/* * MIPS emulation micro-operations for qemu. * * Copyright (c) 2004-2005 Jocelyn Mayer * Copyright (c) 2006 Marius Groeger (FPU operations) * Copyright (c) 2007 Thiemo Seufer (64-bit FPU support) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include "exec.h" #include "host-utils.h" #ifndef CALL_FROM_TB0 #define CALL_FROM_TB0(func) func() #endif #ifndef CALL_FROM_TB1 #define CALL_FROM_TB1(func, arg0) func(arg0) #endif #ifndef CALL_FROM_TB1_CONST16 #define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0) #endif #ifndef CALL_FROM_TB2 #define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1) #endif #ifndef CALL_FROM_TB2_CONST16 #define CALL_FROM_TB2_CONST16(func, arg0, arg1) \ CALL_FROM_TB2(func, arg0, arg1) #endif #ifndef CALL_FROM_TB3 #define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2) #endif #ifndef CALL_FROM_TB4 #define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \ func(arg0, arg1, arg2, arg3) #endif #define FREG 0 #include "fop_template.c" #undef FREG #define FREG 1 #include "fop_template.c" #undef FREG #define FREG 2 #include "fop_template.c" #undef FREG #define FREG 3 #include "fop_template.c" #undef FREG #define FREG 4 #include "fop_template.c" #undef FREG #define FREG 5 #include "fop_template.c" #undef FREG #define FREG 6 #include "fop_template.c" #undef FREG #define FREG 7 #include "fop_template.c" #undef FREG #define FREG 8 #include "fop_template.c" #undef FREG #define FREG 9 #include "fop_template.c" #undef FREG #define FREG 10 #include "fop_template.c" #undef FREG #define FREG 11 #include "fop_template.c" #undef FREG #define FREG 12 #include "fop_template.c" #undef FREG #define FREG 13 #include "fop_template.c" #undef FREG #define FREG 14 #include "fop_template.c" #undef FREG #define FREG 15 #include "fop_template.c" #undef FREG #define FREG 16 #include "fop_template.c" #undef FREG #define FREG 17 #include "fop_template.c" #undef FREG #define FREG 18 #include "fop_template.c" #undef FREG #define FREG 19 #include "fop_template.c" #undef FREG #define FREG 20 #include "fop_template.c" #undef FREG #define FREG 21 #include "fop_template.c" #undef FREG #define FREG 22 #include "fop_template.c" #undef FREG #define FREG 23 #include "fop_template.c" #undef FREG #define FREG 24 #include "fop_template.c" #undef FREG #define FREG 25 #include "fop_template.c" #undef FREG #define FREG 26 #include "fop_template.c" #undef FREG #define FREG 27 #include "fop_template.c" #undef FREG #define FREG 28 #include "fop_template.c" #undef FREG #define FREG 29 #include "fop_template.c" #undef FREG #define FREG 30 #include "fop_template.c" #undef FREG #define FREG 31 #include "fop_template.c" #undef FREG /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _super #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif /* 64 bits arithmetic */ #if TARGET_LONG_BITS > HOST_LONG_BITS void op_mult (void) { CALL_FROM_TB0(do_mult); FORCE_RET(); } void op_multu (void) { CALL_FROM_TB0(do_multu); FORCE_RET(); } void op_madd (void) { CALL_FROM_TB0(do_madd); FORCE_RET(); } void op_maddu (void) { CALL_FROM_TB0(do_maddu); FORCE_RET(); } void op_msub (void) { CALL_FROM_TB0(do_msub); FORCE_RET(); } void op_msubu (void) { CALL_FROM_TB0(do_msubu); FORCE_RET(); } /* Multiplication variants of the vr54xx. */ void op_muls (void) { CALL_FROM_TB0(do_muls); FORCE_RET(); } void op_mulsu (void) { CALL_FROM_TB0(do_mulsu); FORCE_RET(); } void op_macc (void) { CALL_FROM_TB0(do_macc); FORCE_RET(); } void op_macchi (void) { CALL_FROM_TB0(do_macchi); FORCE_RET(); } void op_maccu (void) { CALL_FROM_TB0(do_maccu); FORCE_RET(); } void op_macchiu (void) { CALL_FROM_TB0(do_macchiu); FORCE_RET(); } void op_msac (void) { CALL_FROM_TB0(do_msac); FORCE_RET(); } void op_msachi (void) { CALL_FROM_TB0(do_msachi); FORCE_RET(); } void op_msacu (void) { CALL_FROM_TB0(do_msacu); FORCE_RET(); } void op_msachiu (void) { CALL_FROM_TB0(do_msachiu); FORCE_RET(); } void op_mulhi (void) { CALL_FROM_TB0(do_mulhi); FORCE_RET(); } void op_mulhiu (void) { CALL_FROM_TB0(do_mulhiu); FORCE_RET(); } void op_mulshi (void) { CALL_FROM_TB0(do_mulshi); FORCE_RET(); } void op_mulshiu (void) { CALL_FROM_TB0(do_mulshiu); FORCE_RET(); } #else /* TARGET_LONG_BITS > HOST_LONG_BITS */ static always_inline uint64_t get_HILO (void) { return ((uint64_t)env->HI[env->current_tc][0] << 32) | ((uint64_t)(uint32_t)env->LO[env->current_tc][0]); } static always_inline void set_HILO (uint64_t HILO) { env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF); env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } static always_inline void set_HIT0_LO (uint64_t HILO) { env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF); T0 = env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } static always_inline void set_HI_LOT0 (uint64_t HILO) { T0 = env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF); env->HI[env->current_tc][0] = (int32_t)(HILO >> 32); } void op_mult (void) { set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); FORCE_RET(); } void op_multu (void) { set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); FORCE_RET(); } void op_madd (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() + tmp); FORCE_RET(); } void op_maddu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() + tmp); FORCE_RET(); } void op_msub (void) { int64_t tmp; tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); set_HILO((int64_t)get_HILO() - tmp); FORCE_RET(); } void op_msubu (void) { uint64_t tmp; tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); set_HILO(get_HILO() - tmp); FORCE_RET(); } /* Multiplication variants of the vr54xx. */ void op_muls (void) { set_HI_LOT0(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_mulsu (void) { set_HI_LOT0(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } void op_macc (void) { set_HI_LOT0(get_HILO() + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_macchi (void) { set_HIT0_LO(get_HILO() + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_maccu (void) { set_HI_LOT0(get_HILO() + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } void op_macchiu (void) { set_HIT0_LO(get_HILO() + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } void op_msac (void) { set_HI_LOT0(get_HILO() - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_msachi (void) { set_HIT0_LO(get_HILO() - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_msacu (void) { set_HI_LOT0(get_HILO() - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } void op_msachiu (void) { set_HIT0_LO(get_HILO() - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } void op_mulhi (void) { set_HIT0_LO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); FORCE_RET(); } void op_mulhiu (void) { set_HIT0_LO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); FORCE_RET(); } void op_mulshi (void) { set_HIT0_LO(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1)); FORCE_RET(); } void op_mulshiu (void) { set_HIT0_LO(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1)); FORCE_RET(); } #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ #if defined(TARGET_MIPS64) void op_dmult (void) { CALL_FROM_TB4(muls64, &(env->LO[env->current_tc][0]), &(env->HI[env->current_tc][0]), T0, T1); FORCE_RET(); } void op_dmultu (void) { CALL_FROM_TB4(mulu64, &(env->LO[env->current_tc][0]), &(env->HI[env->current_tc][0]), T0, T1); FORCE_RET(); } #endif /* CP1 functions */ #if 0 # define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env) #else # define DEBUG_FPU_STATE() do { } while(0) #endif void op_mfc1 (void) { T0 = (int32_t)WT0; DEBUG_FPU_STATE(); FORCE_RET(); } void op_mtc1 (void) { WT0 = T0; DEBUG_FPU_STATE(); FORCE_RET(); } void op_dmfc1 (void) { T0 = DT0; DEBUG_FPU_STATE(); FORCE_RET(); } void op_dmtc1 (void) { DT0 = T0; DEBUG_FPU_STATE(); FORCE_RET(); } void op_mfhc1 (void) { T0 = (int32_t)WTH0; DEBUG_FPU_STATE(); FORCE_RET(); } void op_mthc1 (void) { WTH0 = T0; DEBUG_FPU_STATE(); FORCE_RET(); } /* Float support. Single precition routines have a "s" suffix, double precision a "d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps", paired single lowwer "pl", paired single upper "pu". */ #define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void) FLOAT_OP(cvtd, s) { CALL_FROM_TB0(do_float_cvtd_s); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtd, w) { CALL_FROM_TB0(do_float_cvtd_w); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtd, l) { CALL_FROM_TB0(do_float_cvtd_l); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtl, d) { CALL_FROM_TB0(do_float_cvtl_d); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtl, s) { CALL_FROM_TB0(do_float_cvtl_s); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtps, s) { WT2 = WT0; WTH2 = WT1; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtps, pw) { CALL_FROM_TB0(do_float_cvtps_pw); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtpw, ps) { CALL_FROM_TB0(do_float_cvtpw_ps); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvts, d) { CALL_FROM_TB0(do_float_cvts_d); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvts, w) { CALL_FROM_TB0(do_float_cvts_w); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvts, l) { CALL_FROM_TB0(do_float_cvts_l); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvts, pl) { CALL_FROM_TB0(do_float_cvts_pl); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvts, pu) { CALL_FROM_TB0(do_float_cvts_pu); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtw, s) { CALL_FROM_TB0(do_float_cvtw_s); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(cvtw, d) { CALL_FROM_TB0(do_float_cvtw_d); DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(pll, ps) { DT2 = ((uint64_t)WT0 << 32) | WT1; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(plu, ps) { DT2 = ((uint64_t)WT0 << 32) | WTH1; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(pul, ps) { DT2 = ((uint64_t)WTH0 << 32) | WT1; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(puu, ps) { DT2 = ((uint64_t)WTH0 << 32) | WTH1; DEBUG_FPU_STATE(); FORCE_RET(); } #define FLOAT_ROUNDOP(op, ttype, stype) \ FLOAT_OP(op ## ttype, stype) \ { \ CALL_FROM_TB0(do_float_ ## op ## ttype ## _ ## stype); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_ROUNDOP(round, l, d) FLOAT_ROUNDOP(round, l, s) FLOAT_ROUNDOP(round, w, d) FLOAT_ROUNDOP(round, w, s) FLOAT_ROUNDOP(trunc, l, d) FLOAT_ROUNDOP(trunc, l, s) FLOAT_ROUNDOP(trunc, w, d) FLOAT_ROUNDOP(trunc, w, s) FLOAT_ROUNDOP(ceil, l, d) FLOAT_ROUNDOP(ceil, l, s) FLOAT_ROUNDOP(ceil, w, d) FLOAT_ROUNDOP(ceil, w, s) FLOAT_ROUNDOP(floor, l, d) FLOAT_ROUNDOP(floor, l, s) FLOAT_ROUNDOP(floor, w, d) FLOAT_ROUNDOP(floor, w, s) #undef FLOAR_ROUNDOP FLOAT_OP(movf, d) { if (!(env->fpu->fcr31 & PARAM1)) DT2 = DT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movf, s) { if (!(env->fpu->fcr31 & PARAM1)) WT2 = WT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movf, ps) { unsigned int mask = GET_FP_COND (env->fpu) >> PARAM1; if (!(mask & 1)) WT2 = WT0; if (!(mask & 2)) WTH2 = WTH0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movt, d) { if (env->fpu->fcr31 & PARAM1) DT2 = DT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movt, s) { if (env->fpu->fcr31 & PARAM1) WT2 = WT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movt, ps) { unsigned int mask = GET_FP_COND (env->fpu) >> PARAM1; if (mask & 1) WT2 = WT0; if (mask & 2) WTH2 = WTH0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movz, d) { if (!T0) DT2 = DT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movz, s) { if (!T0) WT2 = WT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movz, ps) { if (!T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movn, d) { if (T0) DT2 = DT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movn, s) { if (T0) WT2 = WT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(movn, ps) { if (T0) { WT2 = WT0; WTH2 = WTH0; } DEBUG_FPU_STATE(); FORCE_RET(); } /* operations calling helpers, for s, d and ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_HOP(add) FLOAT_HOP(sub) FLOAT_HOP(mul) FLOAT_HOP(div) FLOAT_HOP(recip2) FLOAT_HOP(rsqrt2) FLOAT_HOP(rsqrt1) FLOAT_HOP(recip1) #undef FLOAT_HOP /* operations calling helpers, for s and d */ #define FLOAT_HOP(name) \ FLOAT_OP(name, d) \ { \ CALL_FROM_TB0(do_float_ ## name ## _d); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, s) \ { \ CALL_FROM_TB0(do_float_ ## name ## _s); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_HOP(rsqrt) FLOAT_HOP(recip) #undef FLOAT_HOP /* operations calling helpers, for ps */ #define FLOAT_HOP(name) \ FLOAT_OP(name, ps) \ { \ CALL_FROM_TB0(do_float_ ## name ## _ps); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_HOP(addr) FLOAT_HOP(mulr) #undef FLOAT_HOP /* ternary operations */ #define FLOAT_TERNOP(name1, name2) \ FLOAT_OP(name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_TERNOP(mul, add) FLOAT_TERNOP(mul, sub) #undef FLOAT_TERNOP /* negated ternary operations */ #define FLOAT_NTERNOP(name1, name2) \ FLOAT_OP(n ## name1 ## name2, d) \ { \ FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \ FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \ FDT2 = float64_chs(FDT2); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(n ## name1 ## name2, s) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FST2 = float32_chs(FST2); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(n ## name1 ## name2, ps) \ { \ FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \ FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \ FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \ FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \ FST2 = float32_chs(FST2); \ FSTH2 = float32_chs(FSTH2); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_NTERNOP(mul, add) FLOAT_NTERNOP(mul, sub) #undef FLOAT_NTERNOP /* unary operations, modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0, &env->fpu->fp_status); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_UNOP(sqrt) #undef FLOAT_UNOP /* unary operations, not modifying fp status */ #define FLOAT_UNOP(name) \ FLOAT_OP(name, d) \ { \ FDT2 = float64_ ## name(FDT0); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, s) \ { \ FST2 = float32_ ## name(FST0); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ FLOAT_OP(name, ps) \ { \ FST2 = float32_ ## name(FST0); \ FSTH2 = float32_ ## name(FSTH0); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } FLOAT_UNOP(abs) FLOAT_UNOP(chs) #undef FLOAT_UNOP FLOAT_OP(mov, d) { FDT2 = FDT0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(mov, s) { FST2 = FST0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(mov, ps) { FST2 = FST0; FSTH2 = FSTH0; DEBUG_FPU_STATE(); FORCE_RET(); } FLOAT_OP(alnv, ps) { switch (T0 & 0x7) { case 0: FST2 = FST0; FSTH2 = FSTH0; break; case 4: #ifdef TARGET_WORDS_BIGENDIAN FSTH2 = FST0; FST2 = FSTH1; #else FSTH2 = FST1; FST2 = FSTH0; #endif break; default: /* unpredictable */ break; } DEBUG_FPU_STATE(); FORCE_RET(); } #ifdef CONFIG_SOFTFLOAT #define clear_invalid() do { \ int flags = get_float_exception_flags(&env->fpu->fp_status); \ flags &= ~float_flag_invalid; \ set_float_exception_flags(flags, &env->fpu->fp_status); \ } while(0) #else #define clear_invalid() do { } while(0) #endif extern void dump_fpu_s(CPUState *env); #define CMP_OP(fmt, op) \ void OPPROTO op_cmp ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmp ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } \ void OPPROTO op_cmpabs ## _ ## fmt ## _ ## op(void) \ { \ CALL_FROM_TB1(do_cmpabs ## _ ## fmt ## _ ## op, PARAM1); \ DEBUG_FPU_STATE(); \ FORCE_RET(); \ } #define CMP_OPS(op) \ CMP_OP(d, op) \ CMP_OP(s, op) \ CMP_OP(ps, op) CMP_OPS(f) CMP_OPS(un) CMP_OPS(eq) CMP_OPS(ueq) CMP_OPS(olt) CMP_OPS(ult) CMP_OPS(ole) CMP_OPS(ule) CMP_OPS(sf) CMP_OPS(ngle) CMP_OPS(seq) CMP_OPS(ngl) CMP_OPS(lt) CMP_OPS(nge) CMP_OPS(le) CMP_OPS(ngt) #undef CMP_OPS #undef CMP_OP void op_bc1f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_bc1any2f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_bc1any4f (void) { T0 = !!(~GET_FP_COND(env->fpu) & (0xf << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_bc1t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0x1 << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_bc1any2t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0x3 << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_bc1any4t (void) { T0 = !!(GET_FP_COND(env->fpu) & (0xf << PARAM1)); DEBUG_FPU_STATE(); FORCE_RET(); } void op_tlbwi (void) { CALL_FROM_TB0(env->tlb->do_tlbwi); FORCE_RET(); } void op_tlbwr (void) { CALL_FROM_TB0(env->tlb->do_tlbwr); FORCE_RET(); } void op_tlbp (void) { CALL_FROM_TB0(env->tlb->do_tlbp); FORCE_RET(); } void op_tlbr (void) { CALL_FROM_TB0(env->tlb->do_tlbr); FORCE_RET(); } /* Specials */ #if defined (CONFIG_USER_ONLY) void op_tls_value (void) { T0 = env->tls_value; } #endif void op_pmon (void) { CALL_FROM_TB1(do_pmon, PARAM1); FORCE_RET(); } void op_di (void) { T0 = env->CP0_Status; env->CP0_Status = T0 & ~(1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); FORCE_RET(); } void op_ei (void) { T0 = env->CP0_Status; env->CP0_Status = T0 | (1 << CP0St_IE); CALL_FROM_TB1(cpu_mips_update_irq, env); FORCE_RET(); } void op_trap (void) { if (T0) { CALL_FROM_TB1(do_raise_exception, EXCP_TRAP); } FORCE_RET(); } void op_debug (void) { CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG); FORCE_RET(); } void debug_pre_eret (void); void debug_post_eret (void); void op_eret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); if (env->CP0_Status & (1 << CP0St_ERL)) { env->PC[env->current_tc] = env->CP0_ErrorEPC; env->CP0_Status &= ~(1 << CP0St_ERL); } else { env->PC[env->current_tc] = env->CP0_EPC; env->CP0_Status &= ~(1 << CP0St_EXL); } CALL_FROM_TB1(compute_hflags, env); if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; FORCE_RET(); } void op_deret (void) { if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_pre_eret); env->PC[env->current_tc] = env->CP0_DEPC; env->hflags &= MIPS_HFLAG_DM; CALL_FROM_TB1(compute_hflags, env); if (loglevel & CPU_LOG_EXEC) CALL_FROM_TB0(debug_post_eret); env->CP0_LLAddr = 1; FORCE_RET(); } void op_rdhwr_cpunum(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 0))) T0 = env->CP0_EBase & 0x3ff; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); FORCE_RET(); } void op_rdhwr_synci_step(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 1))) T0 = env->SYNCI_Step; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); FORCE_RET(); } void op_rdhwr_cc(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 2))) T0 = env->CP0_Count; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); FORCE_RET(); } void op_rdhwr_ccres(void) { if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << 3))) T0 = env->CCRes; else CALL_FROM_TB1(do_raise_exception, EXCP_RI); FORCE_RET(); } void op_save_state (void) { env->hflags = PARAM1; FORCE_RET(); } void op_wait (void) { env->halted = 1; CALL_FROM_TB1(do_raise_exception, EXCP_HLT); FORCE_RET(); } /* Bitfield operations. */ void op_ext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = (int32_t)((T1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0)); FORCE_RET(); } void op_ins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos; T0 = (int32_t)((T0 & ~mask) | ((T1 << pos) & mask)); FORCE_RET(); } void op_wsbh(void) { T0 = (int32_t)(((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF)); FORCE_RET(); } #if defined(TARGET_MIPS64) void op_dext(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; T0 = (T1 >> pos) & ((size < 64) ? ((1ULL << size) - 1) : ~0ULL); FORCE_RET(); } void op_dins(void) { unsigned int pos = PARAM1; unsigned int size = PARAM2; target_ulong mask = ((size < 64) ? ((1ULL << size) - 1) : ~0ULL) << pos; T0 = (T0 & ~mask) | ((T1 << pos) & mask); FORCE_RET(); } void op_dsbh(void) { T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL); FORCE_RET(); } void op_dshd(void) { T1 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL); T0 = (T1 << 32) | (T1 >> 32); FORCE_RET(); } #endif