &= ~(0x0F << FPSCR_FPRF); env->fpscr |= ret << FPSCR_FPRF; env->crf[crfD] = ret; if (unlikely(ret == 0x01UL)) { if (float64_is_signaling_nan(farg1.d) || float64_is_signaling_nan(farg2.d)) { /* sNaN comparison */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXVC, 1); } else { /* qNaN comparison */ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1); } } } /* Single-precision floating-point conversions */ static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.f = int32_to_float32(val, &env->vec_status); return u.l; } static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.f = uint32_to_float32(val, &env->vec_status); return u.l; } static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } return float32_to_int32(u.f, &env->vec_status); } static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } return float32_to_uint32(u.f, &env->vec_status); } static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } return float32_to_int32_round_to_zero(u.f, &env->vec_status); } static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) { CPU_FloatU u; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } return float32_to_uint32_round_to_zero(u.f, &env->vec_status); } static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.f = int32_to_float32(val, &env->vec_status); tmp = int64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_div(u.f, tmp, &env->vec_status); return u.l; } static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.f = uint32_to_float32(val, &env->vec_status); tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_div(u.f, tmp, &env->vec_status); return u.l; } static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_mul(u.f, tmp, &env->vec_status); return float32_to_int32(u.f, &env->vec_status); } static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) { CPU_FloatU u; float32 tmp; u.l = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float32_is_quiet_nan(u.f))) { return 0; } tmp = uint64_to_float32(1ULL << 32, &env->vec_status); u.f = float32_mul(u.f, tmp, &env->vec_status); return float32_to_uint32(u.f, &env->vec_status); } #define HELPER_SPE_SINGLE_CONV(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ { \ return e##name(env, val); \ } /* efscfsi */ HELPER_SPE_SINGLE_CONV(fscfsi); /* efscfui */ HELPER_SPE_SINGLE_CONV(fscfui); /* efscfuf */ HELPER_SPE_SINGLE_CONV(fscfuf); /* efscfsf */ HELPER_SPE_SINGLE_CONV(fscfsf); /* efsctsi */ HELPER_SPE_SINGLE_CONV(fsctsi); /* efsctui */ HELPER_SPE_SINGLE_CONV(fsctui); /* efsctsiz */ HELPER_SPE_SINGLE_CONV(fsctsiz); /* efsctuiz */ HELPER_SPE_SINGLE_CONV(fsctuiz); /* efsctsf */ HELPER_SPE_SINGLE_CONV(fsctsf); /* efsctuf */ HELPER_SPE_SINGLE_CONV(fsctuf); #define HELPER_SPE_VECTOR_CONV(name) \ uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ { \ return ((uint64_t)e##name(env, val >> 32) << 32) | \ (uint64_t)e##name(env, val); \ } /* evfscfsi */ HELPER_SPE_VECTOR_CONV(fscfsi); /* evfscfui */ HELPER_SPE_VECTOR_CONV(fscfui); /* evfscfuf */ HELPER_SPE_VECTOR_CONV(fscfuf); /* evfscfsf */ HELPER_SPE_VECTOR_CONV(fscfsf); /* evfsctsi */ HELPER_SPE_VECTOR_CONV(fsctsi); /* evfsctui */ HELPER_SPE_VECTOR_CONV(fsctui); /* evfsctsiz */ HELPER_SPE_VECTOR_CONV(fsctsiz); /* evfsctuiz */ HELPER_SPE_VECTOR_CONV(fsctuiz); /* evfsctsf */ HELPER_SPE_VECTOR_CONV(fsctsf); /* evfsctuf */ HELPER_SPE_VECTOR_CONV(fsctuf); /* Single-precision floating-point arithmetic */ static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_add(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_sub(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_mul(u1.f, u2.f, &env->vec_status); return u1.l; } static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; u1.f = float32_div(u1.f, u2.f, &env->vec_status); return u1.l; } #define HELPER_SPE_SINGLE_ARITH(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ { \ return e##name(env, op1, op2); \ } /* efsadd */ HELPER_SPE_SINGLE_ARITH(fsadd); /* efssub */ HELPER_SPE_SINGLE_ARITH(fssub); /* efsmul */ HELPER_SPE_SINGLE_ARITH(fsmul); /* efsdiv */ HELPER_SPE_SINGLE_ARITH(fsdiv); #define HELPER_SPE_VECTOR_ARITH(name) \ uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ { \ return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ (uint64_t)e##name(env, op1, op2); \ } /* evfsadd */ HELPER_SPE_VECTOR_ARITH(fsadd); /* evfssub */ HELPER_SPE_VECTOR_ARITH(fssub); /* evfsmul */ HELPER_SPE_VECTOR_ARITH(fsmul); /* evfsdiv */ HELPER_SPE_VECTOR_ARITH(fsdiv); /* Single-precision floating-point comparisons */ static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; } static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; } static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) { CPU_FloatU u1, u2; u1.l = op1; u2.l = op2; return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; } static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmplt(env, op1, op2); } static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmpgt(env, op1, op2); } static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) { /* XXX: TODO: ignore special values (NaN, infinites, ...) */ return efscmpeq(env, op1, op2); } #define HELPER_SINGLE_SPE_CMP(name) \ uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ { \ return e##name(env, op1, op2) << 2; \ } /* efststlt */ HELPER_SINGLE_SPE_CMP(fststlt); /* efststgt */ HELPER_SINGLE_SPE_CMP(fststgt); /* efststeq */ HELPER_SINGLE_SPE_CMP(fststeq); /* efscmplt */ HELPER_SINGLE_SPE_CMP(fscmplt); /* efscmpgt */ HELPER_SINGLE_SPE_CMP(fscmpgt); /* efscmpeq */ HELPER_SINGLE_SPE_CMP(fscmpeq); static inline uint32_t evcmp_merge(int t0, int t1) { return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); } #define HELPER_VECTOR_SPE_CMP(name) \ uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ { \ return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ e##name(env, op1, op2)); \ } /* evfststlt */ HELPER_VECTOR_SPE_CMP(fststlt); /* evfststgt */ HELPER_VECTOR_SPE_CMP(fststgt); /* evfststeq */ HELPER_VECTOR_SPE_CMP(fststeq); /* evfscmplt */ HELPER_VECTOR_SPE_CMP(fscmplt); /* evfscmpgt */ HELPER_VECTOR_SPE_CMP(fscmpgt); /* evfscmpeq */ HELPER_VECTOR_SPE_CMP(fscmpeq); /* Double-precision floating-point conversion */ uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; u.d = int32_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.d = int64_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; u.d = uint32_to_float64(val, &env->vec_status); return u.ll; } uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.d = uint64_to_float64(val, &env->vec_status); return u.ll; } uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int32(u.d, &env->vec_status); } uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint32(u.d, &env->vec_status); } uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int32_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_int64_round_to_zero(u.d, &env->vec_status); } uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint32_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } return float64_to_uint64_round_to_zero(u.d, &env->vec_status); } uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = int32_to_float64(val, &env->vec_status); tmp = int64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_div(u.d, tmp, &env->vec_status); return u.ll; } uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) { CPU_DoubleU u; float64 tmp; u.d = uint32_to_float64(val, &env->vec_status); tmp = int64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_div(u.d, tmp, &env->vec_status); return u.ll; } uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } tmp = uint64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_mul(u.d, tmp, &env->vec_status); return float64_to_int32(u.d, &env->vec_status); } uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) { CPU_DoubleU u; float64 tmp; u.ll = val; /* NaN are not treated the same way IEEE 754 does */ if (unlikely(float64_is_any_nan(u.d))) { return 0; } tmp = uint64_to_float64(1ULL << 32, &env->vec_status); u.d = float64_mul(u.d, tmp, &env->vec_status); return float64_to_uint32(u.d, &env->vec_status); } uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) { CPU_DoubleU u1; CPU_FloatU u2; u1.ll = val; u2.f = float64_to_float32(u1.d, &env->vec_status); return u2.l; } uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) { CPU_DoubleU u2; CPU_FloatU u1; u1.l = val; u2.d = float32_to_float64(u1.f, &env->vec_status); return u2.ll; } /* Double precision fixed-point arithmetic */ uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_add(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_sub(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_mul(u1.d, u2.d, &env->vec_status); return u1.ll; } uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; u1.d = float64_div(u1.d, u2.d, &env->vec_status); return u1.ll; } /* Double precision floating point helpers */ uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; } uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; } uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) { CPU_DoubleU u1, u2; u1.ll = op1; u2.ll = op2; return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; } uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstlt(env, op1, op2); } uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtstgt(env, op1, op2); } uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) { /* XXX: TODO: test special values (NaN, infinites, ...) */ return helper_efdtsteq(env, op1, op2); } #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \ (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \ (((opcode) >> (shift2)) & ((1 << (nb2)) - 1))) #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5) #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5) #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5) #define xC(opcode) DECODE_SPLIT(opcode, 3, 1, 6, 5) #define BF(opcode) (((opcode) >> (31-8)) & 7) typedef union _ppc_vsr_t { uint64_t u64[2]; uint32_t u32[4]; float32 f32[4]; float64 f64[2]; } ppc_vsr_t; static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) { if (n < 32) { vsr->f64[0] = env->fpr[n]; vsr->u64[1] = env->vsr[n]; } else { vsr->u64[0] = env->avr[n-32].u64[0]; vsr->u64[1] = env->avr[n-32].u64[1]; } } static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) { if (n < 32) { env->fpr[n] = vsr->f64[0]; env->vsr[n] = vsr->u64[1]; } else { env->avr[n-32].u64[0] = vsr->u64[0]; env->avr[n-32].u64[1] = vsr->u64[1]; } } #define float64_to_float64(x, env) x /* VSX_ADD_SUB - VSX floating point add/subract * name - instruction mnemonic * op - operation (add or sub) * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp) \ void helper_##name(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xa, xb; \ int i; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) {\ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \ } else if (tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ } \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_ADD_SUB(xsadddp, add, 1, float64, f64, 1, 0) VSX_ADD_SUB(xsaddsp, add, 1, float64, f64, 1, 1) VSX_ADD_SUB(xvadddp, add, 2, float64, f64, 0, 0) VSX_ADD_SUB(xvaddsp, add, 4, float32, f32, 0, 0) VSX_ADD_SUB(xssubdp, sub, 1, float64, f64, 1, 0) VSX_ADD_SUB(xssubsp, sub, 1, float64, f64, 1, 1) VSX_ADD_SUB(xvsubdp, sub, 2, float64, f64, 0, 0) VSX_ADD_SUB(xvsubsp, sub, 4, float32, f32, 0, 0) /* VSX_MUL - VSX floating point multiply * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xa, xb; \ int i; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ xt.fld[i] = tp##_mul(xa.fld[i], xb.fld[i], &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(xb.fld[i])) || \ (tp##_is_infinity(xb.fld[i]) && tp##_is_zero(xa.fld[i]))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf); \ } else if (tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ } \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_MUL(xsmuldp, 1, float64, f64, 1, 0) VSX_MUL(xsmulsp, 1, float64, f64, 1, 1) VSX_MUL(xvmuldp, 2, float64, f64, 0, 0) VSX_MUL(xvmulsp, 4, float32, f32, 0, 0) /* VSX_DIV - VSX floating point divide * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xa, xb; \ int i; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ xt.fld[i] = tp##_div(xa.fld[i], xb.fld[i], &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf); \ } else if (tp##_is_zero(xa.fld[i]) && \ tp##_is_zero(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf); \ } else if (tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ } \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_DIV(xsdivdp, 1, float64, f64, 1, 0) VSX_DIV(xsdivsp, 1, float64, f64, 1, 1) VSX_DIV(xvdivdp, 2, float64, f64, 0, 0) VSX_DIV(xvdivsp, 4, float32, f32, 0, 0) /* VSX_RE - VSX floating point reciprocal estimate * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_RE(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ xt.fld[i] = tp##_div(tp##_one, xb.fld[i], &env->fp_status); \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[0], sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_RE(xsredp, 1, float64, f64, 1, 0) VSX_RE(xsresp, 1, float64, f64, 1, 1) VSX_RE(xvredp, 2, float64, f64, 0, 0) VSX_RE(xvresp, 4, float32, f32, 0, 0) /* VSX_SQRT - VSX floating point square root * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \ } else if (tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ } \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_SQRT(xssqrtdp, 1, float64, f64, 1, 0) VSX_SQRT(xssqrtsp, 1, float64, f64, 1, 1) VSX_SQRT(xvsqrtdp, 2, float64, f64, 0, 0) VSX_SQRT(xvsqrtsp, 4, float32, f32, 0, 0) /* VSX_RSQRTE - VSX floating point reciprocal square root estimate * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat); \ xt.fld[i] = tp##_div(tp##_one, xt.fld[i], &tstat); \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf); \ } else if (tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ } \ } \ \ if (r2sp) { \ xt.fld[i] = helper_frsp(env, xt.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_RSQRTE(xsrsqrtedp, 1, float64, f64, 1, 0) VSX_RSQRTE(xsrsqrtesp, 1, float64, f64, 1, 1) VSX_RSQRTE(xvrsqrtedp, 2, float64, f64, 0, 0) VSX_RSQRTE(xvrsqrtesp, 4, float32, f32, 0, 0) /* VSX_TDIV - VSX floating point test for divide * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * emin - minimum unbiased exponent * emax - maximum unbiased exponent * nbits - number of fraction bits */ #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xa, xb; \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_infinity(xa.fld[i]) || \ tp##_is_infinity(xb.fld[i]) || \ tp##_is_zero(xb.fld[i]))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ int e_a = ppc_##tp##_get_unbiased_exp(xa.fld[i]); \ int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \ \ if (unlikely(tp##_is_any_nan(xa.fld[i]) || \ tp##_is_any_nan(xb.fld[i]))) { \ fe_flag = 1; \ } else if ((e_b <= emin) || (e_b >= (emax-2))) { \ fe_flag = 1; \ } else if (!tp##_is_zero(xa.fld[i]) && \ (((e_a - e_b) >= emax) || \ ((e_a - e_b) <= (emin+1)) || \ (e_a <= (emin+nbits)))) { \ fe_flag = 1; \ } \ \ if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \ /* XB is not zero because of the above check and */ \ /* so must be denormalized. */ \ fg_flag = 1; \ } \ } \ } \ \ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ } VSX_TDIV(xstdivdp, 1, float64, f64, -1022, 1023, 52) VSX_TDIV(xvtdivdp, 2, float64, f64, -1022, 1023, 52) VSX_TDIV(xvtdivsp, 4, float32, f32, -126, 127, 23) /* VSX_TSQRT - VSX floating point test for square root * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * emin - minimum unbiased exponent * emax - maximum unbiased exponent * nbits - number of fraction bits */ #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xa, xb; \ int i; \ int fe_flag = 0; \ int fg_flag = 0; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_infinity(xb.fld[i]) || \ tp##_is_zero(xb.fld[i]))) { \ fe_flag = 1; \ fg_flag = 1; \ } else { \ int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]); \ \ if (unlikely(tp##_is_any_nan(xb.fld[i]))) { \ fe_flag = 1; \ } else if (unlikely(tp##_is_zero(xb.fld[i]))) { \ fe_flag = 1; \ } else if (unlikely(tp##_is_neg(xb.fld[i]))) { \ fe_flag = 1; \ } else if (!tp##_is_zero(xb.fld[i]) && \ (e_b <= (emin+nbits))) { \ fe_flag = 1; \ } \ \ if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) { \ /* XB is not zero because of the above check and */ \ /* therefore must be denormalized. */ \ fg_flag = 1; \ } \ } \ } \ \ env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ } VSX_TSQRT(xstsqrtdp, 1, float64, f64, -1022, 52) VSX_TSQRT(xvtsqrtdp, 2, float64, f64, -1022, 52) VSX_TSQRT(xvtsqrtsp, 4, float32, f32, -126, 23) /* VSX_MADD - VSX floating point muliply/add variations * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * maddflgs - flags for the float*muladd routine that control the * various forms (madd, msub, nmadd, nmsub) * afrm - A form (1=A, 0=M) * sfprf - set FPRF */ #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt_in, xa, xb, xt_out; \ ppc_vsr_t *b, *c; \ int i; \ \ if (afrm) { /* AxB + T */ \ b = &xb; \ c = &xt_in; \ } else { /* AxT + B */ \ b = &xt_in; \ c = &xb; \ } \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt_in, env); \ \ xt_out = xt_in; \ \ helper_reset_fpstatus(env); \ \ for (i = 0; i < nels; i++) { \ float_status tstat = env->fp_status; \ set_float_exception_flags(0, &tstat); \ if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\ /* Avoid double rounding errors by rounding the intermediate */ \ /* result to odd. */ \ set_float_rounding_mode(float_round_to_zero, &tstat); \ xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \ maddflgs, &tstat); \ xt_out.fld[i] |= (get_float_exception_flags(&tstat) & \ float_flag_inexact) != 0; \ } else { \ xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i], \ maddflgs, &tstat); \ } \ env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ \ if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ if (tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(b->fld[i]) || \ tp##_is_signaling_nan(c->fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf); \ tstat.float_exception_flags &= ~float_flag_invalid; \ } \ if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(b->fld[i])) || \ (tp##_is_zero(xa.fld[i]) && tp##_is_infinity(b->fld[i]))) { \ xt_out.fld[i] = float64_to_##tp(fload_invalid_op_excp(env, \ POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status); \ tstat.float_exception_flags &= ~float_flag_invalid; \ } \ if ((tstat.float_exception_flags & float_flag_invalid) && \ ((tp##_is_infinity(xa.fld[i]) || \ tp##_is_infinity(b->fld[i])) && \ tp##_is_infinity(c->fld[i]))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf); \ } \ } \ \ if (r2sp) { \ xt_out.fld[i] = helper_frsp(env, xt_out.fld[i]); \ } \ \ if (sfprf) { \ helper_compute_fprf(env, xt_out.fld[i], sfprf); \ } \ } \ putVSR(xT(opcode), &xt_out, env); \ helper_float_check_status(env); \ } #define MADD_FLGS 0 #define MSUB_FLGS float_muladd_negate_c #define NMADD_FLGS float_muladd_negate_result #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) VSX_MADD(xsmaddadp, 1, float64, f64, MADD_FLGS, 1, 1, 0) VSX_MADD(xsmaddmdp, 1, float64, f64, MADD_FLGS, 0, 1, 0) VSX_MADD(xsmsubadp, 1, float64, f64, MSUB_FLGS, 1, 1, 0) VSX_MADD(xsmsubmdp, 1, float64, f64, MSUB_FLGS, 0, 1, 0) VSX_MADD(xsnmaddadp, 1, float64, f64, NMADD_FLGS, 1, 1, 0) VSX_MADD(xsnmaddmdp, 1, float64, f64, NMADD_FLGS, 0, 1, 0) VSX_MADD(xsnmsubadp, 1, float64, f64, NMSUB_FLGS, 1, 1, 0) VSX_MADD(xsnmsubmdp, 1, float64, f64, NMSUB_FLGS, 0, 1, 0) VSX_MADD(xsmaddasp, 1, float64, f64, MADD_FLGS, 1, 1, 1) VSX_MADD(xsmaddmsp, 1, float64, f64, MADD_FLGS, 0, 1, 1) VSX_MADD(xsmsubasp, 1, float64, f64, MSUB_FLGS, 1, 1, 1) VSX_MADD(xsmsubmsp, 1, float64, f64, MSUB_FLGS, 0, 1, 1) VSX_MADD(xsnmaddasp, 1, float64, f64, NMADD_FLGS, 1, 1, 1) VSX_MADD(xsnmaddmsp, 1, float64, f64, NMADD_FLGS, 0, 1, 1) VSX_MADD(xsnmsubasp, 1, float64, f64, NMSUB_FLGS, 1, 1, 1) VSX_MADD(xsnmsubmsp, 1, float64, f64, NMSUB_FLGS, 0, 1, 1) VSX_MADD(xvmaddadp, 2, float64, f64, MADD_FLGS, 1, 0, 0) VSX_MADD(xvmaddmdp, 2, float64, f64, MADD_FLGS, 0, 0, 0) VSX_MADD(xvmsubadp, 2, float64, f64, MSUB_FLGS, 1, 0, 0) VSX_MADD(xvmsubmdp, 2, float64, f64, MSUB_FLGS, 0, 0, 0) VSX_MADD(xvnmaddadp, 2, float64, f64, NMADD_FLGS, 1, 0, 0) VSX_MADD(xvnmaddmdp, 2, float64, f64, NMADD_FLGS, 0, 0, 0) VSX_MADD(xvnmsubadp, 2, float64, f64, NMSUB_FLGS, 1, 0, 0) VSX_MADD(xvnmsubmdp, 2, float64, f64, NMSUB_FLGS, 0, 0, 0) VSX_MADD(xvmaddasp, 4, float32, f32, MADD_FLGS, 1, 0, 0) VSX_MADD(xvmaddmsp, 4, float32, f32, MADD_FLGS, 0, 0, 0) VSX_MADD(xvmsubasp, 4, float32, f32, MSUB_FLGS, 1, 0, 0) VSX_MADD(xvmsubmsp, 4, float32, f32, MSUB_FLGS, 0, 0, 0) VSX_MADD(xvnmaddasp, 4, float32, f32, NMADD_FLGS, 1, 0, 0) VSX_MADD(xvnmaddmsp, 4, float32, f32, NMADD_FLGS, 0, 0, 0) VSX_MADD(xvnmsubasp, 4, float32, f32, NMSUB_FLGS, 1, 0, 0) VSX_MADD(xvnmsubmsp, 4, float32, f32, NMSUB_FLGS, 0, 0, 0) #define VSX_SCALAR_CMP(op, ordered) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xa, xb; \ uint32_t cc = 0; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ \ if (unlikely(float64_is_any_nan(xa.f64[0]) || \ float64_is_any_nan(xb.f64[0]))) { \ if (float64_is_signaling_nan(xa.f64[0]) || \ float64_is_signaling_nan(xb.f64[0])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ } \ if (ordered) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \ } \ cc = 1; \ } else { \ if (float64_lt(xa.f64[0], xb.f64[0], &env->fp_status)) { \ cc = 8; \ } else if (!float64_le(xa.f64[0], xb.f64[0], &env->fp_status)) { \ cc = 4; \ } else { \ cc = 2; \ } \ } \ \ env->fpscr &= ~(0x0F << FPSCR_FPRF); \ env->fpscr |= cc << FPSCR_FPRF; \ env->crf[BF(opcode)] = cc; \ \ helper_float_check_status(env); \ } VSX_SCALAR_CMP(xscmpodp, 1) VSX_SCALAR_CMP(xscmpudp, 0) #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) #define float32_snan_to_qnan(x) ((x) | 0x00400000) /* VSX_MAX_MIN - VSX floating point maximum/minimum * name - instruction mnemonic * op - operation (max or min) * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) */ #define VSX_MAX_MIN(name, op, nels, tp, fld) \ void helper_##name(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xa, xb; \ int i; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ for (i = 0; i < nels; i++) { \ xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &env->fp_status); \ if (unlikely(tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(xb.fld[i]))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, f64) VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, f64) VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, f32) VSX_MAX_MIN(xsmindp, minnum, 1, float64, f64) VSX_MAX_MIN(xvmindp, minnum, 2, float64, f64) VSX_MAX_MIN(xvminsp, minnum, 4, float32, f32) /* VSX_CMP - VSX floating point compare * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * cmp - comparison operation * svxvc - set VXVC bit */ #define VSX_CMP(op, nels, tp, fld, cmp, svxvc) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xa, xb; \ int i; \ int all_true = 1; \ int all_false = 1; \ \ getVSR(xA(opcode), &xa, env); \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_any_nan(xa.fld[i]) || \ tp##_is_any_nan(xb.fld[i]))) { \ if (tp##_is_signaling_nan(xa.fld[i]) || \ tp##_is_signaling_nan(xb.fld[i])) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ } \ if (svxvc) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0); \ } \ xt.fld[i] = 0; \ all_true = 0; \ } else { \ if (tp##_##cmp(xb.fld[i], xa.fld[i], &env->fp_status) == 1) { \ xt.fld[i] = -1; \ all_false = 0; \ } else { \ xt.fld[i] = 0; \ all_true = 0; \ } \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ if ((opcode >> (31-21)) & 1) { \ env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ } \ helper_float_check_status(env); \ } VSX_CMP(xvcmpeqdp, 2, float64, f64, eq, 0) VSX_CMP(xvcmpgedp, 2, float64, f64, le, 1) VSX_CMP(xvcmpgtdp, 2, float64, f64, lt, 1) VSX_CMP(xvcmpeqsp, 4, float32, f32, eq, 0) VSX_CMP(xvcmpgesp, 4, float32, f32, le, 1) VSX_CMP(xvcmpgtsp, 4, float32, f32, lt, 1) #if defined(HOST_WORDS_BIGENDIAN) #define JOFFSET 0 #else #define JOFFSET 1 #endif /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (float32 or float64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field (f32 or f64) * sfprf - set FPRF */ #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ for (i = 0; i < nels; i++) { \ int j = 2*i + JOFFSET; \ xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ if (unlikely(stp##_is_signaling_nan(xb.sfld))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ xt.tfld = ttp##_snan_to_qnan(xt.tfld); \ } \ if (sfprf) { \ helper_compute_fprf(env, ttp##_to_float64(xt.tfld, \ &env->fp_status), sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, f64[i], f32[j], 1) VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, f32[j], f64[i], 1) VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, f64[i], f32[j], 0) VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, f32[j], f64[i], 0) uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) { float_status tstat = env->fp_status; set_float_exception_flags(0, &tstat); return (uint64_t)float64_to_float32(xb, &tstat) << 32; } uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb) { float_status tstat = env->fp_status; set_float_exception_flags(0, &tstat); return float32_to_float64(xb >> 32, &tstat); } /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (float32 or float64) * ttp - target type (int32, uint32, int64 or uint64) * sfld - source vsr_t field * tfld - target vsr_t field * jdef - definition of the j index (i or 2*i) * rnan - resulting NaN */ #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, jdef, rnan) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ for (i = 0; i < nels; i++) { \ int j = jdef; \ if (unlikely(stp##_is_any_nan(xb.sfld))) { \ if (stp##_is_signaling_nan(xb.sfld)) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ } \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \ xt.tfld = rnan; \ } else { \ xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ if (env->fp_status.float_exception_flags & float_flag_invalid) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0); \ } \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, f64[j], u64[i], i, \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, f64[i], u32[j], \ 2*i + JOFFSET, 0x80000000U) VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, f64[j], u64[i], i, 0ULL) VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, f64[i], u32[j], \ 2*i + JOFFSET, 0U) VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, f64[j], u64[i], i, \ 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, f64[i], u32[j], \ 2*i + JOFFSET, 0x80000000U) VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, f64[j], u64[i], i, 0ULL) VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, f64[i], u32[j], \ 2*i + JOFFSET, 0U) VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, f32[j], u64[i], \ 2*i + JOFFSET, 0x8000000000000000ULL) VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, f32[j], u32[j], i, \ 0x80000000U) VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, f32[j], u64[i], \ 2*i + JOFFSET, 0ULL) VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, f32[j], u32[i], i, 0U) /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * stp - source type (int32, uint32, int64 or uint64) * ttp - target type (float32 or float64) * sfld - source vsr_t field * tfld - target vsr_t field * jdef - definition of the j index (i or 2*i) * sfprf - set FPRF */ #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, jdef, sfprf, r2sp) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ for (i = 0; i < nels; i++) { \ int j = jdef; \ xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status); \ if (r2sp) { \ xt.tfld = helper_frsp(env, xt.tfld); \ } \ if (sfprf) { \ helper_compute_fprf(env, xt.tfld, sfprf); \ } \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, u64[j], f64[i], i, 1, 0) VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, u64[j], f64[i], i, 1, 0) VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, u64[j], f64[i], i, 1, 1) VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, u64[j], f64[i], i, 1, 1) VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, u64[j], f64[i], i, 0, 0) VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, u64[j], f64[i], i, 0, 0) VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, u32[j], f64[i], \ 2*i + JOFFSET, 0, 0) VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, u32[j], f64[i], \ 2*i + JOFFSET, 0, 0) VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, u64[i], f32[j], \ 2*i + JOFFSET, 0, 0) VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, u64[i], f32[j], \ 2*i + JOFFSET, 0, 0) VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, u32[j], f32[i], i, 0, 0) VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, u32[j], f32[i], i, 0, 0) /* For "use current rounding mode", define a value that will not be one of * the existing rounding model enums. */ #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ float_round_up + float_round_to_zero) /* VSX_ROUND - VSX floating point round * op - instruction mnemonic * nels - number of elements (1, 2 or 4) * tp - type (float32 or float64) * fld - vsr_t field (f32 or f64) * rmode - rounding mode * sfprf - set FPRF */ #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf) \ void helper_##op(CPUPPCState *env, uint32_t opcode) \ { \ ppc_vsr_t xt, xb; \ int i; \ getVSR(xB(opcode), &xb, env); \ getVSR(xT(opcode), &xt, env); \ \ if (rmode != FLOAT_ROUND_CURRENT) { \ set_float_rounding_mode(rmode, &env->fp_status); \ } \ \ for (i = 0; i < nels; i++) { \ if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) { \ fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \ xt.fld[i] = tp##_snan_to_qnan(xb.fld[i]); \ } else { \ xt.fld[i] = tp##_round_to_int(xb.fld[i], &env->fp_status); \ } \ if (sfprf) { \ helper_compute_fprf(env, xt.fld[i], sfprf); \ } \ } \ \ /* If this is not a "use current rounding mode" instruction, \ * then inhibit setting of the XX bit and restore rounding \ * mode from FPSCR */ \ if (rmode != FLOAT_ROUND_CURRENT) { \ fpscr_set_rounding_mode(env); \ env->fp_status.float_exception_flags &= ~float_flag_inexact; \ } \ \ putVSR(xT(opcode), &xt, env); \ helper_float_check_status(env); \ } VSX_ROUND(xsrdpi, 1, float64, f64, float_round_nearest_even, 1) VSX_ROUND(xsrdpic, 1, float64, f64, FLOAT_ROUND_CURRENT, 1) VSX_ROUND(xsrdpim, 1, float64, f64, float_round_down, 1) VSX_ROUND(xsrdpip, 1, float64, f64, float_round_up, 1) VSX_ROUND(xsrdpiz, 1, float64, f64, float_round_to_zero, 1) VSX_ROUND(xvrdpi, 2, float64, f64, float_round_nearest_even, 0) VSX_ROUND(xvrdpic, 2, float64, f64, FLOAT_ROUND_CURRENT, 0) VSX_ROUND(xvrdpim, 2, float64, f64, float_round_down, 0) VSX_ROUND(xvrdpip, 2, float64, f64, float_round_up, 0) VSX_ROUND(xvrdpiz, 2, float64, f64, float_round_to_zero, 0) VSX_ROUND(xvrspi, 4, float32, f32, float_round_nearest_even, 0) VSX_ROUND(xvrspic, 4, float32, f32, FLOAT_ROUND_CURRENT, 0) VSX_ROUND(xvrspim, 4, float32, f32, float_round_down, 0) VSX_ROUND(xvrspip, 4, float32, f32, float_round_up, 0) VSX_ROUND(xvrspiz, 4, float32, f32, float_round_to_zero, 0) uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) { helper_reset_fpstatus(env); uint64_t xt = helper_frsp(env, xb); helper_compute_fprf(env, xt, 1); helper_float_check_status(env); return xt; }