/* * MIPS emulation helpers for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA */ #include #include "exec.h" #include "host-utils.h" #include "helper.h" /*****************************************************************************/ /* Exceptions processing helpers */ void helper_raise_exception_err (uint32_t exception, int error_code) { #if 1 if (exception < 0x100) qemu_log("%s: %d %d\n", __func__, exception, error_code); #endif env->exception_index = exception; env->error_code = error_code; cpu_loop_exit(); } void helper_raise_exception (uint32_t exception) { helper_raise_exception_err(exception, 0); } void helper_interrupt_restart (void) { if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_IE)) && (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { env->CP0_Cause &= ~(0x1f << CP0Ca_EC); helper_raise_exception(EXCP_EXT_INTERRUPT); } } #if !defined(CONFIG_USER_ONLY) static void do_restore_state (void *pc_ptr) { TranslationBlock *tb; unsigned long pc = (unsigned long) pc_ptr; tb = tb_find_pc (pc); if (tb) { cpu_restore_state (tb, env, pc, NULL); } } #endif target_ulong helper_clo (target_ulong t0) { return clo32(t0); } target_ulong helper_clz (target_ulong t0) { return clz32(t0); } #if defined(TARGET_MIPS64) target_ulong helper_dclo (target_ulong t0) { return clo64(t0); } target_ulong helper_dclz (target_ulong t0) { return clz64(t0); } #endif /* TARGET_MIPS64 */ /* 64 bits arithmetic for 32 bits hosts */ static inline uint64_t get_HILO (void) { return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; } static inline void set_HILO (uint64_t HILO) { env->active_tc.LO[0] = (int32_t)HILO; env->active_tc.HI[0] = (int32_t)(HILO >> 32); } static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO) { env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32); } static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO) { t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); env->active_tc.HI[0] = (int32_t)(HILO >> 32); } #if TARGET_LONG_BITS > HOST_LONG_BITS void helper_madd (target_ulong t0, target_ulong t1) { int64_t tmp; tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); set_HILO((int64_t)get_HILO() + tmp); } void helper_maddu (target_ulong t0, target_ulong t1) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); set_HILO(get_HILO() + tmp); } void helper_msub (target_ulong t0, target_ulong t1) { int64_t tmp; tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); set_HILO((int64_t)get_HILO() - tmp); } void helper_msubu (target_ulong t0, target_ulong t1) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); set_HILO(get_HILO() - tmp); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ /* Multiplication variants of the vr54xx. */ target_ulong helper_muls (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_mulsu (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } target_ulong helper_macc (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_macchi (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_maccu (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } target_ulong helper_macchiu (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } target_ulong helper_msac (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_msachi (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_msacu (target_ulong t0, target_ulong t1) { set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } target_ulong helper_msachiu (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } target_ulong helper_mulhi (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); return t0; } target_ulong helper_mulhiu (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); return t0; } target_ulong helper_mulshi (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); return t0; } target_ulong helper_mulshiu (target_ulong t0, target_ulong t1) { set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); return t0; } #ifdef TARGET_MIPS64 void helper_dmult (target_ulong t0, target_ulong t1) { muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1); } void helper_dmultu (target_ulong t0, target_ulong t1) { mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1); } #endif #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK(v) ((v) & 3) #define GET_OFFSET(addr, offset) (addr + (offset)) #else #define GET_LMASK(v) (((v) & 3) ^ 3) #define GET_OFFSET(addr, offset) (addr - (offset)) #endif target_ulong helper_lwl(target_ulong t0, target_ulong t1, int mem_idx) { target_ulong tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(t0); t1 = (t1 & 0x00FFFFFF) | (tmp << 24); if (GET_LMASK(t0) <= 2) { tmp = ldfun(GET_OFFSET(t0, 1)); t1 = (t1 & 0xFF00FFFF) | (tmp << 16); } if (GET_LMASK(t0) <= 1) { tmp = ldfun(GET_OFFSET(t0, 2)); t1 = (t1 & 0xFFFF00FF) | (tmp << 8); } if (GET_LMASK(t0) == 0) { tmp = ldfun(GET_OFFSET(t0, 3)); t1 = (t1 & 0xFFFFFF00) | tmp; } return (int32_t)t1; } target_ulong helper_lwr(target_ulong t0, target_ulong t1, int mem_idx) { target_ulong tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(t0); t1 = (t1 & 0xFFFFFF00) | tmp; if (GET_LMASK(t0) >= 1) { tmp = ldfun(GET_OFFSET(t0, -1)); t1 = (t1 & 0xFFFF00FF) | (tmp << 8); } if (GET_LMASK(t0) >= 2) { tmp = ldfun(GET_OFFSET(t0, -2)); t1 = (t1 & 0xFF00FFFF) | (tmp << 16); } if (GET_LMASK(t0) == 3) { tmp = ldfun(GET_OFFSET(t0, -3)); t1 = (t1 & 0x00FFFFFF) | (tmp << 24); } return (int32_t)t1; } void helper_swl(target_ulong t0, target_ulong t1, int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(t0, (uint8_t)(t1 >> 24)); if (GET_LMASK(t0) <= 2) stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16)); if (GET_LMASK(t0) <= 1) stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8)); if (GET_LMASK(t0) == 0) stfun(GET_OFFSET(t0, 3), (uint8_t)t1); } void helper_swr(target_ulong t0, target_ulong t1, int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(t0, (uint8_t)t1); if (GET_LMASK(t0) >= 1) stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8)); if (GET_LMASK(t0) >= 2) stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16)); if (GET_LMASK(t0) == 3) stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24)); } #if defined(TARGET_MIPS64) /* "half" load and stores. We must do the memory access inline, or fault handling won't work. */ #ifdef TARGET_WORDS_BIGENDIAN #define GET_LMASK64(v) ((v) & 7) #else #define GET_LMASK64(v) (((v) & 7) ^ 7) #endif target_ulong helper_ldl(target_ulong t0, target_ulong t1, int mem_idx) { uint64_t tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(t0); t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); if (GET_LMASK64(t0) <= 6) { tmp = ldfun(GET_OFFSET(t0, 1)); t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); } if (GET_LMASK64(t0) <= 5) { tmp = ldfun(GET_OFFSET(t0, 2)); t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); } if (GET_LMASK64(t0) <= 4) { tmp = ldfun(GET_OFFSET(t0, 3)); t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); } if (GET_LMASK64(t0) <= 3) { tmp = ldfun(GET_OFFSET(t0, 4)); t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); } if (GET_LMASK64(t0) <= 2) { tmp = ldfun(GET_OFFSET(t0, 5)); t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); } if (GET_LMASK64(t0) <= 1) { tmp = ldfun(GET_OFFSET(t0, 6)); t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); } if (GET_LMASK64(t0) == 0) { tmp = ldfun(GET_OFFSET(t0, 7)); t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; } return t1; } target_ulong helper_ldr(target_ulong t0, target_ulong t1, int mem_idx) { uint64_t tmp; #ifdef CONFIG_USER_ONLY #define ldfun ldub_raw #else int (*ldfun)(target_ulong); switch (mem_idx) { case 0: ldfun = ldub_kernel; break; case 1: ldfun = ldub_super; break; default: case 2: ldfun = ldub_user; break; } #endif tmp = ldfun(t0); t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; if (GET_LMASK64(t0) >= 1) { tmp = ldfun(GET_OFFSET(t0, -1)); t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); } if (GET_LMASK64(t0) >= 2) { tmp = ldfun(GET_OFFSET(t0, -2)); t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); } if (GET_LMASK64(t0) >= 3) { tmp = ldfun(GET_OFFSET(t0, -3)); t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); } if (GET_LMASK64(t0) >= 4) { tmp = ldfun(GET_OFFSET(t0, -4)); t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); } if (GET_LMASK64(t0) >= 5) { tmp = ldfun(GET_OFFSET(t0, -5)); t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); } if (GET_LMASK64(t0) >= 6) { tmp = ldfun(GET_OFFSET(t0, -6)); t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); } if (GET_LMASK64(t0) == 7) { tmp = ldfun(GET_OFFSET(t0, -7)); t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); } return t1; } void helper_sdl(target_ulong t0, target_ulong t1, int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(t0, (uint8_t)(t1 >> 56)); if (GET_LMASK64(t0) <= 6) stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48)); if (GET_LMASK64(t0) <= 5) stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40)); if (GET_LMASK64(t0) <= 4) stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32)); if (GET_LMASK64(t0) <= 3) stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24)); if (GET_LMASK64(t0) <= 2) stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16)); if (GET_LMASK64(t0) <= 1) stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8)); if (GET_LMASK64(t0) <= 0) stfun(GET_OFFSET(t0, 7), (uint8_t)t1); } void helper_sdr(target_ulong t0, target_ulong t1, int mem_idx) { #ifdef CONFIG_USER_ONLY #define stfun stb_raw #else void (*stfun)(target_ulong, int); switch (mem_idx) { case 0: stfun = stb_kernel; break; case 1: stfun = stb_super; break; default: case 2: stfun = stb_user; break; } #endif stfun(t0, (uint8_t)t1); if (GET_LMASK64(t0) >= 1) stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8)); if (GET_LMASK64(t0) >= 2) stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16)); if (GET_LMASK64(t0) >= 3) stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24)); if (GET_LMASK64(t0) >= 4) stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32)); if (GET_LMASK64(t0) >= 5) stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40)); if (GET_LMASK64(t0) >= 6) stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48)); if (GET_LMASK64(t0) == 7) stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56)); } #endif /* TARGET_MIPS64 */ #ifndef CONFIG_USER_ONLY /* CP0 helpers */ target_ulong helper_mfc0_mvpcontrol (void) { return env->mvp->CP0_MVPControl; } target_ulong helper_mfc0_mvpconf0 (void) { return env->mvp->CP0_MVPConf0; } target_ulong helper_mfc0_mvpconf1 (void) { return env->mvp->CP0_MVPConf1; } target_ulong helper_mfc0_random (void) { return (int32_t)cpu_mips_get_random(env); } target_ulong helper_mfc0_tcstatus (void) { return env->active_tc.CP0_TCStatus; } target_ulong helper_mftc0_tcstatus(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCStatus; else return env->tcs[other_tc].CP0_TCStatus; } target_ulong helper_mfc0_tcbind (void) { return env->active_tc.CP0_TCBind; } target_ulong helper_mftc0_tcbind(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCBind; else return env->tcs[other_tc].CP0_TCBind; } target_ulong helper_mfc0_tcrestart (void) { return env->active_tc.PC; } target_ulong helper_mftc0_tcrestart(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.PC; else return env->tcs[other_tc].PC; } target_ulong helper_mfc0_tchalt (void) { return env->active_tc.CP0_TCHalt; } target_ulong helper_mftc0_tchalt(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCHalt; else return env->tcs[other_tc].CP0_TCHalt; } target_ulong helper_mfc0_tccontext (void) { return env->active_tc.CP0_TCContext; } target_ulong helper_mftc0_tccontext(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCContext; else return env->tcs[other_tc].CP0_TCContext; } target_ulong helper_mfc0_tcschedule (void) { return env->active_tc.CP0_TCSchedule; } target_ulong helper_mftc0_tcschedule(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCSchedule; else return env->tcs[other_tc].CP0_TCSchedule; } target_ulong helper_mfc0_tcschefback (void) { return env->active_tc.CP0_TCScheFBack; } target_ulong helper_mftc0_tcschefback(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.CP0_TCScheFBack; else return env->tcs[other_tc].CP0_TCScheFBack; } target_ulong helper_mfc0_count (void) { return (int32_t)cpu_mips_get_count(env); } target_ulong helper_mftc0_entryhi(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); int32_t tcstatus; if (other_tc == env->current_tc) tcstatus = env->active_tc.CP0_TCStatus; else tcstatus = env->tcs[other_tc].CP0_TCStatus; return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff); } target_ulong helper_mftc0_status(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); target_ulong t0; int32_t tcstatus; if (other_tc == env->current_tc) tcstatus = env->active_tc.CP0_TCStatus; else tcstatus = env->tcs[other_tc].CP0_TCStatus; t0 = env->CP0_Status & ~0xf1000018; t0 |= tcstatus & (0xf << CP0TCSt_TCU0); t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX); t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU); return t0; } target_ulong helper_mfc0_lladdr (void) { return (int32_t)env->CP0_LLAddr >> 4; } target_ulong helper_mfc0_watchlo (uint32_t sel) { return (int32_t)env->CP0_WatchLo[sel]; } target_ulong helper_mfc0_watchhi (uint32_t sel) { return env->CP0_WatchHi[sel]; } target_ulong helper_mfc0_debug (void) { target_ulong t0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) t0 |= 1 << CP0DB_DM; return t0; } target_ulong helper_mftc0_debug(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); int32_t tcstatus; if (other_tc == env->current_tc) tcstatus = env->active_tc.CP0_Debug_tcstatus; else tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus; /* XXX: Might be wrong, check with EJTAG spec. */ return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } #if defined(TARGET_MIPS64) target_ulong helper_dmfc0_tcrestart (void) { return env->active_tc.PC; } target_ulong helper_dmfc0_tchalt (void) { return env->active_tc.CP0_TCHalt; } target_ulong helper_dmfc0_tccontext (void) { return env->active_tc.CP0_TCContext; } target_ulong helper_dmfc0_tcschedule (void) { return env->active_tc.CP0_TCSchedule; } target_ulong helper_dmfc0_tcschefback (void) { return env->active_tc.CP0_TCScheFBack; } target_ulong helper_dmfc0_lladdr (void) { return env->CP0_LLAddr >> 4; } target_ulong helper_dmfc0_watchlo (uint32_t sel) { return env->CP0_WatchLo[sel]; } #endif /* TARGET_MIPS64 */ void helper_mtc0_index (target_ulong t0) { int num = 1; unsigned int tmp = env->tlb->nb_tlb; do { tmp >>= 1; num <<= 1; } while (tmp); env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1)); } void helper_mtc0_mvpcontrol (target_ulong t0) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | (1 << CP0MVPCo_EVP); if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0MVPCo_STLB); newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask); // TODO: Enable/disable shared TLB, enable/disable VPEs. env->mvp->CP0_MVPControl = newval; } void helper_mtc0_vpecontrol (target_ulong t0) { uint32_t mask; uint32_t newval; mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); newval = (env->CP0_VPEControl & ~mask) | (t0 & mask); /* Yield scheduler intercept not implemented. */ /* Gating storage scheduler intercept not implemented. */ // TODO: Enable/disable TCs. env->CP0_VPEControl = newval; } void helper_mtc0_vpeconf0 (target_ulong t0) { uint32_t mask = 0; uint32_t newval; if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) mask |= (0xff << CP0VPEC0_XTC); mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); } newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask); // TODO: TC exclusive handling due to ERL/EXL. env->CP0_VPEConf0 = newval; } void helper_mtc0_vpeconf1 (target_ulong t0) { uint32_t mask = 0; uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | (0xff << CP0VPEC1_NCP1); newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask); /* UDI not implemented. */ /* CP2 not implemented. */ // TODO: Handle FPU (CP1) binding. env->CP0_VPEConf1 = newval; } void helper_mtc0_yqmask (target_ulong t0) { /* Yield qualifier inputs not implemented. */ env->CP0_YQMask = 0x00000000; } void helper_mtc0_vpeopt (target_ulong t0) { env->CP0_VPEOpt = t0 & 0x0000ffff; } void helper_mtc0_entrylo0 (target_ulong t0) { /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = t0 & 0x3FFFFFFF; } void helper_mtc0_tcstatus (target_ulong t0) { uint32_t mask = env->CP0_TCStatus_rw_bitmask; uint32_t newval; newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask); // TODO: Sync with CP0_Status. env->active_tc.CP0_TCStatus = newval; } void helper_mttc0_tcstatus (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Sync with CP0_Status. if (other_tc == env->current_tc) env->active_tc.CP0_TCStatus = t0; else env->tcs[other_tc].CP0_TCStatus = t0; } void helper_mtc0_tcbind (target_ulong t0) { uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask); env->active_tc.CP0_TCBind = newval; } void helper_mttc0_tcbind (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t mask = (1 << CP0TCBd_TBE); uint32_t newval; if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) mask |= (1 << CP0TCBd_CurVPE); if (other_tc == env->current_tc) { newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask); env->active_tc.CP0_TCBind = newval; } else { newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask); env->tcs[other_tc].CP0_TCBind = newval; } } void helper_mtc0_tcrestart (target_ulong t0) { env->active_tc.PC = t0; env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ } void helper_mttc0_tcrestart (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) { env->active_tc.PC = t0; env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ } else { env->tcs[other_tc].PC = t0; env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); env->CP0_LLAddr = 0ULL; /* MIPS16 not implemented. */ } } void helper_mtc0_tchalt (target_ulong t0) { env->active_tc.CP0_TCHalt = t0 & 0x1; // TODO: Halt TC / Restart (if allocated+active) TC. } void helper_mttc0_tchalt (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); // TODO: Halt TC / Restart (if allocated+active) TC. if (other_tc == env->current_tc) env->active_tc.CP0_TCHalt = t0; else env->tcs[other_tc].CP0_TCHalt = t0; } void helper_mtc0_tccontext (target_ulong t0) { env->active_tc.CP0_TCContext = t0; } void helper_mttc0_tccontext (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.CP0_TCContext = t0; else env->tcs[other_tc].CP0_TCContext = t0; } void helper_mtc0_tcschedule (target_ulong t0) { env->active_tc.CP0_TCSchedule = t0; } void helper_mttc0_tcschedule (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.CP0_TCSchedule = t0; else env->tcs[other_tc].CP0_TCSchedule = t0; } void helper_mtc0_tcschefback (target_ulong t0) { env->active_tc.CP0_TCScheFBack = t0; } void helper_mttc0_tcschefback (target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.CP0_TCScheFBack = t0; else env->tcs[other_tc].CP0_TCScheFBack = t0; } void helper_mtc0_entrylo1 (target_ulong t0) { /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = t0 & 0x3FFFFFFF; } void helper_mtc0_context (target_ulong t0) { env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF); } void helper_mtc0_pagemask (target_ulong t0) { /* 1k pages not implemented */ env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); } void helper_mtc0_pagegrain (target_ulong t0) { /* SmartMIPS not implemented */ /* Large physaddr (PABITS) not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = 0; } void helper_mtc0_wired (target_ulong t0) { env->CP0_Wired = t0 % env->tlb->nb_tlb; } void helper_mtc0_srsconf0 (target_ulong t0) { env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask; } void helper_mtc0_srsconf1 (target_ulong t0) { env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask; } void helper_mtc0_srsconf2 (target_ulong t0) { env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask; } void helper_mtc0_srsconf3 (target_ulong t0) { env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask; } void helper_mtc0_srsconf4 (target_ulong t0) { env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask; } void helper_mtc0_hwrena (target_ulong t0) { env->CP0_HWREna = t0 & 0x0000000F; } void helper_mtc0_count (target_ulong t0) { cpu_mips_store_count(env, t0); } void helper_mtc0_entryhi (target_ulong t0) { target_ulong old, val; /* 1k pages not implemented */ val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF); #if defined(TARGET_MIPS64) val &= env->SEGMask; #endif old = env->CP0_EntryHi; env->CP0_EntryHi = val; if (env->CP0_Config3 & (1 << CP0C3_MT)) { uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff; env->active_tc.CP0_TCStatus = tcst | (val & 0xff); } /* If the ASID changes, flush qemu's TLB. */ if ((old & 0xFF) != (val & 0xFF)) cpu_mips_tlb_flush(env, 1); } void helper_mttc0_entryhi(target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); int32_t tcstatus; env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff); if (other_tc == env->current_tc) { tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff); env->active_tc.CP0_TCStatus = tcstatus; } else { tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff); env->tcs[other_tc].CP0_TCStatus = tcstatus; } } void helper_mtc0_compare (target_ulong t0) { cpu_mips_store_compare(env, t0); } void helper_mtc0_status (target_ulong t0) { uint32_t val, old; uint32_t mask = env->CP0_Status_rw_bitmask; val = t0 & mask; old = env->CP0_Status; env->CP0_Status = (env->CP0_Status & ~mask) | val; compute_hflags(env); if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x", old, old & env->CP0_Cause & CP0Ca_IP_mask, val, val & env->CP0_Cause & CP0Ca_IP_mask, env->CP0_Cause); switch (env->hflags & MIPS_HFLAG_KSU) { case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; case MIPS_HFLAG_KM: qemu_log("\n"); break; default: cpu_abort(env, "Invalid MMU mode!\n"); break; } } cpu_mips_update_irq(env); } void helper_mttc0_status(target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus; env->CP0_Status = t0 & ~0xf1000018; tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0)); tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX)); tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU)); if (other_tc == env->current_tc) env->active_tc.CP0_TCStatus = tcstatus; else env->tcs[other_tc].CP0_TCStatus = tcstatus; } void helper_mtc0_intctl (target_ulong t0) { /* vectored interrupts not implemented, no performance counters. */ env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0); } void helper_mtc0_srsctl (target_ulong t0) { uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask); } void helper_mtc0_cause (target_ulong t0) { uint32_t mask = 0x00C00300; uint32_t old = env->CP0_Cause; if (env->insn_flags & ISA_MIPS32R2) mask |= 1 << CP0Ca_DC; env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask); if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { if (env->CP0_Cause & (1 << CP0Ca_DC)) cpu_mips_stop_count(env); else cpu_mips_start_count(env); } /* Handle the software interrupt as an hardware one, as they are very similar */ if (t0 & CP0Ca_IP_mask) { cpu_mips_update_irq(env); } } void helper_mtc0_ebase (target_ulong t0) { /* vectored interrupts not implemented */ /* Multi-CPU not implemented */ env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000); } void helper_mtc0_config0 (target_ulong t0) { env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007); } void helper_mtc0_config2 (target_ulong t0) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); } void helper_mtc0_watchlo (target_ulong t0, uint32_t sel) { /* Watch exceptions for instructions, data loads, data stores not implemented. */ env->CP0_WatchLo[sel] = (t0 & ~0x7); } void helper_mtc0_watchhi (target_ulong t0, uint32_t sel) { env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8); env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7); } void helper_mtc0_xcontext (target_ulong t0) { target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask); } void helper_mtc0_framemask (target_ulong t0) { env->CP0_Framemask = t0; /* XXX */ } void helper_mtc0_debug (target_ulong t0) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120); if (t0 & (1 << CP0DB_DM)) env->hflags |= MIPS_HFLAG_DM; else env->hflags &= ~MIPS_HFLAG_DM; } void helper_mttc0_debug(target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); /* XXX: Might be wrong, check with EJTAG spec. */ if (other_tc == env->current_tc) env->active_tc.CP0_Debug_tcstatus = val; else env->tcs[other_tc].CP0_Debug_tcstatus = val; env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); } void helper_mtc0_performance0 (target_ulong t0) { env->CP0_Performance0 = t0 & 0x000007ff; } void helper_mtc0_taglo (target_ulong t0) { env->CP0_TagLo = t0 & 0xFFFFFCF6; } void helper_mtc0_datalo (target_ulong t0) { env->CP0_DataLo = t0; /* XXX */ } void helper_mtc0_taghi (target_ulong t0) { env->CP0_TagHi = t0; /* XXX */ } void helper_mtc0_datahi (target_ulong t0) { env->CP0_DataHi = t0; /* XXX */ } /* MIPS MT functions */ target_ulong helper_mftgpr(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.gpr[sel]; else return env->tcs[other_tc].gpr[sel]; } target_ulong helper_mftlo(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.LO[sel]; else return env->tcs[other_tc].LO[sel]; } target_ulong helper_mfthi(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.HI[sel]; else return env->tcs[other_tc].HI[sel]; } target_ulong helper_mftacx(uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.ACX[sel]; else return env->tcs[other_tc].ACX[sel]; } target_ulong helper_mftdsp(void) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) return env->active_tc.DSPControl; else return env->tcs[other_tc].DSPControl; } void helper_mttgpr(target_ulong t0, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.gpr[sel] = t0; else env->tcs[other_tc].gpr[sel] = t0; } void helper_mttlo(target_ulong t0, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.LO[sel] = t0; else env->tcs[other_tc].LO[sel] = t0; } void helper_mtthi(target_ulong t0, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.HI[sel] = t0; else env->tcs[other_tc].HI[sel] = t0; } void helper_mttacx(target_ulong t0, uint32_t sel) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.ACX[sel] = t0; else env->tcs[other_tc].ACX[sel] = t0; } void helper_mttdsp(target_ulong t0) { int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); if (other_tc == env->current_tc) env->active_tc.DSPControl = t0; else env->tcs[other_tc].DSPControl = t0; } /* MIPS MT functions */ target_ulong helper_dmt(target_ulong t0) { // TODO t0 = 0; // rt = t0 return t0; } target_ulong helper_emt(target_ulong t0) { // TODO t0 = 0; // rt = t0 return t0; } target_ulong helper_dvpe(target_ulong t0) { // TODO t0 = 0; // rt = t0 return t0; } target_ulong helper_evpe(target_ulong t0) { // TODO t0 = 0; // rt = t0 return t0; } #endif /* !CONFIG_USER_ONLY */ void helper_fork(target_ulong t0, target_ulong t1) { // t0 = rt, t1 = rs t0 = 0; // TODO: store to TC register } target_ulong helper_yield(target_ulong t0) { if (t0 < 0) { /* No scheduling policy implemented. */ if (t0 != -2) { if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; helper_raise_exception(EXCP_THREAD); } } } else if (t0 == 0) { if (0 /* TODO: TC underflow */) { env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); helper_raise_exception(EXCP_THREAD); } else { // TODO: Deallocate TC } } else if (t0 > 0) { /* Yield qualifier inputs not implemented. */ env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; helper_raise_exception(EXCP_THREAD); } return env->CP0_YQMask; } #ifndef CONFIG_USER_ONLY /* TLB management */ void cpu_mips_tlb_flush (CPUState *env, int flush_global) { /* Flush qemu's TLB and discard all shadowed entries. */ tlb_flush (env, flush_global); env->tlb->tlb_in_use = env->tlb->nb_tlb; } static void r4k_mips_tlb_flush_extra (CPUState *env, int first) { /* Discard entries from env->tlb[first] onwards. */ while (env->tlb->tlb_in_use > first) { r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); } } static void r4k_fill_tlb (int idx) { r4k_tlb_t *tlb; /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ tlb = &env->tlb->mmu.r4k.tlb[idx]; tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); #if defined(TARGET_MIPS64) tlb->VPN &= env->SEGMask; #endif tlb->ASID = env->CP0_EntryHi & 0xFF; tlb->PageMask = env->CP0_PageMask; tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; } void r4k_helper_tlbwi (void) { int idx; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; /* Discard cached TLB entries. We could avoid doing this if the tlbwi is just upgrading access permissions on the current entry; that might be a further win. */ r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); r4k_invalidate_tlb(env, idx, 0); r4k_fill_tlb(idx); } void r4k_helper_tlbwr (void) { int r = cpu_mips_get_random(env); r4k_invalidate_tlb(env, r, 1); r4k_fill_tlb(r); } void r4k_helper_tlbp (void) { r4k_tlb_t *tlb; target_ulong mask; target_ulong tag; target_ulong VPN; uint8_t ASID; int i; ASID = env->CP0_EntryHi & 0xFF; for (i = 0; i < env->tlb->nb_tlb; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { /* TLB match */ env->CP0_Index = i; break; } } if (i == env->tlb->nb_tlb) { /* No match. Discard any shadow entries, if any of them match. */ for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { tlb = &env->tlb->mmu.r4k.tlb[i]; /* 1k pages are not supported. */ mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); tag = env->CP0_EntryHi & ~mask; VPN = tlb->VPN & ~mask; /* Check ASID, virtual page number & size */ if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { r4k_mips_tlb_flush_extra (env, i); break; } } env->CP0_Index |= 0x80000000; } } void r4k_helper_tlbr (void) { r4k_tlb_t *tlb; uint8_t ASID; int idx; ASID = env->CP0_EntryHi & 0xFF; idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; tlb = &env->tlb->mmu.r4k.tlb[idx]; /* If this will change the current ASID, flush qemu's TLB. */ if (ASID != tlb->ASID) cpu_mips_tlb_flush (env, 1); r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); env->CP0_EntryHi = tlb->VPN | tlb->ASID; env->CP0_PageMask = tlb->PageMask; env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | (tlb->C0 << 3) | (tlb->PFN[0] >> 6); env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | (tlb->C1 << 3) | (tlb->PFN[1] >> 6); } void helper_tlbwi(void) { env->tlb->helper_tlbwi(); } void helper_tlbwr(void) { env->tlb->helper_tlbwr(); } void helper_tlbp(void) { env->tlb->helper_tlbp(); } void helper_tlbr(void) { env->tlb->helper_tlbr(); } /* Specials */ target_ulong helper_di (void) { target_ulong t0 = env->CP0_Status; env->CP0_Status = t0 & ~(1 << CP0St_IE); cpu_mips_update_irq(env); return t0; } target_ulong helper_ei (void) { target_ulong t0 = env->CP0_Status; env->CP0_Status = t0 | (1 << CP0St_IE); cpu_mips_update_irq(env); return t0; } static void debug_pre_eret (void) { if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->active_tc.PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); qemu_log("\n"); } } static void debug_post_eret (void) { if (qemu_loglevel_mask(CPU_LOG_EXEC)) { qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, env->active_tc.PC, env->CP0_EPC); if (env->CP0_Status & (1 << CP0St_ERL)) qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); if (env->hflags & MIPS_HFLAG_DM) qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC); switch (env->hflags & MIPS_HFLAG_KSU) { case MIPS_HFLAG_UM: qemu_log(", UM\n"); break; case MIPS_HFLAG_SM: qemu_log(", SM\n"); break; case MIPS_HFLAG_KM: qemu_log("\n"); break; default: cpu_abort(env, "Invalid MMU mode!\n"); break; } } } void helper_eret (void) { debug_pre_eret(); if (env->CP0_Status & (1 << CP0St_ERL)) { env->active_tc.PC = env->CP0_ErrorEPC; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->active_tc.PC = env->CP0_EPC; env->CP0_Status &= ~(1 << CP0St_EXL); } compute_hflags(env); debug_post_eret(); env->CP0_LLAddr = 1; } void helper_deret (void) { debug_pre_eret(); env->active_tc.PC = env->CP0_DEPC; env->hflags &= MIPS_HFLAG_DM; compute_hflags(env); debug_post_eret(); env->CP0_LLAddr = 1; } #endif /* !CONFIG_USER_ONLY */ target_ulong helper_rdhwr_cpunum(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 0))) return env->CP0_EBase & 0x3ff; else helper_raise_exception(EXCP_RI); return 0; } target_ulong helper_rdhwr_synci_step(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 1))) return env->SYNCI_Step; else helper_raise_exception(EXCP_RI); return 0; } target_ulong helper_rdhwr_cc(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 2))) return env->CP0_Count; else helper_raise_exception(EXCP_RI); return 0; } target_ulong helper_rdhwr_ccres(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 3))) return env->CCRes; else helper_raise_exception(EXCP_RI); return 0; } void helper_pmon (int function) { function /= 2; switch (function) { case 2: /* TODO: char inbyte(int waitflag); */ if (env->active_tc.gpr[4] == 0) env->active_tc.gpr[2] = -1; /* Fall through */ case 11: /* TODO: char inbyte (void); */ env->active_tc.gpr[2] = -1; break; case 3: case 12: printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); break; case 17: break; case 158: { unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4]; printf("%s", fmt); } break; } } void helper_wait (void) { env->halted = 1; helper_raise_exception(EXCP_HLT); } #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) { env->CP0_BadVAddr = addr; do_restore_state (retaddr); helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); } void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } helper_raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int unused, int size) { if (is_exec) helper_raise_exception(EXCP_IBE); else helper_raise_exception(EXCP_DBE); } #endif /* !CONFIG_USER_ONLY */ /* Complex FPU operations which may need stack space. */ #define FLOAT_ONE32 make_float32(0x3f8 << 20) #define FLOAT_ONE64 make_float64(0x3ffULL << 52) #define FLOAT_TWO32 make_float32(1 << 30) #define FLOAT_TWO64 make_float64(1ULL << 62) #define FLOAT_QNAN32 0x7fbfffff #define FLOAT_QNAN64 0x7ff7ffffffffffffULL #define FLOAT_SNAN32 0x7fffffff #define FLOAT_SNAN64 0x7fffffffffffffffULL /* convert MIPS rounding mode in FCR31 to IEEE library */ unsigned int ieee_rm[] = { float_round_nearest_even, float_round_to_zero, float_round_up, float_round_down }; #define RESTORE_ROUNDING_MODE \ set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) target_ulong helper_cfc1 (uint32_t reg) { target_ulong t0; switch (reg) { case 0: t0 = (int32_t)env->active_fpu.fcr0; break; case 25: t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); break; case 26: t0 = env->active_fpu.fcr31 & 0x0003f07c; break; case 28: t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); break; default: t0 = (int32_t)env->active_fpu.fcr31; break; } return t0; } void helper_ctc1 (target_ulong t0, uint32_t reg) { switch(reg) { case 25: if (t0 & 0xffffff00) return; env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) | ((t0 & 0x1) << 23); break; case 26: if (t0 & 0x007c0000) return; env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c); break; case 28: if (t0 & 0x007c0000) return; env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) | ((t0 & 0x4) << 22); break; case 31: if (t0 & 0x007c0000) return; env->active_fpu.fcr31 = t0; break; default: return; } /* set rounding mode */ RESTORE_ROUNDING_MODE; set_float_exception_flags(0, &env->active_fpu.fp_status); if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) helper_raise_exception(EXCP_FPE); } static inline char ieee_ex_to_mips(char xcpt) { return (xcpt & float_flag_inexact) >> 5 | (xcpt & float_flag_underflow) >> 3 | (xcpt & float_flag_overflow) >> 1 | (xcpt & float_flag_divbyzero) << 1 | (xcpt & float_flag_invalid) << 4; } static inline char mips_ex_to_ieee(char xcpt) { return (xcpt & FP_INEXACT) << 5 | (xcpt & FP_UNDERFLOW) << 3 | (xcpt & FP_OVERFLOW) << 1 | (xcpt & FP_DIV0) >> 1 | (xcpt & FP_INVALID) >> 4; } static inline void update_fcr31(void) { int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status)); SET_FP_CAUSE(env->active_fpu.fcr31, tmp); if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) helper_raise_exception(EXCP_FPE); else UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", paired single lower "pl", paired single upper "pu". */ /* unary operations, modifying fp status */ uint64_t helper_float_sqrt_d(uint64_t fdt0) { return float64_sqrt(fdt0, &env->active_fpu.fp_status); } uint32_t helper_float_sqrt_s(uint32_t fst0) { return float32_sqrt(fst0, &env->active_fpu.fp_status); } uint64_t helper_float_cvtd_s(uint32_t fst0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint64_t helper_float_cvtd_w(uint32_t wt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint64_t helper_float_cvtd_l(uint64_t dt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint64_t helper_float_cvtl_d(uint64_t fdt0) { uint64_t dt2; set_float_exception_flags(0, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_cvtl_s(uint32_t fst0) { uint64_t dt2; set_float_exception_flags(0, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_cvtps_pw(uint64_t dt0) { uint32_t fst2; uint32_t fsth2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_cvtpw_ps(uint64_t fdt0) { uint32_t wt2; uint32_t wth2; set_float_exception_flags(0, &env->active_fpu.fp_status); wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) { wt2 = FLOAT_SNAN32; wth2 = FLOAT_SNAN32; } return ((uint64_t)wth2 << 32) | wt2; } uint32_t helper_float_cvts_d(uint64_t fdt0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint32_t helper_float_cvts_w(uint32_t wt0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint32_t helper_float_cvts_l(uint64_t dt0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint32_t helper_float_cvts_pl(uint32_t wt0) { uint32_t wt2; set_float_exception_flags(0, &env->active_fpu.fp_status); wt2 = wt0; update_fcr31(); return wt2; } uint32_t helper_float_cvts_pu(uint32_t wth0) { uint32_t wt2; set_float_exception_flags(0, &env->active_fpu.fp_status); wt2 = wth0; update_fcr31(); return wt2; } uint32_t helper_float_cvtw_s(uint32_t fst0) { uint32_t wt2; set_float_exception_flags(0, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint32_t helper_float_cvtw_d(uint64_t fdt0) { uint32_t wt2; set_float_exception_flags(0, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint64_t helper_float_roundl_d(uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_roundl_s(uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint32_t helper_float_roundw_d(uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint32_t helper_float_roundw_s(uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint64_t helper_float_truncl_d(uint64_t fdt0) { uint64_t dt2; dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_truncl_s(uint32_t fst0) { uint64_t dt2; dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint32_t helper_float_truncw_d(uint64_t fdt0) { uint32_t wt2; wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint32_t helper_float_truncw_s(uint32_t fst0) { uint32_t wt2; wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint64_t helper_float_ceill_d(uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_ceill_s(uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint32_t helper_float_ceilw_d(uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint32_t helper_float_ceilw_s(uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint64_t helper_float_floorl_d(uint64_t fdt0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint64_t helper_float_floorl_s(uint32_t fst0) { uint64_t dt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) dt2 = FLOAT_SNAN64; return dt2; } uint32_t helper_float_floorw_d(uint64_t fdt0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } uint32_t helper_float_floorw_s(uint32_t fst0) { uint32_t wt2; set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); RESTORE_ROUNDING_MODE; update_fcr31(); if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) wt2 = FLOAT_SNAN32; return wt2; } /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \ { \ return float64_ ## name(fdt0); \ } \ uint32_t helper_float_ ## name ## _s(uint32_t fst0) \ { \ return float32_ ## name(fst0); \ } \ uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \ { \ uint32_t wt0; \ uint32_t wth0; \ \ wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ wth0 = float32_ ## name(fdt0 >> 32); \ return ((uint64_t)wth0 << 32) | wt0; \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP /* MIPS specific unary operations */ uint64_t helper_float_recip_d(uint64_t fdt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint32_t helper_float_recip_s(uint32_t fst0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint64_t helper_float_rsqrt_d(uint64_t fdt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint32_t helper_float_rsqrt_s(uint32_t fst0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint64_t helper_float_recip1_d(uint64_t fdt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint32_t helper_float_recip1_s(uint32_t fst0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint64_t helper_float_recip1_ps(uint64_t fdt0) { uint32_t fst2; uint32_t fsth2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_rsqrt1_d(uint64_t fdt0) { uint64_t fdt2; set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); update_fcr31(); return fdt2; } uint32_t helper_float_rsqrt1_s(uint32_t fst0) { uint32_t fst2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); update_fcr31(); return fst2; } uint64_t helper_float_rsqrt1_ps(uint64_t fdt0) { uint32_t fst2; uint32_t fsth2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } #define FLOAT_OP(name, p) void helper_float_##name##_##p(void) /* binary operations */ #define FLOAT_BINOP(name) \ uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \ { \ uint64_t dt2; \ \ set_float_exception_flags(0, &env->active_fpu.fp_status); \ dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ dt2 = FLOAT_QNAN64; \ return dt2; \ } \ \ uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \ { \ uint32_t wt2; \ \ set_float_exception_flags(0, &env->active_fpu.fp_status); \ wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ wt2 = FLOAT_QNAN32; \ return wt2; \ } \ \ uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \ { \ uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ uint32_t fsth0 = fdt0 >> 32; \ uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ uint32_t fsth1 = fdt1 >> 32; \ uint32_t wt2; \ uint32_t wth2; \ \ set_float_exception_flags(0, &env->active_fpu.fp_status); \ wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \ update_fcr31(); \ if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \ wt2 = FLOAT_QNAN32; \ wth2 = FLOAT_QNAN32; \ } \ return ((uint64_t)wth2 << 32) | wt2; \ } FLOAT_BINOP(add) FLOAT_BINOP(sub) FLOAT_BINOP(mul) FLOAT_BINOP(div) #undef FLOAT_BINOP /* ternary operations */ #define FLOAT_TERNOP(name1, name2) \ uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ uint64_t fdt2) \ { \ fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ } \ \ uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ uint32_t fst2) \ { \ fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ } \ \ uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \ uint64_t fdt2) \ { \ uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ uint32_t fsth0 = fdt0 >> 32; \ uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ uint32_t fsth1 = fdt1 >> 32; \ uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ uint32_t fsth2 = fdt2 >> 32; \ \ fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ return ((uint64_t)fsth2 << 32) | fst2; \ } FLOAT_TERNOP(mul, add) FLOAT_TERNOP(mul, sub) #undef FLOAT_TERNOP /* negated ternary operations */ #define FLOAT_NTERNOP(name1, name2) \ uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ uint64_t fdt2) \ { \ fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ return float64_chs(fdt2); \ } \ \ uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ uint32_t fst2) \ { \ fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ return float32_chs(fst2); \ } \ \ uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\ uint64_t fdt2) \ { \ uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ uint32_t fsth0 = fdt0 >> 32; \ uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ uint32_t fsth1 = fdt1 >> 32; \ uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ uint32_t fsth2 = fdt2 >> 32; \ \ fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ fst2 = float32_chs(fst2); \ fsth2 = float32_chs(fsth2); \ return ((uint64_t)fsth2 << 32) | fst2; \ } FLOAT_NTERNOP(mul, add) FLOAT_NTERNOP(mul, sub) #undef FLOAT_NTERNOP /* MIPS specific binary operations */ uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2) { set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status)); update_fcr31(); return fdt2; } uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2) { set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); update_fcr31(); return fst2; } uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status)); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2) { set_float_exception_flags(0, &env->active_fpu.fp_status); fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status); fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); update_fcr31(); return fdt2; } uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2) { set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(); return fst2; } uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst2 = fdt2 & 0XFFFFFFFF; uint32_t fsth2 = fdt2 >> 32; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status); fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fst2; uint32_t fsth2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1) { uint32_t fst0 = fdt0 & 0XFFFFFFFF; uint32_t fsth0 = fdt0 >> 32; uint32_t fst1 = fdt1 & 0XFFFFFFFF; uint32_t fsth1 = fdt1 >> 32; uint32_t fst2; uint32_t fsth2; set_float_exception_flags(0, &env->active_fpu.fp_status); fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status); fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status); update_fcr31(); return ((uint64_t)fsth2 << 32) | fst2; } /* compare operations */ #define FOP_COND_D(op, cond) \ void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ { \ int c; \ fdt0 = float64_abs(fdt0); \ fdt1 = float64_abs(fdt1); \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) { if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b) || (sig && (float64_is_nan(a) || float64_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float64_is_nan(a) || float64_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0)) FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)) FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) #define FOP_COND_S(op, cond) \ void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ { \ int c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } \ void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ { \ int c; \ fst0 = float32_abs(fst0); \ fst1 = float32_abs(fst1); \ c = cond; \ update_fcr31(); \ if (c) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ } static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) { if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b) || (sig && (float32_is_nan(a) || float32_is_nan(b)))) { float_raise(float_flag_invalid, status); return 1; } else if (float32_is_nan(a) || float32_is_nan(b)) { return 1; } else { return 0; } } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0)) FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)) FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) #define FOP_COND_PS(op, condl, condh) \ void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ { \ uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ uint32_t fsth0 = float32_abs(fdt0 >> 32); \ uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ uint32_t fsth1 = float32_abs(fdt1 >> 32); \ int cl = condl; \ int ch = condh; \ \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } \ void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ { \ uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ uint32_t fsth0 = float32_abs(fdt0 >> 32); \ uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ uint32_t fsth1 = float32_abs(fdt1 >> 32); \ int cl = condl; \ int ch = condh; \ \ update_fcr31(); \ if (cl) \ SET_FP_COND(cc, env->active_fpu); \ else \ CLEAR_FP_COND(cc, env->active_fpu); \ if (ch) \ SET_FP_COND(cc + 1, env->active_fpu); \ else \ CLEAR_FP_COND(cc + 1, env->active_fpu); \ } /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0), (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) /* NOTE: the comma operator will make "cond" to eval to false, * but float*_is_unordered() is still called. */ FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0), (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0)) FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)) FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status), !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))