/* * MIPS emulation micro-operations for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * Copyright (c) 2006 Marius Groeger (FPU operations) * Copyright (c) 2007 Thiemo Seufer (64-bit FPU support) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #ifndef CALL_FROM_TB0 #define CALL_FROM_TB0(func) func() #endif #ifndef CALL_FROM_TB1 #define CALL_FROM_TB1(func, arg0) func(arg0) #endif #ifndef CALL_FROM_TB1_CONST16 #define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0) #endif #ifndef CALL_FROM_TB2 #define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1) #endif #ifndef CALL_FROM_TB2_CONST16 #define CALL_FROM_TB2_CONST16(func, arg0, arg1) \ CALL_FROM_TB2(func, arg0, arg1) #endif #ifndef CALL_FROM_TB3 #define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2) #endif #ifndef CALL_FROM_TB4 #define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \ func(arg0, arg1, arg2, arg3) #endif #define REG 1 #include "op_template.c" #undef REG #define REG 2 #include "op_template.c" #undef REG #define REG 3 #include "op_template.c" #undef REG #define REG 4 #include "op_template.c" #undef REG #define REG 5 #include "op_template.c" #undef REG #define REG 6 #include "op_template.c" #undef REG #define REG 7 #include "op_template.c" #undef REG #define REG 8 #include "op_template.c" #undef REG #define REG 9 #include "op_template.c" #undef REG #define REG 10 #include "op_template.c" #undef REG #define REG 11 #include "op_template.c" #undef REG #define REG 12 #include "op_template.c" #undef REG #define REG 13 #include "op_template.c" #undef REG #define REG 14 #include "op_template.c" #undef REG #define REG 15 #include "op_template.c" #undef REG #define REG 16 #include "op_template.c" #undef REG #define REG 17 #include "op_template.c" #undef REG #define REG 18 #include "op_template.c" #undef REG #define REG 19 #include "op_template.c" #undef REG #define REG 20 #include "op_template.c" #undef REG #define REG 21 #include "op_template.c" #undef REG #define REG 22 #include "op_template.c" #undef REG #define REG 23 #include "op_template.c" #undef REG #define REG 24 #include "op_template.c" #undef REG #define REG 25 #include "op_template.c" #undef REG #define REG 26 #include "op_template.c" #undef REG #define REG 27 #include "op_template.c" #undef REG #define REG 28 #include "op_template.c" #undef REG #define REG 29 #include "op_template.c" #undef REG #define REG 30 #include "op_template.c" #undef REG #define REG 31 #include "op_template.c" #undef REG #define TN #include "op_template.c" #undef TN #define FREG 0 #include "fop_template.c" #undef FREG #define FREG 1 #include "fop_template.c" #undef FREG #define FREG 2 #include "fop_template.c" #undef FREG #define FREG 3 #include "fop_template.c" #undef FREG #define FREG 4 #include "fop_template.c" #undef FREG #define FREG 5 #include "fop_template.c" #undef FREG #define FREG 6 #include "fop_template.c" #undef FREG #define FREG 7 #include "fop_template.c" #undef FREG #define FREG 8 #include "fop_template.c" #undef FREG #define FREG 9 #include "fop_template.c" #undef FREG #define FREG 10 #include "fop_template.c" #undef FREG #define FREG 11 #include "fop_template.c" #undef FREG #define FREG 12 #include "fop_template.c" #undef FREG #define FREG 13 #include "fop_template.c" #undef FREG #define FREG 14 #include "fop_template.c" #undef FREG #define FREG 15 #include "fop_template.c" #undef FREG #define FREG 16 #include "fop_template.c" #undef FREG #define FREG 17 #include "fop_template.c" #undef FREG #define FREG 18 #include "fop_template.c" #undef FREG #define FREG 19 #include "fop_template.c" #undef FREG #define FREG 20 #include "fop_template.c" #undef FREG #define FREG 21 #include "fop_template.c" #undef FREG #define FREG 22 #include "fop_template.c" #undef FREG #define FREG 23 #include "fop_template.c" #undef FREG #define FREG 24 #include "fop_template.c" #undef FREG #define FREG 25 #include "fop_template.c" #undef FREG #define FREG 26 #include "fop_template.c" #undef FREG #define FREG 27 #include "fop_template.c" #undef FREG #define FREG 28 #include "fop_template.c" #undef FREG #define FREG 29 #include "fop_template.c" #undef FREG #define FREG 30 #include "fop_template.c" #undef FREG #define FREG 31 #include "fop_template.c" #undef FREG #define FTN #include "fop_template.c" #undef FTN void op_dup_T0 (void) { T2 = T0; RETURN(); } void op_load_HI (void) { T0 = env->HI; RETURN(); } void op_store_HI (void) { env->HI = T0; RETURN(); } void op_load_LO (void) { T0 = env->LO; RETURN(); } void op_store_LO (void) { env->LO = T0; RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif /* Addresses computation */ void op_addr_add (void) { /* For compatibility with 32-bit code, data reference in user mode with Status_UX = 0 should be casted to 32-bit and sign extended. See the MIPS64 PRA manual, section 4.10. */ #ifdef TARGET_MIPS64 if ((env->hflags & MIPS_HFLAG_UM) && !(env->CP0_Status & (1 << CP0St_UX))) T0 = (int64_t)(int32_t)(T0 + T1); else #endif T0 += T1; RETURN(); } /* Arithmetic */ void op_add (void) { T0 = (int32_t)((int32_t)T0 + (int32_t)T1); RETURN(); } void op_addo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 + (int32_t)T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_sub (void) { T0 = (int32_t)((int32_t)T0 - (int32_t)T1); RETURN(); } void op_subo (void) { target_ulong tmp; tmp = (int32_t)T0; T0 = (int32_t)T0 - (int32_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 31) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } T0 = (int32_t)T0; RETURN(); } void op_mul (void) { T0 = (int32_t)((int32_t)T0 * (int32_t)T1); RETURN(); } #if HOST_LONG_BITS < 64 void op_div (void) { CALL_FROM_TB0(do_div); RETURN(); } #else void op_div (void) { if (T1 != 0) { env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1); env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1); } RETURN(); } #endif void op_divu (void) { if (T1 != 0) { env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1); env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1); } RETURN(); } #ifdef TARGET_MIPS64 /* Arithmetic */ void op_dadd (void) { T0 += T1; RETURN(); } void op_daddo (void) { target_long tmp; tmp = T0; T0 += T1; if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) { /* operands of same sign, result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } RETURN(); } void op_dsub (void) { T0 -= T1; RETURN(); } void op_dsubo (void) { target_long tmp; tmp = T0; T0 = (int64_t)T0 - (int64_t)T1; if (((tmp ^ T1) & (tmp ^ T0)) >> 63) { /* operands of different sign, first operand and result different sign */ CALL_FROM_TB1(do_raise_exception, EXCP_OVERFLOW); } RETURN(); } void op_dmul (void) { T0 = (int64_t)T0 * (int64_t)T1; RETURN(); } /* Those might call libgcc functions. */ void op_ddiv (void) { do_ddiv(); RETURN(); } #if TARGET_LONG_BITS > HOST_LONG_BITS void op_ddivu (void) { do_ddivu(); RETURN(); } #else void op_ddivu (void) { if (T1 != 0) { env->LO = T0 / T1; env->HI = T0 % T1; } RETURN(); } #endif #endif /* TARGET_MIPS64 */ /* Logical */ void op_and (void) { T0 &= T1; RETURN(); } void op_nor (void) { T0 = ~(T0 | T1); RETURN(); } void op_or (void) { T0 |= T1; RETURN(); } void op_xor (void) { T0 ^= T1; RETURN(); } void op_sll (void) { T0 = (int32_t)((uint32_t)T0 << T1); RETURN(); } void op_sra (void) { T0 = (int32_t)((int32_t)T0 >> T1); RETURN(); } void op_srl (void) { T0 = (int32_t)((uint32_t)T0 >> T1); RETURN(); } void op_rotr (void) { target_ulong tmp; if (T1) { tmp = (int32_t)((uint32_t)T0 << (0x20 - T1)); T0 = (int32_t)((uint32_t)T0 >> T1) | tmp; } RETURN(); } void op_sllv (void) { T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F)); RETURN(); } void op_srav (void) { T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_srlv (void) { T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F)); RETURN(); } void op_rotrv (void) { target_ulong tmp; T0 &= 0x1F; if (T0) { tmp = (int32_t)((uint32_t)T1 << (0x20 - T0)); T0 = (int32_t)((uint32_t)T1 >> T0) | tmp; } else T0 = T1; RETURN(); } void op_clo (void) { int n; if (T0 == ~((target_ulong)0)) { T0 = 32; } else { for (n = 0; n < 32; n++) { if (!(T0 & (1 << 31))) break; T0 = T0 << 1; } T0 = n; } RETURN(); } void op_clz (void) { int n; if (T0 == 0) { T0 = 32; } else { for (n = 0; n < 32; n++) { if (T0 & (1 << 31)) break; T0 = T0 << 1; } T0 = n; } RETURN(); } #ifdef TARGET_MIPS64 #if TARGET_LONG_BITS > HOST_LONG_BITS /* Those might call libgcc functions. */ void op_dsll (void) { CALL_FROM_TB0(do_dsll); RETURN(); } void op_dsll32 (void) { CALL_FROM_TB0(do_dsll32); RETURN(); } void op_dsra (void) { CALL_FROM_TB0(do_dsra); RETURN(); } void op_dsra32 (void) { CALL_FROM_TB0(do_dsra32); RETURN(); } void op_dsrl (void) { CALL_FROM_TB0(do_dsrl); RETURN(); } void op_dsrl32 (void) { CALL_FROM_TB0(do_dsrl32); RETURN(); } void op_drotr (void) { CALL_FROM_TB0(do_drotr); RETURN(); } void op_drotr32 (void) { CALL_FROM_TB0(do_drotr32); RETURN(); } void op_dsllv (void) { CALL_FROM_TB0(do_dsllv); RETURN(); } void op_dsrav (void) { CALL_FROM_TB0(do_dsrav); RETURN(); } void op_dsrlv (void) { CALL_FROM_TB0(do_dsrlv); RETURN(); } void op_drotrv (void) { CALL_FROM_TB0(do_drotrv); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ void op_dsll (void) { T0 = T0 << T1; RETURN(); } void op_dsll32 (void) { T0 = T0 << (T1 + 32); RETURN(); } void op_dsra (void) { T0 = (int64_t)T0 >> T1; RETURN(); } void op_dsra32 (void) { T0 = (int64_t)T0 >> (T1 + 32); RETURN(); } void op_dsrl (void) { T0 = T0 >> T1; RETURN(); } void op_dsrl32 (void) { T0 = T0 >> (T1 + 32); RETURN(); } void op_drotr (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - T1); T0 = (T0 >> T1) | tmp; } RETURN(); } void op_drotr32 (void) { target_ulong tmp; if (T1) { tmp = T0 << (0x40 - (32 + T1)); T0 = (T0 >> (32 + T1)) | tmp; } RETURN(); } void op_dsllv (void) { T0 = T1 << (T0 & 0x3F); RETURN(); } void op_dsrav (void) { T0 = (int64_t)T1 >> (T0 & 0x3F); RETURN(); } void op_dsrlv (void) { T0 = T1 >> (T0 & 0x3F); RETURN(); } void op_drotrv (void) { target_ulong tmp; T0 &= 0x3F; if (T0) { tmp = T1 << (0x40 - T0); T0 = (T1 >> T0) | tmp; } else T0 = T1; RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ void op_dclo (void) { int n; if (T0 == ~((target_ulong)0)) { T0 = 64; } else { for (n = 0; n < 64; n++) { if (!(T0 & (1ULL << 63))) break; T0 = T0 << 1; } T0 = n; } RETURN(); } void op_dclz (void) { int n; if (T0 == 0) { T0 = 64; } else { for (n = 0; n < 64; n++) { if (T0 & (1ULL << 63)) break; T0 = T0 << 1; } T0 = n; } RETURN(); } #endif /* 64 bits arithmetic */ #if TARGET_LONG_BITS > HOST_LONG_BITS void op_mult (void) { CALL_FROM_TB0(do_mult); RETURN(); } void op_multu (void) { CALL_FROM_TB0(do_multu); RETURN(); } void op_madd (void) { CALL_FROM_TB0(do_madd); RETURN(); } void op_maddu (void) { CALL_FROM_TB0(do_maddu); RETURN(); } void op_msub (void) { CALL_FROM_TB0(do_msub); RETURN(); } void op_msubu (void) { CALL_FROM_TB0(do_msubu); RETURN(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ static inline uint64_t get_HILO (void) { return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO); } static inline void set_HILO (uint64_t HILO) { env->LO = (int32_t)(HILO & 0xFFFFFFFF); env->HI = (int32_t)(HILO >> 32); } void op_mult (void) { set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); RETURN(); } void op_multu (void) { set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); RETURN(); } void op_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); RETURN(); } void op_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); RETURN(); } void op_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); RETURN(); } void op_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); RETURN(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #ifdef TARGET_MIPS64 void op_dmult (void) { CALL_FROM_TB4(muls64, &(env->HI), &(env->LO), T0, T1); RETURN(); } void op_dmultu (void) { CALL_FROM_TB4(mulu64, &(env->HI), &(env->LO), T0, T1); RETURN(); } #endif /* Conditional moves */ void op_movn (void) { if (T1 != 0) env->gpr[PARAM1] = T0; RETURN(); } void op_movz (void) { if (T1 == 0) env->gpr[PARAM1] = T0; RETURN(); } void op_movf (void) { if (!(env->fcr31 & PARAM1)) T0 = T1; RETURN(); } void op_movt (void) { if (env->fcr31 & PARAM1) T0 = T1; RETURN(); } /* Tests */ #define OP_COND(name, cond) \ void glue(op_, name) (void) \ { \ if (cond) { \ T0 = 1; \ } else { \ T0 = 0; \ } \ RETURN(); \ } OP_COND(eq, T0 == T1); OP_COND(ne, T0 != T1); OP_COND(ge, (target_long)T0 >= (target_long)T1); OP_COND(geu, T0 >= T1); OP_COND(lt, (target_long)T0 < (target_long)T1); OP_COND(ltu, T0 < T1); OP_COND(gez, (target_long)T0 >= 0); OP_COND(gtz, (target_long)T0 > 0); OP_COND(lez, (target_long)T0 <= 0); OP_COND(ltz, (target_long)T0 < 0); /* Branches */ void OPPROTO op_goto_tb0(void) { GOTO_TB(op_goto_tb0, PARAM1, 0); RETURN(); } void OPPROTO op_goto_tb1(void) { GOTO_TB(op_goto_tb1, PARAM1, 1); RETURN(); } /* Branch to register */ void op_save_breg_target (void) { env->btarget = T2; RETURN(); } void op_restore_breg_target (void) { T2 = env->btarget; RETURN(); } void op_breg (void) { env->PC = T2; RETURN(); } void op_save_btarget (void) { env->btarget = PARAM1; RETURN(); } #ifdef TARGET_MIPS64 void op_save_btarget64 (void) { env->btarget = ((uint64_t)PARAM1 << 32) | (uint32_t)PARAM2; RETURN(); } #endif /* Conditional branch */ void op_set_bcond (void) { T2 = T0; RETURN(); } void op_save_bcond (void) { env->bcond = T2; RETURN(); } void op_restore_bcond (void) { T2 = env->bcond; RETURN(); } void op_jnz_T2 (void) { if (T2) GOTO_LABEL_PARAM(1); RETURN(); } /* CP0 functions */ void op_mfc0_index (void) { T0 = env->CP0_Index; RETURN(); } void op_mfc0_random (void) { CALL_FROM_TB0(do_mfc0_random); RETURN(); } void op_mfc0_entrylo0 (void) { T0 = (int32_t)env->CP0_EntryLo0; RETURN(); } void op_mfc0_entrylo1 (void) { T0 = (int32_t)env->CP0_EntryLo1; RETURN(); } void op_mfc0_context (void) { T0 = (int32_t)env->CP0_Context; RETURN(); } void op_mfc0_pagemask (void) { T0 = env->CP0_PageMask; RETURN(); } void op_mfc0_pagegrain (void) { T0 = env->CP0_PageGrain; RETURN(); } void op_mfc0_wired (void) { T0 = env->CP0_Wired; RETURN(); } void op_mfc0_hwrena (void) { T0 = env->CP0_HWREna; RETURN(); } void op_mfc0_badvaddr (void) { T0 = (int32_t)env->CP0_BadVAddr; RETURN(); } void op_mfc0_count (void) { CALL_FROM_TB0(do_mfc0_count); RETURN(); } void op_mfc0_entryhi (void) { T0 = (int32_t)env->CP0_EntryHi; RETURN(); } void op_mfc0_compare (void) { T0 = env->CP0_Compare; RETURN(); } void op_mfc0_status (void) { T0 = env->CP0_Status; RETURN(); } void op_mfc0_intctl (void) { T0 = env->CP0_IntCtl; RETURN(); } void op_mfc0_srsctl (void) { T0 = env->CP0_SRSCtl; RETURN(); } void op_mfc0_srsmap (void) { T0 = env->CP0_SRSMap; RETURN(); } void op_mfc0_cause (void) { T0 = env->CP0_Cause; RETURN(); } void op_mfc0_epc (void) { T0 = (int32_t)env->CP0_EPC; RETURN(); } void op_mfc0_prid (void) { T0 = env->CP0_PRid; RETURN(); } void op_mfc0_ebase (void) { T0 = env->CP0_EBase; RETURN(); } void op_mfc0_config0 (void) { T0 = env->CP0_Config0; RETURN(); } void op_mfc0_config1 (void) { T0 = env->CP0_Config1; RETURN(); } void op_mfc0_config2 (void) { T0 = env->CP0_Config2; RETURN(); } void op_mfc0_config3 (void) { T0 = env->CP0_Config3; RETURN(); } void op_mfc0_config6 (void) { T0 = env->CP0_Config6; RETURN(); } void op_mfc0_config7 (void) { T0 = env->CP0_Config7; RETURN(); } void op_mfc0_lladdr (void) { T0 = (int32_t)env->CP0_LLAddr >> 4; RETURN(); } void op_mfc0_watchlo (void) { T0 = (int32_t)env->CP0_WatchLo[PARAM1]; RETURN(); } void op_mfc0_watchhi (void) { T0 = env->CP0_WatchHi[PARAM1]; RETURN(); } void op_mfc0_xcontext (void) { T0 = (int32_t)env->CP0_XContext; RETURN(); } void op_mfc0_framemask (void) { T0 = env->CP0_Framemask; RETURN(); } void op_mfc0_debug (void) { T0 = env->CP0_Debug; if (env->hflags & MIPS_HFLAG_DM) T0 |= 1 << CP0DB_DM; RETURN(); } void op_mfc0_depc (void) { T0 = (int32_t)env->CP0_DEPC; RETURN(); } void op_mfc0_performance0 (void) { T0 = env->CP0_Performance0; RETURN(); } void op_mfc0_taglo (void) { T0 = env->CP0_TagLo; RETURN(); } void op_mfc0_datalo (void) { T0 = env->CP0_DataLo; RETURN(); } void op_mfc0_taghi (void) { T0 = env->CP0_TagHi; RETURN(); } void op_mfc0_datahi (void) { T0 = env->CP0_DataHi; RETURN(); } void op_mfc0_errorepc (void) { T0 = (int32_t)env->CP0_ErrorEPC; RETURN(); } void op_mfc0_desave (void) { T0 = env->CP0_DESAVE; RETURN(); } void op_mtc0_index (void) { env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 % env->nb_tlb); RETURN(); } void op_mtc0_entrylo0 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo0 = T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_entrylo1 (void) { /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_EntryLo1 = T0 & 0x3FFFFFFF; RETURN(); } void op_mtc0_context (void) { env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (T0 & ~0x007FFFFF); RETURN(); } void op_mtc0_pagemask (void) { /* 1k pages not implemented */ env->CP0_PageMask = T0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); RETURN(); } void op_mtc0_pagegrain (void) { /* SmartMIPS not implemented */ /* Large physaddr not implemented */ /* 1k pages not implemented */ env->CP0_PageGrain = 0; RETURN(); } void op_mtc0_wired (void) { env->CP0_Wired = T0 % env->nb_tlb; RETURN(); } void op_mtc0_hwrena (void) { env->CP0_HWREna = T0 & 0x0000000F; RETURN(); } void op_mtc0_count (void) { CALL_FROM_TB2(cpu_mips_store_count, env, T0); RETURN(); } void op_mtc0_entryhi (void) { target_ulong old, val; /* 1k pages not implemented */ val = T0 & ((TARGET_PAGE_MASK << 1) | 0xFF); #ifdef TARGET_MIPS64 val &= env->SEGMask; #endif old = env->CP0_EntryHi; env->CP0_EntryHi = val; /* If the ASID changes, flush qemu's TLB. */ if ((old & 0xFF) != (val & 0xFF)) CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1); RETURN(); } void op_mtc0_compare (void) { CALL_FROM_TB2(cpu_mips_store_compare, env, T0); RETURN(); } void op_mtc0_status (void) { uint32_t val, old; uint32_t mask = env->Status_rw_bitmask; /* No reverse endianness, no MDMX/DSP implemented. */ val = T0 & mask; old = env->CP0_Status; if (!(val & (1 << CP0St_EXL)) && !(val & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (val & (1 << CP0St_UM))) env->hflags |= MIPS_HFLAG_UM; #ifdef TARGET_MIPS64 if (!(env->CP0_Config0 & (0x3 << CP0C0_AT)) || ((env->hflags & MIPS_HFLAG_UM) && !(val & (1 << CP0St_PX)) && !(val & (1 << CP0St_UX)))) env->hflags &= ~MIPS_HFLAG_64; #endif if (val & (1 << CP0St_CU1)) env->hflags |= MIPS_HFLAG_FPU; else env->hflags &= ~MIPS_HFLAG_FPU; if (val & (1 << CP0St_FR)) env->hflags |= MIPS_HFLAG_F64; else env->hflags &= ~MIPS_HFLAG_F64; env->CP0_Status = (env->CP0_Status & ~mask) | val; if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB2(do_mtc0_status_debug, old, val); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_mtc0_intctl (void) { /* vectored interrupts not implemented, timer on int 7, no performance counters. */ env->CP0_IntCtl |= T0 & 0x000002e0; RETURN(); } void op_mtc0_srsctl (void) { /* shadow registers not implemented */ env->CP0_SRSCtl = 0; RETURN(); } void op_mtc0_srsmap (void) { /* shadow registers not implemented */ env->CP0_SRSMap = 0; RETURN(); } void op_mtc0_cause (void) { uint32_t mask = 0x00C00300; if ((env->CP0_Config0 & (0x7 << CP0C0_AR)) == (1 << CP0C0_AR)) mask |= 1 << CP0Ca_DC; env->CP0_Cause = (env->CP0_Cause & ~mask) | (T0 & mask); /* Handle the software interrupt as an hardware one, as they are very similar */ if (T0 & CP0Ca_IP_mask) { CALL_FROM_TB1(cpu_mips_update_irq, env); } RETURN(); } void op_mtc0_epc (void) { env->CP0_EPC = T0; RETURN(); } void op_mtc0_ebase (void) { /* vectored interrupts not implemented */ /* Multi-CPU not implemented */ env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000); RETURN(); } void op_mtc0_config0 (void) { env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (T0 & 0x00000007); RETURN(); } void op_mtc0_config2 (void) { /* tertiary/secondary caches not implemented */ env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); RETURN(); } void op_mtc0_watchlo (void) { /* Watch exceptions for instructions, data loads, data stores not implemented. */ env->CP0_WatchLo[PARAM1] = (T0 & ~0x7); RETURN(); } void op_mtc0_watchhi (void) { env->CP0_WatchHi[PARAM1] = (T0 & 0x40FF0FF8); env->CP0_WatchHi[PARAM1] &= ~(env->CP0_WatchHi[PARAM1] & T0 & 0x7); RETURN(); } void op_mtc0_framemask (void) { env->CP0_Framemask = T0; /* XXX */ RETURN(); } void op_mtc0_debug (void) { env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120); if (T0 & (1 << CP0DB_DM)) env->hflags |= MIPS_HFLAG_DM; else env->hflags &= ~MIPS_HFLAG_DM; RETURN(); } void op_mtc0_depc (void) { env->CP0_DEPC = T0; RETURN(); } void op_mtc0_performance0 (void) { env->CP0_Performance0 = T0; /* XXX */ RETURN(); } void op_mtc0_taglo (void) { env->CP0_TagLo = T0 & 0xFFFFFCF6; RETURN(); } void op_mtc0_datalo (void) { env->CP0_DataLo = T0; /* XXX */ RETURN(); } void op_mtc0_taghi (void) { env->CP0_TagHi = T0; /* XXX */ RETURN(); } void op_mtc0_datahi (void) { env->CP0_DataHi = T0; /* XXX */ RETURN(); } void op_mtc0_errorepc (void) { env->CP0_ErrorEPC = T0; RETURN(); } void op_mtc0_desave (void) { env->CP0_DESAVE = T0; RETURN(); } #ifdef TARGET_MIPS64 void op_mtc0_xcontext (void) { target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; env->CP0_XContext = (env->CP0_XContext & mask) | (T0 & ~mask); RETURN(); } void op_dmfc0_entrylo0 (void) { T0 = env->CP0_EntryLo0; RETURN(); } void op_dmfc0_entrylo1 (void) { T0 = env->CP0_EntryLo1; RETURN(); } void op_dmfc0_context (void) { T0 = env->CP0_Context; RETURN(); } void op_dmfc0_badvaddr (void) { T0 = env->CP0_BadVAddr; RETURN(); } void op_dmfc0_entryhi (void) { T0 = env->CP0_EntryHi; RETURN(); } void op_dmfc0_epc (void) { T0 = env->CP0_EPC; RETURN(); } void op_dmfc0_lladdr (void) { T0 = env->CP0_LLAddr >> 4; RETURN(); } void op_dmfc0_watchlo (void) { T0 = env->CP0_WatchLo[PARAM1]; RETURN(); } void op_dmfc0_xcontext (void) { T0 = env->CP0_XContext; RETURN(); } void op_dmfc0_depc (void) { T0 = env->CP0_DEPC; RETURN(); } void op_dmfc0_errorepc (void) { T0 = env->CP0_ErrorEPC; RETURN(); } #endif /* TARGET_MIPS64 */ /* CP1 functions */ #if 0 # define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env) #else # define DEBUG_FPU_STATE() do { } while(0) #endif void op_cp0_enabled(void) { if (!(env->CP0_Status & (1 << CP0St_CU0)) && (env->hflags & MIPS_HFLAG_UM)) { CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 0); } RETURN(); } void op_cfc1 (void) { switch (T1) { case 0: T0 = (int32_t)env->fcr0; break; case 25: T0 = ((env->fcr31 >> 24) & 0xfe) | ((env->fcr31 >> 23) & 0x1); break; case 26: T0 = env->fcr31 & 0x0003f07c; break; case 28: T0 = (env->fcr31 & 0x00000f83) | ((env->fcr31 >> 22) & 0x4); break; default: T0 = (int32_t)env->fcr31; break; } DEBUG_FPU_STATE(); RETURN(); } void op_ctc1 (void) { CALL_FROM_TB0(do_ctc1); DEBUG_FPU_STATE(); RETURN(); } void op_mfc1 (void) { T0 = WT0; DEBUG_FPU_STATE(); RETURN(); } void op_mtc1 (void) { WT0 = T0; DEBUG_FPU_STATE(); RETURN(); } void op_dmfc1 (void) { T0 = DT0; DEBUG_FPU_STATE(); RETURN(); } void op_dmtc1 (void) { DT0 = T0; DEBUG_FPU_STATE(); RETURN(); } void op_mfhc1 (void) { T0 = WTH0; DEBUG_FPU_STATE(); RETURN(); } void op_mthc1 (void) { WTH0 = T0; DEBUG_FPU_STATE(); RETURN(); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps", paired single lowwer "pl", paired single upper "pu". */ #define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void) FLOAT_OP(cvtd, s) { CALL_FROM_TB0(do_float_cvtd_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtd, w) { CALL_FROM_TB0(do_float_cvtd_w); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtd, l) { CALL_FROM_TB0(do_float_cvtd_l); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtl, d) { CALL_FROM_TB0(do_float_cvtl_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtl, s) { CALL_FROM_TB0(do_float_cvtl_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtps, s) { WT2 = WT0; WTH2 = WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtps, pw) { CALL_FROM_TB0(do_float_cvtps_pw); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtpw, ps) { CALL_FROM_TB0(do_float_cvtpw_ps); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, d) { CALL_FROM_TB0(do_float_cvts_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, w) { CALL_FROM_TB0(do_float_cvts_w); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, l) { CALL_FROM_TB0(do_float_cvts_l); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, pl) { CALL_FROM_TB0(do_float_cvts_pl); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvts, pu) { CALL_FROM_TB0(do_float_cvts_pu); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, s) { CALL_FROM_TB0(do_float_cvtw_s); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(cvtw, d) { CALL_FROM_TB0(do_float_cvtw_d); DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(pll, ps) { DT2 = ((uint64_t)WT0 << 32) | WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(plu, ps) { DT2 = ((uint64_t)WT0 << 32) | WTH1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(pul, ps) { DT2 = ((uint64_t)WTH0 << 32) | WT1; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(puu, ps) { DT2 = ((uint64_t)WTH0 << 32) | WTH1; DEBUG_FPU_STATE(); RETURN(); } #define FLOAT_ROUNDOP(op, ttype, stype) \ FLOAT_OP(op ## ttype, stype) \ { \ CALL_FROM_TB0(do_float_ ## op ## ttype ## _ ## stype); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_ROUNDOP(round, l, d) FLOAT_ROUNDOP(round, l, s) FLOAT_ROUNDOP(round, w, d) FLOAT_ROUNDOP(round, w, s) FLOAT_ROUNDOP(trunc, l, d) FLOAT_ROUNDOP(trunc, l, s) FLOAT_ROUNDOP(trunc, w, d) FLOAT_ROUNDOP(trunc, w, s) FLOAT_ROUNDOP(ceil, l, d) FLOAT_ROUNDOP(ceil, l, s) FLOAT_ROUNDOP(ceil, w, d) FLOAT_ROUNDOP(ceil, w, s) FLOAT_ROUNDOP(floor, l, d) FLOAT_ROUNDOP(floor, l, s) FLOAT_ROUNDOP(floor, w, d) FLOAT_ROUNDOP(floor, w, s) #undef FLOAR_ROUNDOP FLOAT_OP(movf, d) { if (!(env->fcr31 & PARAM1)) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movf, s) { if (!(env->fcr31 & PARAM1)) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movf, ps) { if (!(env->fcr31 & PARAM1)) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, d) { if (env->fcr31 & PARAM1) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, s) { if (env->fcr31 & PARAM1) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movt, ps) { if (env->fcr31 & PARAM1) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, d) { if (!T0) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, s) { if (!T0) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movz, ps) { if (!T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, d) { if (T0) DT2 = DT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, s) { if (T0) WT2 = WT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(movn, ps) { if (T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); RETURN(); } /* operations calling helpers, for s, d and ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(add) FLOAT_HOP(sub) FLOAT_HOP(mul) FLOAT_HOP(div) FLOAT_HOP(recip2) FLOAT_HOP(rsqrt2) FLOAT_HOP(rsqrt1) FLOAT_HOP(recip1) #undef FLOAT_HOP /* operations calling helpers, for s and d */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(rsqrt) FLOAT_HOP(recip) #undef FLOAT_HOP /* operations calling helpers, for ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_HOP(addr) FLOAT_HOP(mulr) #undef FLOAT_HOP /* ternary operations */ #define FLOAT_TERNOP(name1, name2) \ FLOAT_OP(name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_TERNOP(mul, add) FLOAT_TERNOP(mul, sub) #undef FLOAT_TERNOP /* negated ternary operations */ #define FLOAT_NTERNOP(name1, name2) \ FLOAT_OP(n ## name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fp_status); \ FDT2 ^= 1ULL << 63; \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(n ## name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \ FST2 ^= 1 << 31; \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(n ## name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fp_status); \ FST2 ^= 1 << 31; \ FSTH2 ^= 1 << 31; \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_NTERNOP(mul, add) FLOAT_NTERNOP(mul, sub) #undef FLOAT_NTERNOP /* unary operations, modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0, &env->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0, &env->fp_status); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_UNOP(sqrt) #undef FLOAT_UNOP /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ FLOAT_OP(name, ps) \ { \ FST2 = float32_ ## name(FST0); \ FSTH2 = float32_ ## name(FSTH0); \ DEBUG_FPU_STATE(); \ RETURN(); \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP FLOAT_OP(mov, d) { FDT2 = FDT0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(mov, s) { FST2 = FST0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(mov, ps) { FST2 = FST0; FSTH2 = FSTH0; DEBUG_FPU_STATE(); RETURN(); } FLOAT_OP(alnv, ps) { switch (T0 & 0x7) { case 0: FST2 = FST0; FSTH2 = FSTH0; break; case 4: #ifdef TARGET_WORDS_BIGENDIAN FSTH2 = FST0; FST2 = FSTH1; #else FSTH2 = FST1; FST2 = FSTH0; #endif break; default: /* unpredictable */ break; } DEBUG_FPU_STATE(); RETURN(); } #ifdef CONFIG_SOFTFLOAT #define clear_invalid() do { \ int flags = get_float_exception_flags(&env->fp_status); \ flags &= ~float_flag_invalid; \ set_float_exception_flags(flags, &env->fp_status); \ } while(0) #else #define clear_invalid() do { } while(0) #endif extern void dump_fpu_s(CPUState *env); #define CMP_OP(fmt, op) \ void OPPROTO op_cmp ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmp ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ RETURN(); \ } \ void OPPROTO op_cmpabs ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmpabs ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ RETURN(); \ } #define CMP_OPS(op) \ CMP_OP(d, op) \ CMP_OP(s, op) \ CMP_OP(ps, op) CMP_OPS(f) CMP_OPS(un) CMP_OPS(eq) CMP_OPS(ueq) CMP_OPS(olt) CMP_OPS(ult) CMP_OPS(ole) CMP_OPS(ule) CMP_OPS(sf) CMP_OPS(ngle) CMP_OPS(seq) CMP_OPS(ngl) CMP_OPS(lt) CMP_OPS(nge) CMP_OPS(le) CMP_OPS(ngt) #undef CMP_OPS #undef CMP_OP void op_bc1f (void) { T0 = !!(~GET_FP_COND(env) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any2f (void) { T0 = !!(~GET_FP_COND(env) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any4f (void) { T0 = !!(~GET_FP_COND(env) & (0xf << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1t (void) { T0 = !!(GET_FP_COND(env) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any2t (void) { T0 = !!(GET_FP_COND(env) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_bc1any4t (void) { T0 = !!(GET_FP_COND(env) & (0xf << PARAM1)); DEBUG_FPU_STATE(); RETURN(); } void op_tlbwi (void) { CALL_FROM_TB0(env->do_tlbwi); RETURN(); } void op_tlbwr (void) { CALL_FROM_TB0(env->do_tlbwr); RETURN(); } void op_tlbp (void) { CALL_FROM_TB0(env->do_tlbp); RETURN(); } void op_tlbr (void) { CALL_FROM_TB0(env->do_tlbr); RETURN(); } /* Specials */ #if defined (CONFIG_USER_ONLY) void op_tls_value (void) { T0 = env->tls_value; } #endif void op_pmon (void) { CALL_FROM_TB1(do_pmon, PARAM1); RETURN(); } void op_di (void) { T0 = env->CP0_Status; env->CP0_Status = T0 & ~(1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_ei (void) { T0 = env->CP0_Status; env->CP0_Status = T0 | (1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); RETURN(); } void op_trap (void) { if (T0) { CALL_FROM_TB1(do_raise_exception, EXCP_TRAP); } RETURN(); } void op_debug (void) { CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG); RETURN(); } void op_set_lladdr (void) { env->CP0_LLAddr = T2; RETURN(); } void debug_pre_eret (void); void debug_post_eret (void); void op_eret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); if (env->CP0_Status & (1 << CP0St_ERL)) { env->PC = env->CP0_ErrorEPC; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->PC = env->CP0_EPC; env->CP0_Status &= ~(1 << CP0St_EXL); } if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_UM))) env->hflags |= MIPS_HFLAG_UM; #ifdef TARGET_MIPS64 if (!(env->CP0_Config0 & (0x3 << CP0C0_AT)) || ((env->hflags & MIPS_HFLAG_UM) && !(env->CP0_Status & (1 << CP0St_PX)) && !(env->CP0_Status & (1 << CP0St_UX)))) env->hflags &= ~MIPS_HFLAG_64; #endif if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; RETURN(); } void op_deret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); env->PC = env->CP0_DEPC; env->hflags |= MIPS_HFLAG_DM; if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_UM))) env->hflags |= MIPS_HFLAG_UM; #ifdef TARGET_MIPS64 if (!(env->CP0_Config0 & (0x3 << CP0C0_AT)) || ((env->hflags & MIPS_HFLAG_UM) && !(env->CP0_Status & (1 << CP0St_PX)) && !(env->CP0_Status & (1 << CP0St_UX)))) env->hflags &= ~MIPS_HFLAG_64; #endif if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; RETURN(); } void op_rdhwr_cpunum(void) { if (!(env->hflags & MIPS_HFLAG_UM) || (env->CP0_HWREna & (1 << 0)) || (env->CP0_Status & (1 << CP0St_CU0))) T0 = env->CP0_EBase & 0x3ff; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_synci_step(void) { if (!(env->hflags & MIPS_HFLAG_UM) || (env->CP0_HWREna & (1 << 1)) || (env->CP0_Status & (1 << CP0St_CU0))) T0 = env->SYNCI_Step; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_cc(void) { if (!(env->hflags & MIPS_HFLAG_UM) || (env->CP0_HWREna & (1 << 2)) || (env->CP0_Status & (1 << CP0St_CU0))) T0 = env->CP0_Count; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_rdhwr_ccres(void) { if (!(env->hflags & MIPS_HFLAG_UM) || (env->CP0_HWREna & (1 << 3)) || (env->CP0_Status & (1 << CP0St_CU0))) T0 = env->CCRes; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); RETURN(); } void op_save_state (void) { env->hflags = PARAM1; RETURN(); } void op_save_pc (void) { env->PC = PARAM1; RETURN(); } #ifdef TARGET_MIPS64 void op_save_pc64 (void) { env->PC = ((uint64_t)PARAM1 << 32) | (uint32_t)PARAM2; RETURN(); } #endif void op_interrupt_restart (void) { if (!(env->CP0_Status & (1 << CP0St_EXL)) && !(env->CP0_Status & (1 << CP0St_ERL)) && !(env->hflags & MIPS_HFLAG_DM) && (env->CP0_Status & (1 << CP0St_IE)) && (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { env->CP0_Cause &= ~(0x1f << CP0Ca_EC); CALL_FROM_TB1(do_raise_exception, EXCP_EXT_INTERRUPT); } RETURN(); } void op_raise_exception (void) { CALL_FROM_TB1(do_raise_exception, PARAM1); RETURN(); } void op_raise_exception_err (void) { CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2); RETURN(); } void op_exit_tb (void) { EXIT_TB(); RETURN(); } void op_wait (void) { env->halted = 1; CALL_FROM_TB1(do_raise_exception, EXCP_HLT); RETURN(); } /* Bitfield operations. */ void op_ext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = ((uint32_t)T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0); RETURN(); } void op_ins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (T0 & ~mask) | (((uint32_t)T1 << pos) & mask); RETURN(); } void op_wsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF); RETURN(); } #ifdef TARGET_MIPS64 void op_dext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = (T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0); RETURN(); } void op_dins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (T0 & ~mask) | ((T1 << pos) & mask); RETURN(); } void op_dsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL); RETURN(); } void op_dshd(void) { T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL); RETURN(); } #endif void op_seb(void) { T0 = ((T1 & 0xFF) ^ 0x80) - 0x80; RETURN(); } void op_seh(void) { T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000; RETURN(); }