/* * MIPS ASE DSP Instruction emulation helpers for QEMU. * * Copyright (c) 2012 Jia Liu <proljc@gmail.com> * Dongxue Zhang <elta.era@gmail.com> * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "helper.h" #include "qemu/bitops.h" /* As the byte ordering doesn't matter, i.e. all columns are treated identically, these unions can be used directly. */ typedef union { uint8_t ub[4]; int8_t sb[4]; uint16_t uh[2]; int16_t sh[2]; uint32_t uw[1]; int32_t sw[1]; } DSP32Value; typedef union { uint8_t ub[8]; int8_t sb[8]; uint16_t uh[4]; int16_t sh[4]; uint32_t uw[2]; int32_t sw[2]; uint64_t ul[1]; int64_t sl[1]; } DSP64Value; /*** MIPS DSP internal functions begin ***/ #define MIPSDSP_ABS(x) (((x) >= 0) ? x : -x) #define MIPSDSP_OVERFLOW_ADD(a, b, c, d) (~(a ^ b) & (a ^ c) & d) #define MIPSDSP_OVERFLOW_SUB(a, b, c, d) ((a ^ b) & (a ^ c) & d) static inline void set_DSPControl_overflow_flag(uint32_t flag, int position, CPUMIPSState *env) { env->active_tc.DSPControl |= (target_ulong)flag << position; } static inline void set_DSPControl_carryflag(bool flag, CPUMIPSState *env) { env->active_tc.DSPControl &= ~(1 << 13); env->active_tc.DSPControl |= flag << 13; } static inline uint32_t get_DSPControl_carryflag(CPUMIPSState *env) { return (env->active_tc.DSPControl >> 13) & 0x01; } static inline void set_DSPControl_24(uint32_t flag, int len, CPUMIPSState *env) { uint32_t filter; filter = ((0x01 << len) - 1) << 24; filter = ~filter; env->active_tc.DSPControl &= filter; env->active_tc.DSPControl |= (target_ulong)flag << 24; } static inline uint32_t get_DSPControl_24(int len, CPUMIPSState *env) { uint32_t filter; filter = (0x01 << len) - 1; return (env->active_tc.DSPControl >> 24) & filter; } static inline void set_DSPControl_pos(uint32_t pos, CPUMIPSState *env) { target_ulong dspc; dspc = env->active_tc.DSPControl; #ifndef TARGET_MIPS64 dspc = dspc & 0xFFFFFFC0; dspc |= (pos & 0x3F); #else dspc = dspc & 0xFFFFFF80; dspc |= (pos & 0x7F); #endif env->active_tc.DSPControl = dspc; } static inline uint32_t get_DSPControl_pos(CPUMIPSState *env) { target_ulong dspc; uint32_t pos; dspc = env->active_tc.DSPControl; #ifndef TARGET_MIPS64 pos = dspc & 0x3F; #else pos = dspc & 0x7F; #endif return pos; } static inline void set_DSPControl_efi(uint32_t flag, CPUMIPSState *env) { env->active_tc.DSPControl &= 0xFFFFBFFF; env->active_tc.DSPControl |= (target_ulong)flag << 14; } #define DO_MIPS_SAT_ABS(size) \ static inline int##size##_t mipsdsp_sat_abs##size(int##size##_t a, \ CPUMIPSState *env) \ { \ if (a == INT##size##_MIN) { \ set_DSPControl_overflow_flag(1, 20, env); \ return INT##size##_MAX; \ } else { \ return MIPSDSP_ABS(a); \ } \ } DO_MIPS_SAT_ABS(8) DO_MIPS_SAT_ABS(16) DO_MIPS_SAT_ABS(32) #undef DO_MIPS_SAT_ABS /* get sum value */ static inline int16_t mipsdsp_add_i16(int16_t a, int16_t b, CPUMIPSState *env) { int16_t tempI; tempI = a + b; if (MIPSDSP_OVERFLOW_ADD(a, b, tempI, 0x8000)) { set_DSPControl_overflow_flag(1, 20, env); } return tempI; } static inline int16_t mipsdsp_sat_add_i16(int16_t a, int16_t b, CPUMIPSState *env) { int16_t tempS; tempS = a + b; if (MIPSDSP_OVERFLOW_ADD(a, b, tempS, 0x8000)) { if (a > 0) { tempS = 0x7FFF; } else { tempS = 0x8000; } set_DSPControl_overflow_flag(1, 20, env); } return tempS; } static inline int32_t mipsdsp_sat_add_i32(int32_t a, int32_t b, CPUMIPSState *env) { int32_t tempI; tempI = a + b; if (MIPSDSP_OVERFLOW_ADD(a, b, tempI, 0x80000000)) { if (a > 0) { tempI = 0x7FFFFFFF; } else { tempI = 0x80000000; } set_DSPControl_overflow_flag(1, 20, env); } return tempI; } static inline uint8_t mipsdsp_add_u8(uint8_t a, uint8_t b, CPUMIPSState *env) { uint16_t temp; temp = (uint16_t)a + (uint16_t)b; if (temp & 0x0100) { set_DSPControl_overflow_flag(1, 20, env); } return temp & 0xFF; } static inline uint16_t mipsdsp_add_u16(uint16_t a, uint16_t b, CPUMIPSState *env) { uint32_t temp; temp = (uint32_t)a + (uint32_t)b; if (temp & 0x00010000) { set_DSPControl_overflow_flag(1, 20, env); } return temp & 0xFFFF; } static inline uint8_t mipsdsp_sat_add_u8(uint8_t a, uint8_t b, CPUMIPSState *env) { uint8_t result; uint16_t temp; temp = (uint16_t)a + (uint16_t)b; result = temp & 0xFF; if (0x0100 & temp) { result = 0xFF; set_DSPControl_overflow_flag(1, 20, env); } return result; } static inline uint16_t mipsdsp_sat_add_u16(uint16_t a, uint16_t b, CPUMIPSState *env) { uint16_t result; uint32_t temp; temp = (uint32_t)a + (uint32_t)b; result = temp & 0xFFFF; if (0x00010000 & temp) { result = 0xFFFF; set_DSPControl_overflow_flag(1, 20, env); } return result; } static inline int32_t mipsdsp_sat32_acc_q31(int32_t acc, int32_t a, CPUMIPSState *env) { int64_t temp; int32_t temp32, temp31, result; int64_t temp_sum; #ifndef TARGET_MIPS64 temp = ((uint64_t)env->active_tc.HI[acc] << 32) | (uint64_t)env->active_tc.LO[acc]; #else temp = (uint64_t)env->active_tc.LO[acc]; #endif temp_sum = (int64_t)a + temp; temp32 = (temp_sum >> 32) & 0x01; temp31 = (temp_sum >> 31) & 0x01; result = temp_sum & 0xFFFFFFFF; if (temp32 != temp31) { if (temp32 == 0) { result = 0x7FFFFFFF; } else { result = 0x80000000; } set_DSPControl_overflow_flag(1, 16 + acc, env); } return result; } /* a[0] is LO, a[1] is HI. */ static inline void mipsdsp_sat64_acc_add_q63(int64_t *ret, int32_t ac, int64_t *a, CPUMIPSState *env) { bool temp64; ret[0] = env->active_tc.LO[ac] + a[0]; ret[1] = env->active_tc.HI[ac] + a[1]; if (((uint64_t)ret[0] < (uint64_t)env->active_tc.LO[ac]) && ((uint64_t)ret[0] < (uint64_t)a[0])) { ret[1] += 1; } temp64 = ret[1] & 1; if (temp64 != ((ret[0] >> 63) & 0x01)) { if (temp64) { ret[0] = (0x01ull << 63); ret[1] = ~0ull; } else { ret[0] = (0x01ull << 63) - 1; ret[1] = 0x00; } set_DSPControl_overflow_flag(1, 16 + ac, env); } } static inline void mipsdsp_sat64_acc_sub_q63(int64_t *ret, int32_t ac, int64_t *a, CPUMIPSState *env) { bool temp64; ret[0] = env->active_tc.LO[ac] - a[0]; ret[1] = env->active_tc.HI[ac] - a[1]; if ((uint64_t)ret[0] > (uint64_t)env->active_tc.LO[ac]) { ret[1] -= 1; } temp64 = ret[1] & 1; if (temp64 != ((ret[0] >> 63) & 0x01)) { if (temp64) { ret[0] = (0x01ull << 63); ret[1] = ~0ull; } else { ret[0] = (0x01ull << 63) - 1; ret[1] = 0x00; } set_DSPControl_overflow_flag(1, 16 + ac, env); } } static inline int32_t mipsdsp_mul_i16_i16(int16_t a, int16_t b, CPUMIPSState *env) { int32_t temp; temp = (int32_t)a * (int32_t)b; if ((temp > (int)0x7FFF) || (temp < (int)0xFFFF8000)) { set_DSPControl_overflow_flag(1, 21, env); } temp &= 0x0000FFFF; return temp; } static inline int32_t mipsdsp_mul_u16_u16(int32_t a, int32_t b) { return a * b; } static inline int32_t mipsdsp_mul_i32_i32(int32_t a, int32_t b) { return a * b; } static inline int32_t mipsdsp_sat16_mul_i16_i16(int16_t a, int16_t b, CPUMIPSState *env) { int32_t temp; temp = (int32_t)a * (int32_t)b; if (temp > (int)0x7FFF) { temp = 0x00007FFF; set_DSPControl_overflow_flag(1, 21, env); } else if (temp < (int)0xffff8000) { temp = 0xFFFF8000; set_DSPControl_overflow_flag(1, 21, env); } temp &= 0x0000FFFF; return temp; } static inline int32_t mipsdsp_mul_q15_q15_overflowflag21(uint16_t a, uint16_t b, CPUMIPSState *env) { int32_t temp; if ((a == 0x8000) && (b == 0x8000)) { temp = 0x7FFFFFFF; set_DSPControl_overflow_flag(1, 21, env); } else { temp = ((int16_t)a * (int16_t)b) << 1; } return temp; } /* right shift */ static inline uint8_t mipsdsp_rshift_u8(uint8_t a, target_ulong mov) { return a >> mov; } static inline uint16_t mipsdsp_rshift_u16(uint16_t a, target_ulong mov) { return a >> mov; } static inline int8_t mipsdsp_rashift8(int8_t a, target_ulong mov) { return a >> mov; } static inline int16_t mipsdsp_rashift16(int16_t a, target_ulong mov) { return a >> mov; } static inline int32_t mipsdsp_rashift32(int32_t a, target_ulong mov) { return a >> mov; } static inline int16_t mipsdsp_rshift1_add_q16(int16_t a, int16_t b) { int32_t temp; temp = (int32_t)a + (int32_t)b; return (temp >> 1) & 0xFFFF; } /* round right shift */ static inline int16_t mipsdsp_rrshift1_add_q16(int16_t a, int16_t b) { int32_t temp; temp = (int32_t)a + (int32_t)b; temp += 1; return (temp >> 1) & 0xFFFF; } static inline int32_t mipsdsp_rshift1_add_q32(int32_t a, int32_t b) { int64_t temp; temp = (int64_t)a + (int64_t)b; return (temp >> 1) & 0xFFFFFFFF; } static inline int32_t mipsdsp_rrshift1_add_q32(int32_t a, int32_t b) { int64_t temp; temp = (int64_t)a + (int64_t)b; temp += 1; return (temp >> 1) & 0xFFFFFFFF; } static inline uint8_t mipsdsp_rshift1_add_u8(uint8_t a, uint8_t b) { uint16_t temp; temp = (uint16_t)a + (uint16_t)b; return (temp >> 1) & 0x00FF; } static inline uint8_t mipsdsp_rrshift1_add_u8(uint8_t a, uint8_t b) { uint16_t temp; temp = (uint16_t)a + (uint16_t)b + 1; return (temp >> 1) & 0x00FF; } static inline uint8_t mipsdsp_rshift1_sub_u8(uint8_t a, uint8_t b) { uint16_t temp; temp = (uint16_t)a - (uint16_t)b; return (temp >> 1) & 0x00FF; } static inline uint8_t mipsdsp_rrshift1_sub_u8(uint8_t a, uint8_t b) { uint16_t temp; temp = (uint16_t)a - (uint16_t)b + 1; return (temp >> 1) & 0x00FF; } /* 128 bits long. p[0] is LO, p[1] is HI. */ static inline void mipsdsp_rndrashift_short_acc(int64_t *p, int32_t ac, int32_t shift, CPUMIPSState *env) { int64_t acc; acc = ((int64_t)env->active_tc.HI[ac] << 32) | ((int64_t)env->active_tc.LO[ac] & 0xFFFFFFFF); p[0] = (shift == 0) ? (acc << 1) : (acc >> (shift - 1)); p[1] = (acc >> 63) & 0x01; } /* 128 bits long. p[0] is LO, p[1] is HI */ static inline void mipsdsp_rashift_acc(uint64_t *p, uint32_t ac, uint32_t shift, CPUMIPSState *env) { uint64_t tempB, tempA; tempB = env->active_tc.HI[ac]; tempA = env->active_tc.LO[ac]; shift = shift & 0x1F; if (shift == 0) { p[1] = tempB; p[0] = tempA; } else { p[0] = (tempB << (64 - shift)) | (tempA >> shift); p[1] = (int64_t)tempB >> shift; } } /* 128 bits long. p[0] is LO, p[1] is HI , p[2] is sign of HI.*/ static inline void mipsdsp_rndrashift_acc(uint64_t *p, uint32_t ac, uint32_t shift, CPUMIPSState *env) { int64_t tempB, tempA; tempB = env->active_tc.HI[ac]; tempA = env->active_tc.LO[ac]; shift = shift & 0x3F; if (shift == 0) { p[2] = tempB >> 63; p[1] = (tempB << 1) | (tempA >> 63); p[0] = tempA << 1; } else { p[0] = (tempB << (65 - shift)) | (tempA >> (shift - 1)); p[1] = (int64_t)tempB >> (shift - 1); if (tempB >= 0) { p[2] = 0x0; } else { p[2] = ~0ull; } } } static inline int32_t mipsdsp_mul_q15_q15(int32_t ac, uint16_t a, uint16_t b, CPUMIPSState *env) { int32_t temp; if ((a == 0x8000) && (b == 0x8000)) { temp = 0x7FFFFFFF; set_DSPControl_overflow_flag(1, 16 + ac, env); } else { temp = ((int16_t)a * (int16_t)b) << 1; } return temp; } static inline int64_t mipsdsp_mul_q31_q31(int32_t ac, uint32_t a, uint32_t b, CPUMIPSState *env) { uint64_t temp; if ((a == 0x80000000) && (b == 0x80000000)) { temp = (0x01ull << 63) - 1; set_DSPControl_overflow_flag(1, 16 + ac, env); } else { temp = ((int64_t)(int32_t)a * (int32_t)b) << 1; } return temp; } static inline uint16_t mipsdsp_mul_u8_u8(uint8_t a, uint8_t b) { return (uint16_t)a * (uint16_t)b; } static inline uint16_t mipsdsp_mul_u8_u16(uint8_t a, uint16_t b, CPUMIPSState *env) { uint32_t tempI; tempI = (uint32_t)a * (uint32_t)b; if (tempI > 0x0000FFFF) { tempI = 0x0000FFFF; set_DSPControl_overflow_flag(1, 21, env); } return tempI & 0x0000FFFF; } static inline uint64_t mipsdsp_mul_u32_u32(uint32_t a, uint32_t b) { return (uint64_t)a * (uint64_t)b; } static inline int16_t mipsdsp_rndq15_mul_q15_q15(uint16_t a, uint16_t b, CPUMIPSState *env) { uint32_t temp; if ((a == 0x8000) && (b == 0x8000)) { temp = 0x7FFF0000; set_DSPControl_overflow_flag(1, 21, env); } else { temp = ((int16_t)a * (int16_t)b) << 1; temp = temp + 0x00008000; } return (temp & 0xFFFF0000) >> 16; } static inline int32_t mipsdsp_sat16_mul_q15_q15(uint16_t a, uint16_t b, CPUMIPSState *env) { int32_t temp; if ((a == 0x8000) && (b == 0x8000)) { temp = 0x7FFF0000; set_DSPControl_overflow_flag(1, 21, env); } else { temp = (int16_t)a * (int16_t)b; temp = temp << 1; } return (temp >> 16) & 0x0000FFFF; } static inline uint16_t mipsdsp_trunc16_sat16_round(int32_t a, CPUMIPSState *env) { uint16_t temp; /* * The value 0x00008000 will be added to the input Q31 value, and the code * needs to check if the addition causes an overflow. Since a positive value * is added, overflow can happen in one direction only. */ if (a > 0x7FFF7FFF) { temp = 0x7FFF; set_DSPControl_overflow_flag(1, 22, env); } else { temp = ((a + 0x8000) >> 16) & 0xFFFF; } return temp; } static inline uint8_t mipsdsp_sat8_reduce_precision(uint16_t a, CPUMIPSState *env) { uint16_t mag; uint32_t sign; sign = (a >> 15) & 0x01; mag = a & 0x7FFF; if (sign == 0) { if (mag > 0x7F80) { set_DSPControl_overflow_flag(1, 22, env); return 0xFF; } else { return (mag >> 7) & 0xFFFF; } } else { set_DSPControl_overflow_flag(1, 22, env); return 0x00; } } static inline uint8_t mipsdsp_lshift8(uint8_t a, uint8_t s, CPUMIPSState *env) { uint8_t discard; if (s != 0) { discard = a >> (8 - s); if (discard != 0x00) { set_DSPControl_overflow_flag(1, 22, env); } } return a << s; } static inline uint16_t mipsdsp_lshift16(uint16_t a, uint8_t s, CPUMIPSState *env) { uint16_t discard; if (s != 0) { discard = (int16_t)a >> (15 - s); if ((discard != 0x0000) && (discard != 0xFFFF)) { set_DSPControl_overflow_flag(1, 22, env); } } return a << s; } static inline uint32_t mipsdsp_lshift32(uint32_t a, uint8_t s, CPUMIPSState *env) { uint32_t discard; if (s == 0) { return a; } else { discard = (int32_t)a >> (31 - (s - 1)); if ((discard != 0x00000000) && (discard != 0xFFFFFFFF)) { set_DSPControl_overflow_flag(1, 22, env); } return a << s; } } static inline uint16_t mipsdsp_sat16_lshift(uint16_t a, uint8_t s, CPUMIPSState *env) { uint8_t sign; uint16_t discard; if (s == 0) { return a; } else { sign = (a >> 15) & 0x01; if (sign != 0) { discard = (((0x01 << (16 - s)) - 1) << s) | ((a >> (14 - (s - 1))) & ((0x01 << s) - 1)); } else { discard = a >> (14 - (s - 1)); } if ((discard != 0x0000) && (discard != 0xFFFF)) { set_DSPControl_overflow_flag(1, 22, env); return (sign == 0) ? 0x7FFF : 0x8000; } else { return a << s; } } } static inline uint32_t mipsdsp_sat32_lshift(uint32_t a, uint8_t s, CPUMIPSState *env) { uint8_t sign; uint32_t discard; if (s == 0) { return a; } else { sign = (a >> 31) & 0x01; if (sign != 0) { discard = (((0x01 << (32 - s)) - 1) << s) | ((a >> (30 - (s - 1))) & ((0x01 << s) - 1)); } else { discard = a >> (30 - (s - 1)); } if ((discard != 0x00000000) && (discard != 0xFFFFFFFF)) { set_DSPControl_overflow_flag(1, 22, env); return (sign == 0) ? 0x7FFFFFFF : 0x80000000; } else { return a << s; } } } static inline uint8_t mipsdsp_rnd8_rashift(uint8_t a, uint8_t s) { uint32_t temp; if (s == 0) { temp = (uint32_t)a << 1; } else { temp = (int32_t)(int8_t)a >> (s - 1); } return (temp + 1) >> 1; } static inline uint16_t mipsdsp_rnd16_rashift(uint16_t a, uint8_t s) { uint32_t temp; if (s == 0) { temp = (uint32_t)a << 1; } else { temp = (int32_t)(int16_t)a >> (s - 1); } return (temp + 1) >> 1; } static inline uint32_t mipsdsp_rnd32_rashift(uint32_t a, uint8_t s) { int64_t temp; if (s == 0) { temp = (uint64_t)a << 1; } else { temp = (int64_t)(int32_t)a >> (s - 1); } temp += 1; return (temp >> 1) & 0xFFFFFFFFull; } static inline uint16_t mipsdsp_sub_i16(int16_t a, int16_t b, CPUMIPSState *env) { int16_t temp; temp = a - b; if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x8000)) { set_DSPControl_overflow_flag(1, 20, env); } return temp; } static inline uint16_t mipsdsp_sat16_sub(int16_t a, int16_t b, CPUMIPSState *env) { int16_t temp; temp = a - b; if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x8000)) { if (a >= 0) { temp = 0x7FFF; } else { temp = 0x8000; } set_DSPControl_overflow_flag(1, 20, env); } return temp; } static inline uint32_t mipsdsp_sat32_sub(int32_t a, int32_t b, CPUMIPSState *env) { int32_t temp; temp = a - b; if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x80000000)) { if (a >= 0) { temp = 0x7FFFFFFF; } else { temp = 0x80000000; } set_DSPControl_overflow_flag(1, 20, env); } return temp & 0xFFFFFFFFull; } static inline uint16_t mipsdsp_rshift1_sub_q16(int16_t a, int16_t b) { int32_t temp; temp = (int32_t)a - (int32_t)b; return (temp >> 1) & 0x0000FFFF; } static inline uint16_t mipsdsp_rrshift1_sub_q16(int16_t a, int16_t b) { int32_t temp; temp = (int32_t)a - (int32_t)b; temp += 1; return (temp >> 1) & 0x0000FFFF; } static inline uint32_t mipsdsp_rshift1_sub_q32(int32_t a, int32_t b) { int64_t temp; temp = (int64_t)a - (int64_t)b; return (temp >> 1) & 0xFFFFFFFFull; } static inline uint32_t mipsdsp_rrshift1_sub_q32(int32_t a, int32_t b) { int64_t temp; temp = (int64_t)a - (int64_t)b; temp += 1; return (temp >> 1) & 0xFFFFFFFFull; } static inline uint16_t mipsdsp_sub_u16_u16(uint16_t a, uint16_t b, CPUMIPSState *env) { uint8_t temp16; uint32_t temp; temp = (uint32_t)a - (uint32_t)b; temp16 = (temp >> 16) & 0x01; if (temp16 == 1) { set_DSPControl_overflow_flag(1, 20, env); } return temp & 0x0000FFFF; } static inline uint16_t mipsdsp_satu16_sub_u16_u16(uint16_t a, uint16_t b, CPUMIPSState *env) { uint8_t temp16; uint32_t temp; temp = (uint32_t)a - (uint32_t)b; temp16 = (temp >> 16) & 0x01; if (temp16 == 1) { temp = 0x0000; set_DSPControl_overflow_flag(1, 20, env); } return temp & 0x0000FFFF; } static inline uint8_t mipsdsp_sub_u8(uint8_t a, uint8_t b, CPUMIPSState *env) { uint8_t temp8; uint16_t temp; temp = (uint16_t)a - (uint16_t)b; temp8 = (temp >> 8) & 0x01; if (temp8 == 1) { set_DSPControl_overflow_flag(1, 20, env); } return temp & 0x00FF; } static inline uint8_t mipsdsp_satu8_sub(uint8_t a, uint8_t b, CPUMIPSState *env) { uint8_t temp8; uint16_t temp; temp = (uint16_t)a - (uint16_t)b; temp8 = (temp >> 8) & 0x01; if (temp8 == 1) { temp = 0x00; set_DSPControl_overflow_flag(1, 20, env); } return temp & 0x00FF; } static inline uint32_t mipsdsp_sub32(int32_t a, int32_t b, CPUMIPSState *env) { int32_t temp; temp = a - b; if (MIPSDSP_OVERFLOW_SUB(a, b, temp, 0x80000000)) { set_DSPControl_overflow_flag(1, 20, env); } return temp; } static inline int32_t mipsdsp_add_i32(int32_t a, int32_t b, CPUMIPSState *env) { int32_t temp; temp = a + b; if (MIPSDSP_OVERFLOW_ADD(a, b, temp, 0x80000000)) { set_DSPControl_overflow_flag(1, 20, env); } return temp; } static inline int32_t mipsdsp_cmp_eq(int32_t a, int32_t b) { return a == b; } static inline int32_t mipsdsp_cmp_le(int32_t a, int32_t b) { return a <= b; } static inline int32_t mipsdsp_cmp_lt(int32_t a, int32_t b) { return a < b; } static inline int32_t mipsdsp_cmpu_eq(uint32_t a, uint32_t b) { return a == b; } static inline int32_t mipsdsp_cmpu_le(uint32_t a, uint32_t b) { return a <= b; } static inline int32_t mipsdsp_cmpu_lt(uint32_t a, uint32_t b) { return a < b; } /*** MIPS DSP internal functions end ***/ #define MIPSDSP_LHI 0xFFFFFFFF00000000ull #define MIPSDSP_LLO 0x00000000FFFFFFFFull #define MIPSDSP_HI 0xFFFF0000 #define MIPSDSP_LO 0x0000FFFF #define MIPSDSP_Q3 0xFF000000 #define MIPSDSP_Q2 0x00FF0000 #define MIPSDSP_Q1 0x0000FF00 #define MIPSDSP_Q0 0x000000FF #define MIPSDSP_SPLIT32_8(num, a, b, c, d) \ do { \ a = (num >> 24) & MIPSDSP_Q0; \ b = (num >> 16) & MIPSDSP_Q0; \ c = (num >> 8) & MIPSDSP_Q0; \ d = num & MIPSDSP_Q0; \ } while (0) #define MIPSDSP_SPLIT32_16(num, a, b) \ do { \ a = (num >> 16) & MIPSDSP_LO; \ b = num & MIPSDSP_LO; \ } while (0) #define MIPSDSP_RETURN32_8(a, b, c, d) ((target_long)(int32_t) \ (((uint32_t)a << 24) | \ (((uint32_t)b << 16) | \ (((uint32_t)c << 8) | \ ((uint32_t)d & 0xFF))))) #define MIPSDSP_RETURN32_16(a, b) ((target_long)(int32_t) \ (((uint32_t)a << 16) | \ ((uint32_t)b & 0xFFFF))) #ifdef TARGET_MIPS64 #define MIPSDSP_SPLIT64_16(num, a, b, c, d) \ do { \ a = (num >> 48) & MIPSDSP_LO; \ b = (num >> 32) & MIPSDSP_LO; \ c = (num >> 16) & MIPSDSP_LO; \ d = num & MIPSDSP_LO; \ } while (0) #define MIPSDSP_SPLIT64_32(num, a, b) \ do { \ a = (num >> 32) & MIPSDSP_LLO; \ b = num & MIPSDSP_LLO; \ } while (0) #define MIPSDSP_RETURN64_16(a, b, c, d) (((uint64_t)a << 48) | \ ((uint64_t)b << 32) | \ ((uint64_t)c << 16) | \ (uint64_t)d) #define MIPSDSP_RETURN64_32(a, b) (((uint64_t)a << 32) | (uint64_t)b) #endif /** DSP Arithmetic Sub-class insns **/ #define MIPSDSP32_UNOP_ENV(name, func, element) \ target_ulong helper_##name(target_ulong rt, CPUMIPSState *env) \ { \ DSP32Value dt; \ unsigned int i, n; \ \ n = sizeof(DSP32Value) / sizeof(dt.element[0]); \ dt.sw[0] = rt; \ \ for (i = 0; i < n; i++) { \ dt.element[i] = mipsdsp_##func(dt.element[i], env); \ } \ \ return (target_long)dt.sw[0]; \ } MIPSDSP32_UNOP_ENV(absq_s_ph, sat_abs16, sh) MIPSDSP32_UNOP_ENV(absq_s_qb, sat_abs8, sb) MIPSDSP32_UNOP_ENV(absq_s_w, sat_abs32, sw) #undef MIPSDSP32_UNOP_ENV #if defined(TARGET_MIPS64) #define MIPSDSP64_UNOP_ENV(name, func, element) \ target_ulong helper_##name(target_ulong rt, CPUMIPSState *env) \ { \ DSP64Value dt; \ unsigned int i, n; \ \ n = sizeof(DSP64Value) / sizeof(dt.element[0]); \ dt.sl[0] = rt; \ \ for (i = 0; i < n; i++) { \ dt.element[i] = mipsdsp_##func(dt.element[i], env); \ } \ \ return dt.sl[0]; \ } MIPSDSP64_UNOP_ENV(absq_s_ob, sat_abs8, sb) MIPSDSP64_UNOP_ENV(absq_s_qh, sat_abs16, sh) MIPSDSP64_UNOP_ENV(absq_s_pw, sat_abs32, sw) #undef MIPSDSP64_UNOP_ENV #endif #define MIPSDSP32_BINOP(name, func, element) \ target_ulong helper_##name(target_ulong rs, target_ulong rt) \ { \ DSP32Value ds, dt; \ unsigned int i, n; \ \ n = sizeof(DSP32Value) / sizeof(ds.element[0]); \ ds.sw[0] = rs; \ dt.sw[0] = rt; \ \ for (i = 0; i < n; i++) { \ ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i]); \ } \ \ return (target_long)ds.sw[0]; \ } MIPSDSP32_BINOP(addqh_ph, rshift1_add_q16, sh); MIPSDSP32_BINOP(addqh_r_ph, rrshift1_add_q16, sh); MIPSDSP32_BINOP(addqh_r_w, rrshift1_add_q32, sw); MIPSDSP32_BINOP(addqh_w, rshift1_add_q32, sw); MIPSDSP32_BINOP(adduh_qb, rshift1_add_u8, ub); MIPSDSP32_BINOP(adduh_r_qb, rrshift1_add_u8, ub); MIPSDSP32_BINOP(subqh_ph, rshift1_sub_q16, sh); MIPSDSP32_BINOP(subqh_r_ph, rrshift1_sub_q16, sh); MIPSDSP32_BINOP(subqh_r_w, rrshift1_sub_q32, sw); MIPSDSP32_BINOP(subqh_w, rshift1_sub_q32, sw); #undef MIPSDSP32_BINOP #define MIPSDSP32_BINOP_ENV(name, func, element) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ DSP32Value ds, dt; \ unsigned int i, n; \ \ n = sizeof(DSP32Value) / sizeof(ds.element[0]); \ ds.sw[0] = rs; \ dt.sw[0] = rt; \ \ for (i = 0 ; i < n ; i++) { \ ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i], env); \ } \ \ return (target_long)ds.sw[0]; \ } MIPSDSP32_BINOP_ENV(addq_ph, add_i16, sh) MIPSDSP32_BINOP_ENV(addq_s_ph, sat_add_i16, sh) MIPSDSP32_BINOP_ENV(addq_s_w, sat_add_i32, sw); MIPSDSP32_BINOP_ENV(addu_ph, add_u16, sh) MIPSDSP32_BINOP_ENV(addu_qb, add_u8, ub); MIPSDSP32_BINOP_ENV(addu_s_ph, sat_add_u16, sh) MIPSDSP32_BINOP_ENV(addu_s_qb, sat_add_u8, ub); MIPSDSP32_BINOP_ENV(subq_ph, sub_i16, sh); MIPSDSP32_BINOP_ENV(subq_s_ph, sat16_sub, sh); MIPSDSP32_BINOP_ENV(subq_s_w, sat32_sub, sw); MIPSDSP32_BINOP_ENV(subu_ph, sub_u16_u16, sh); MIPSDSP32_BINOP_ENV(subu_qb, sub_u8, ub); MIPSDSP32_BINOP_ENV(subu_s_ph, satu16_sub_u16_u16, sh); MIPSDSP32_BINOP_ENV(subu_s_qb, satu8_sub, ub); #undef MIPSDSP32_BINOP_ENV #ifdef TARGET_MIPS64 #define MIPSDSP64_BINOP(name, func, element) \ target_ulong helper_##name(target_ulong rs, target_ulong rt) \ { \ DSP64Value ds, dt; \ unsigned int i, n; \ \ n = sizeof(DSP64Value) / sizeof(ds.element[0]); \ ds.sl[0] = rs; \ dt.sl[0] = rt; \ \ for (i = 0 ; i < n ; i++) { \ ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i]); \ } \ \ return ds.sl[0]; \ } MIPSDSP64_BINOP(adduh_ob, rshift1_add_u8, ub); MIPSDSP64_BINOP(adduh_r_ob, rrshift1_add_u8, ub); MIPSDSP64_BINOP(subuh_ob, rshift1_sub_u8, ub); MIPSDSP64_BINOP(subuh_r_ob, rrshift1_sub_u8, ub); #undef MIPSDSP64_BINOP #define MIPSDSP64_BINOP_ENV(name, func, element) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ DSP64Value ds, dt; \ unsigned int i, n; \ \ n = sizeof(DSP64Value) / sizeof(ds.element[0]); \ ds.sl[0] = rs; \ dt.sl[0] = rt; \ \ for (i = 0 ; i < n ; i++) { \ ds.element[i] = mipsdsp_##func(ds.element[i], dt.element[i], env); \ } \ \ return ds.sl[0]; \ } MIPSDSP64_BINOP_ENV(addq_pw, add_i32, sw); MIPSDSP64_BINOP_ENV(addq_qh, add_i16, sh); MIPSDSP64_BINOP_ENV(addq_s_pw, sat_add_i32, sw); MIPSDSP64_BINOP_ENV(addq_s_qh, sat_add_i16, sh); MIPSDSP64_BINOP_ENV(addu_ob, add_u8, uh); MIPSDSP64_BINOP_ENV(addu_qh, add_u16, uh); MIPSDSP64_BINOP_ENV(addu_s_ob, sat_add_u8, uh); MIPSDSP64_BINOP_ENV(addu_s_qh, sat_add_u16, uh); MIPSDSP64_BINOP_ENV(subq_pw, sub32, sw); MIPSDSP64_BINOP_ENV(subq_qh, sub_i16, sh); MIPSDSP64_BINOP_ENV(subq_s_pw, sat32_sub, sw); MIPSDSP64_BINOP_ENV(subq_s_qh, sat16_sub, sh); MIPSDSP64_BINOP_ENV(subu_ob, sub_u8, uh); MIPSDSP64_BINOP_ENV(subu_qh, sub_u16_u16, uh); MIPSDSP64_BINOP_ENV(subu_s_ob, satu8_sub, uh); MIPSDSP64_BINOP_ENV(subu_s_qh, satu16_sub_u16_u16, uh); #undef MIPSDSP64_BINOP_ENV #endif #define SUBUH_QB(name, var) \ target_ulong helper_##name##_qb(target_ulong rs, target_ulong rt) \ { \ uint8_t rs3, rs2, rs1, rs0; \ uint8_t rt3, rt2, rt1, rt0; \ uint8_t tempD, tempC, tempB, tempA; \ \ MIPSDSP_SPLIT32_8(rs, rs3, rs2, rs1, rs0); \ MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \ \ tempD = ((uint16_t)rs3 - (uint16_t)rt3 + var) >> 1; \ tempC = ((uint16_t)rs2 - (uint16_t)rt2 + var) >> 1; \ tempB = ((uint16_t)rs1 - (uint16_t)rt1 + var) >> 1; \ tempA = ((uint16_t)rs0 - (uint16_t)rt0 + var) >> 1; \ \ return ((uint32_t)tempD << 24) | ((uint32_t)tempC << 16) | \ ((uint32_t)tempB << 8) | ((uint32_t)tempA); \ } SUBUH_QB(subuh, 0); SUBUH_QB(subuh_r, 1); #undef SUBUH_QB target_ulong helper_addsc(target_ulong rs, target_ulong rt, CPUMIPSState *env) { uint64_t temp, tempRs, tempRt; bool flag; tempRs = (uint64_t)rs & MIPSDSP_LLO; tempRt = (uint64_t)rt & MIPSDSP_LLO; temp = tempRs + tempRt; flag = (temp & 0x0100000000ull) >> 32; set_DSPControl_carryflag(flag, env); return (target_long)(int32_t)(temp & MIPSDSP_LLO); } target_ulong helper_addwc(target_ulong rs, target_ulong rt, CPUMIPSState *env) { uint32_t rd; int32_t temp32, temp31; int64_t tempL; tempL = (int64_t)(int32_t)rs + (int64_t)(int32_t)rt + get_DSPControl_carryflag(env); temp31 = (tempL >> 31) & 0x01; temp32 = (tempL >> 32) & 0x01; if (temp31 != temp32) { set_DSPControl_overflow_flag(1, 20, env); } rd = tempL & MIPSDSP_LLO; return (target_long)(int32_t)rd; } target_ulong helper_modsub(target_ulong rs, target_ulong rt) { int32_t decr; uint16_t lastindex; target_ulong rd; decr = rt & MIPSDSP_Q0; lastindex = (rt >> 8) & MIPSDSP_LO; if ((rs & MIPSDSP_LLO) == 0x00000000) { rd = (target_ulong)lastindex; } else { rd = rs - decr; } return rd; } target_ulong helper_raddu_w_qb(target_ulong rs) { target_ulong ret = 0; DSP32Value ds; unsigned int i; ds.uw[0] = rs; for (i = 0; i < 4; i++) { ret += ds.ub[i]; } return ret; } #if defined(TARGET_MIPS64) target_ulong helper_raddu_l_ob(target_ulong rs) { target_ulong ret = 0; DSP64Value ds; unsigned int i; ds.ul[0] = rs; for (i = 0; i < 8; i++) { ret += ds.ub[i]; } return ret; } #endif #define PRECR_QB_PH(name, a, b)\ target_ulong helper_##name##_qb_ph(target_ulong rs, target_ulong rt) \ { \ uint8_t tempD, tempC, tempB, tempA; \ \ tempD = (rs >> a) & MIPSDSP_Q0; \ tempC = (rs >> b) & MIPSDSP_Q0; \ tempB = (rt >> a) & MIPSDSP_Q0; \ tempA = (rt >> b) & MIPSDSP_Q0; \ \ return MIPSDSP_RETURN32_8(tempD, tempC, tempB, tempA); \ } PRECR_QB_PH(precr, 16, 0); PRECR_QB_PH(precrq, 24, 8); #undef PRECR_QB_OH target_ulong helper_precr_sra_ph_w(uint32_t sa, target_ulong rs, target_ulong rt) { uint16_t tempB, tempA; tempB = ((int32_t)rt >> sa) & MIPSDSP_LO; tempA = ((int32_t)rs >> sa) & MIPSDSP_LO; return MIPSDSP_RETURN32_16(tempB, tempA); } target_ulong helper_precr_sra_r_ph_w(uint32_t sa, target_ulong rs, target_ulong rt) { uint64_t tempB, tempA; /* If sa = 0, then (sa - 1) = -1 will case shift error, so we need else. */ if (sa == 0) { tempB = (rt & MIPSDSP_LO) << 1; tempA = (rs & MIPSDSP_LO) << 1; } else { tempB = ((int32_t)rt >> (sa - 1)) + 1; tempA = ((int32_t)rs >> (sa - 1)) + 1; } rt = (((tempB >> 1) & MIPSDSP_LO) << 16) | ((tempA >> 1) & MIPSDSP_LO); return (target_long)(int32_t)rt; } target_ulong helper_precrq_ph_w(target_ulong rs, target_ulong rt) { uint16_t tempB, tempA; tempB = (rs & MIPSDSP_HI) >> 16; tempA = (rt & MIPSDSP_HI) >> 16; return MIPSDSP_RETURN32_16(tempB, tempA); } target_ulong helper_precrq_rs_ph_w(target_ulong rs, target_ulong rt, CPUMIPSState *env) { uint16_t tempB, tempA; tempB = mipsdsp_trunc16_sat16_round(rs, env); tempA = mipsdsp_trunc16_sat16_round(rt, env); return MIPSDSP_RETURN32_16(tempB, tempA); } #if defined(TARGET_MIPS64) target_ulong helper_precr_ob_qh(target_ulong rs, target_ulong rt) { uint8_t rs6, rs4, rs2, rs0; uint8_t rt6, rt4, rt2, rt0; uint64_t temp; rs6 = (rs >> 48) & MIPSDSP_Q0; rs4 = (rs >> 32) & MIPSDSP_Q0; rs2 = (rs >> 16) & MIPSDSP_Q0; rs0 = rs & MIPSDSP_Q0; rt6 = (rt >> 48) & MIPSDSP_Q0; rt4 = (rt >> 32) & MIPSDSP_Q0; rt2 = (rt >> 16) & MIPSDSP_Q0; rt0 = rt & MIPSDSP_Q0; temp = ((uint64_t)rs6 << 56) | ((uint64_t)rs4 << 48) | ((uint64_t)rs2 << 40) | ((uint64_t)rs0 << 32) | ((uint64_t)rt6 << 24) | ((uint64_t)rt4 << 16) | ((uint64_t)rt2 << 8) | (uint64_t)rt0; return temp; } #define PRECR_QH_PW(name, var) \ target_ulong helper_precr_##name##_qh_pw(target_ulong rs, target_ulong rt, \ uint32_t sa) \ { \ uint16_t rs3, rs2, rs1, rs0; \ uint16_t rt3, rt2, rt1, rt0; \ uint16_t tempD, tempC, tempB, tempA; \ \ MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); \ MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \ \ /* When sa = 0, we use rt2, rt0, rs2, rs0; \ * when sa != 0, we use rt3, rt1, rs3, rs1. */ \ if (sa == 0) { \ tempD = rt2 << var; \ tempC = rt0 << var; \ tempB = rs2 << var; \ tempA = rs0 << var; \ } else { \ tempD = (((int16_t)rt3 >> sa) + var) >> var; \ tempC = (((int16_t)rt1 >> sa) + var) >> var; \ tempB = (((int16_t)rs3 >> sa) + var) >> var; \ tempA = (((int16_t)rs1 >> sa) + var) >> var; \ } \ \ return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \ } PRECR_QH_PW(sra, 0); PRECR_QH_PW(sra_r, 1); #undef PRECR_QH_PW target_ulong helper_precrq_ob_qh(target_ulong rs, target_ulong rt) { uint8_t rs6, rs4, rs2, rs0; uint8_t rt6, rt4, rt2, rt0; uint64_t temp; rs6 = (rs >> 56) & MIPSDSP_Q0; rs4 = (rs >> 40) & MIPSDSP_Q0; rs2 = (rs >> 24) & MIPSDSP_Q0; rs0 = (rs >> 8) & MIPSDSP_Q0; rt6 = (rt >> 56) & MIPSDSP_Q0; rt4 = (rt >> 40) & MIPSDSP_Q0; rt2 = (rt >> 24) & MIPSDSP_Q0; rt0 = (rt >> 8) & MIPSDSP_Q0; temp = ((uint64_t)rs6 << 56) | ((uint64_t)rs4 << 48) | ((uint64_t)rs2 << 40) | ((uint64_t)rs0 << 32) | ((uint64_t)rt6 << 24) | ((uint64_t)rt4 << 16) | ((uint64_t)rt2 << 8) | (uint64_t)rt0; return temp; } target_ulong helper_precrq_qh_pw(target_ulong rs, target_ulong rt) { uint16_t tempD, tempC, tempB, tempA; tempD = (rs >> 48) & MIPSDSP_LO; tempC = (rs >> 16) & MIPSDSP_LO; tempB = (rt >> 48) & MIPSDSP_LO; tempA = (rt >> 16) & MIPSDSP_LO; return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); } target_ulong helper_precrq_rs_qh_pw(target_ulong rs, target_ulong rt, CPUMIPSState *env) { uint32_t rs2, rs0; uint32_t rt2, rt0; uint16_t tempD, tempC, tempB, tempA; rs2 = (rs >> 32) & MIPSDSP_LLO; rs0 = rs & MIPSDSP_LLO; rt2 = (rt >> 32) & MIPSDSP_LLO; rt0 = rt & MIPSDSP_LLO; tempD = mipsdsp_trunc16_sat16_round(rs2, env); tempC = mipsdsp_trunc16_sat16_round(rs0, env); tempB = mipsdsp_trunc16_sat16_round(rt2, env); tempA = mipsdsp_trunc16_sat16_round(rt0, env); return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); } target_ulong helper_precrq_pw_l(target_ulong rs, target_ulong rt) { uint32_t tempB, tempA; tempB = (rs >> 32) & MIPSDSP_LLO; tempA = (rt >> 32) & MIPSDSP_LLO; return MIPSDSP_RETURN64_32(tempB, tempA); } #endif target_ulong helper_precrqu_s_qb_ph(target_ulong rs, target_ulong rt, CPUMIPSState *env) { uint8_t tempD, tempC, tempB, tempA; uint16_t rsh, rsl, rth, rtl; rsh = (rs & MIPSDSP_HI) >> 16; rsl = rs & MIPSDSP_LO; rth = (rt & MIPSDSP_HI) >> 16; rtl = rt & MIPSDSP_LO; tempD = mipsdsp_sat8_reduce_precision(rsh, env); tempC = mipsdsp_sat8_reduce_precision(rsl, env); tempB = mipsdsp_sat8_reduce_precision(rth, env); tempA = mipsdsp_sat8_reduce_precision(rtl, env); return MIPSDSP_RETURN32_8(tempD, tempC, tempB, tempA); } #if defined(TARGET_MIPS64) target_ulong helper_precrqu_s_ob_qh(target_ulong rs, target_ulong rt, CPUMIPSState *env) { int i; uint16_t rs3, rs2, rs1, rs0; uint16_t rt3, rt2, rt1, rt0; uint8_t temp[8]; uint64_t result; result = 0; MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); temp[7] = mipsdsp_sat8_reduce_precision(rs3, env); temp[6] = mipsdsp_sat8_reduce_precision(rs2, env); temp[5] = mipsdsp_sat8_reduce_precision(rs1, env); temp[4] = mipsdsp_sat8_reduce_precision(rs0, env); temp[3] = mipsdsp_sat8_reduce_precision(rt3, env); temp[2] = mipsdsp_sat8_reduce_precision(rt2, env); temp[1] = mipsdsp_sat8_reduce_precision(rt1, env); temp[0] = mipsdsp_sat8_reduce_precision(rt0, env); for (i = 0; i < 8; i++) { result |= (uint64_t)temp[i] << (8 * i); } return result; } #define PRECEQ_PW(name, a, b) \ target_ulong helper_preceq_pw_##name(target_ulong rt) \ { \ uint16_t tempB, tempA; \ uint32_t tempBI, tempAI; \ \ tempB = (rt >> a) & MIPSDSP_LO; \ tempA = (rt >> b) & MIPSDSP_LO; \ \ tempBI = (uint32_t)tempB << 16; \ tempAI = (uint32_t)tempA << 16; \ \ return MIPSDSP_RETURN64_32(tempBI, tempAI); \ } PRECEQ_PW(qhl, 48, 32); PRECEQ_PW(qhr, 16, 0); PRECEQ_PW(qhla, 48, 16); PRECEQ_PW(qhra, 32, 0); #undef PRECEQ_PW #endif #define PRECEQU_PH(name, a, b) \ target_ulong helper_precequ_ph_##name(target_ulong rt) \ { \ uint16_t tempB, tempA; \ \ tempB = (rt >> a) & MIPSDSP_Q0; \ tempA = (rt >> b) & MIPSDSP_Q0; \ \ tempB = tempB << 7; \ tempA = tempA << 7; \ \ return MIPSDSP_RETURN32_16(tempB, tempA); \ } PRECEQU_PH(qbl, 24, 16); PRECEQU_PH(qbr, 8, 0); PRECEQU_PH(qbla, 24, 8); PRECEQU_PH(qbra, 16, 0); #undef PRECEQU_PH #if defined(TARGET_MIPS64) #define PRECEQU_QH(name, a, b, c, d) \ target_ulong helper_precequ_qh_##name(target_ulong rt) \ { \ uint16_t tempD, tempC, tempB, tempA; \ \ tempD = (rt >> a) & MIPSDSP_Q0; \ tempC = (rt >> b) & MIPSDSP_Q0; \ tempB = (rt >> c) & MIPSDSP_Q0; \ tempA = (rt >> d) & MIPSDSP_Q0; \ \ tempD = tempD << 7; \ tempC = tempC << 7; \ tempB = tempB << 7; \ tempA = tempA << 7; \ \ return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \ } PRECEQU_QH(obl, 56, 48, 40, 32); PRECEQU_QH(obr, 24, 16, 8, 0); PRECEQU_QH(obla, 56, 40, 24, 8); PRECEQU_QH(obra, 48, 32, 16, 0); #undef PRECEQU_QH #endif #define PRECEU_PH(name, a, b) \ target_ulong helper_preceu_ph_##name(target_ulong rt) \ { \ uint16_t tempB, tempA; \ \ tempB = (rt >> a) & MIPSDSP_Q0; \ tempA = (rt >> b) & MIPSDSP_Q0; \ \ return MIPSDSP_RETURN32_16(tempB, tempA); \ } PRECEU_PH(qbl, 24, 16); PRECEU_PH(qbr, 8, 0); PRECEU_PH(qbla, 24, 8); PRECEU_PH(qbra, 16, 0); #undef PRECEU_PH #if defined(TARGET_MIPS64) #define PRECEU_QH(name, a, b, c, d) \ target_ulong helper_preceu_qh_##name(target_ulong rt) \ { \ uint16_t tempD, tempC, tempB, tempA; \ \ tempD = (rt >> a) & MIPSDSP_Q0; \ tempC = (rt >> b) & MIPSDSP_Q0; \ tempB = (rt >> c) & MIPSDSP_Q0; \ tempA = (rt >> d) & MIPSDSP_Q0; \ \ return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \ } PRECEU_QH(obl, 56, 48, 40, 32); PRECEU_QH(obr, 24, 16, 8, 0); PRECEU_QH(obla, 56, 40, 24, 8); PRECEU_QH(obra, 48, 32, 16, 0); #undef PRECEU_QH #endif /** DSP GPR-Based Shift Sub-class insns **/ #define SHIFT_QB(name, func) \ target_ulong helper_##name##_qb(target_ulong sa, target_ulong rt) \ { \ uint8_t rt3, rt2, rt1, rt0; \ \ sa = sa & 0x07; \ \ MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \ \ rt3 = mipsdsp_##func(rt3, sa); \ rt2 = mipsdsp_##func(rt2, sa); \ rt1 = mipsdsp_##func(rt1, sa); \ rt0 = mipsdsp_##func(rt0, sa); \ \ return MIPSDSP_RETURN32_8(rt3, rt2, rt1, rt0); \ } #define SHIFT_QB_ENV(name, func) \ target_ulong helper_##name##_qb(target_ulong sa, target_ulong rt,\ CPUMIPSState *env) \ { \ uint8_t rt3, rt2, rt1, rt0; \ \ sa = sa & 0x07; \ \ MIPSDSP_SPLIT32_8(rt, rt3, rt2, rt1, rt0); \ \ rt3 = mipsdsp_##func(rt3, sa, env); \ rt2 = mipsdsp_##func(rt2, sa, env); \ rt1 = mipsdsp_##func(rt1, sa, env); \ rt0 = mipsdsp_##func(rt0, sa, env); \ \ return MIPSDSP_RETURN32_8(rt3, rt2, rt1, rt0); \ } SHIFT_QB_ENV(shll, lshift8); SHIFT_QB(shrl, rshift_u8); SHIFT_QB(shra, rashift8); SHIFT_QB(shra_r, rnd8_rashift); #undef SHIFT_QB #undef SHIFT_QB_ENV #if defined(TARGET_MIPS64) #define SHIFT_OB(name, func) \ target_ulong helper_##name##_ob(target_ulong rt, target_ulong sa) \ { \ int i; \ uint8_t rt_t[8]; \ uint64_t temp; \ \ sa = sa & 0x07; \ temp = 0; \ \ for (i = 0; i < 8; i++) { \ rt_t[i] = (rt >> (8 * i)) & MIPSDSP_Q0; \ rt_t[i] = mipsdsp_##func(rt_t[i], sa); \ temp |= (uint64_t)rt_t[i] << (8 * i); \ } \ \ return temp; \ } #define SHIFT_OB_ENV(name, func) \ target_ulong helper_##name##_ob(target_ulong rt, target_ulong sa, \ CPUMIPSState *env) \ { \ int i; \ uint8_t rt_t[8]; \ uint64_t temp; \ \ sa = sa & 0x07; \ temp = 0; \ \ for (i = 0; i < 8; i++) { \ rt_t[i] = (rt >> (8 * i)) & MIPSDSP_Q0; \ rt_t[i] = mipsdsp_##func(rt_t[i], sa, env); \ temp |= (uint64_t)rt_t[i] << (8 * i); \ } \ \ return temp; \ } SHIFT_OB_ENV(shll, lshift8); SHIFT_OB(shrl, rshift_u8); SHIFT_OB(shra, rashift8); SHIFT_OB(shra_r, rnd8_rashift); #undef SHIFT_OB #undef SHIFT_OB_ENV #endif #define SHIFT_PH(name, func) \ target_ulong helper_##name##_ph(target_ulong sa, target_ulong rt, \ CPUMIPSState *env) \ { \ uint16_t rth, rtl; \ \ sa = sa & 0x0F; \ \ MIPSDSP_SPLIT32_16(rt, rth, rtl); \ \ rth = mipsdsp_##func(rth, sa, env); \ rtl = mipsdsp_##func(rtl, sa, env); \ \ return MIPSDSP_RETURN32_16(rth, rtl); \ } SHIFT_PH(shll, lshift16); SHIFT_PH(shll_s, sat16_lshift); #undef SHIFT_PH #if defined(TARGET_MIPS64) #define SHIFT_QH(name, func) \ target_ulong helper_##name##_qh(target_ulong rt, target_ulong sa) \ { \ uint16_t rt3, rt2, rt1, rt0; \ \ sa = sa & 0x0F; \ \ MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \ \ rt3 = mipsdsp_##func(rt3, sa); \ rt2 = mipsdsp_##func(rt2, sa); \ rt1 = mipsdsp_##func(rt1, sa); \ rt0 = mipsdsp_##func(rt0, sa); \ \ return MIPSDSP_RETURN64_16(rt3, rt2, rt1, rt0); \ } #define SHIFT_QH_ENV(name, func) \ target_ulong helper_##name##_qh(target_ulong rt, target_ulong sa, \ CPUMIPSState *env) \ { \ uint16_t rt3, rt2, rt1, rt0; \ \ sa = sa & 0x0F; \ \ MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \ \ rt3 = mipsdsp_##func(rt3, sa, env); \ rt2 = mipsdsp_##func(rt2, sa, env); \ rt1 = mipsdsp_##func(rt1, sa, env); \ rt0 = mipsdsp_##func(rt0, sa, env); \ \ return MIPSDSP_RETURN64_16(rt3, rt2, rt1, rt0); \ } SHIFT_QH_ENV(shll, lshift16); SHIFT_QH_ENV(shll_s, sat16_lshift); SHIFT_QH(shrl, rshift_u16); SHIFT_QH(shra, rashift16); SHIFT_QH(shra_r, rnd16_rashift); #undef SHIFT_QH #undef SHIFT_QH_ENV #endif #define SHIFT_W(name, func) \ target_ulong helper_##name##_w(target_ulong sa, target_ulong rt) \ { \ uint32_t temp; \ \ sa = sa & 0x1F; \ temp = mipsdsp_##func(rt, sa); \ \ return (target_long)(int32_t)temp; \ } #define SHIFT_W_ENV(name, func) \ target_ulong helper_##name##_w(target_ulong sa, target_ulong rt, \ CPUMIPSState *env) \ { \ uint32_t temp; \ \ sa = sa & 0x1F; \ temp = mipsdsp_##func(rt, sa, env); \ \ return (target_long)(int32_t)temp; \ } SHIFT_W_ENV(shll_s, sat32_lshift); SHIFT_W(shra_r, rnd32_rashift); #undef SHIFT_W #undef SHIFT_W_ENV #if defined(TARGET_MIPS64) #define SHIFT_PW(name, func) \ target_ulong helper_##name##_pw(target_ulong rt, target_ulong sa) \ { \ uint32_t rt1, rt0; \ \ sa = sa & 0x1F; \ MIPSDSP_SPLIT64_32(rt, rt1, rt0); \ \ rt1 = mipsdsp_##func(rt1, sa); \ rt0 = mipsdsp_##func(rt0, sa); \ \ return MIPSDSP_RETURN64_32(rt1, rt0); \ } #define SHIFT_PW_ENV(name, func) \ target_ulong helper_##name##_pw(target_ulong rt, target_ulong sa, \ CPUMIPSState *env) \ { \ uint32_t rt1, rt0; \ \ sa = sa & 0x1F; \ MIPSDSP_SPLIT64_32(rt, rt1, rt0); \ \ rt1 = mipsdsp_##func(rt1, sa, env); \ rt0 = mipsdsp_##func(rt0, sa, env); \ \ return MIPSDSP_RETURN64_32(rt1, rt0); \ } SHIFT_PW_ENV(shll, lshift32); SHIFT_PW_ENV(shll_s, sat32_lshift); SHIFT_PW(shra, rashift32); SHIFT_PW(shra_r, rnd32_rashift); #undef SHIFT_PW #undef SHIFT_PW_ENV #endif #define SHIFT_PH(name, func) \ target_ulong helper_##name##_ph(target_ulong sa, target_ulong rt) \ { \ uint16_t rth, rtl; \ \ sa = sa & 0x0F; \ \ MIPSDSP_SPLIT32_16(rt, rth, rtl); \ \ rth = mipsdsp_##func(rth, sa); \ rtl = mipsdsp_##func(rtl, sa); \ \ return MIPSDSP_RETURN32_16(rth, rtl); \ } SHIFT_PH(shrl, rshift_u16); SHIFT_PH(shra, rashift16); SHIFT_PH(shra_r, rnd16_rashift); #undef SHIFT_PH /** DSP Multiply Sub-class insns **/ /* Return value made up by two 16bits value. * FIXME give the macro a better name. */ #define MUL_RETURN32_16_PH(name, func, \ rsmov1, rsmov2, rsfilter, \ rtmov1, rtmov2, rtfilter) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ uint16_t rsB, rsA, rtB, rtA; \ \ rsB = (rs >> rsmov1) & rsfilter; \ rsA = (rs >> rsmov2) & rsfilter; \ rtB = (rt >> rtmov1) & rtfilter; \ rtA = (rt >> rtmov2) & rtfilter; \ \ rsB = mipsdsp_##func(rsB, rtB, env); \ rsA = mipsdsp_##func(rsA, rtA, env); \ \ return MIPSDSP_RETURN32_16(rsB, rsA); \ } MUL_RETURN32_16_PH(muleu_s_ph_qbl, mul_u8_u16, \ 24, 16, MIPSDSP_Q0, \ 16, 0, MIPSDSP_LO); MUL_RETURN32_16_PH(muleu_s_ph_qbr, mul_u8_u16, \ 8, 0, MIPSDSP_Q0, \ 16, 0, MIPSDSP_LO); MUL_RETURN32_16_PH(mulq_rs_ph, rndq15_mul_q15_q15, \ 16, 0, MIPSDSP_LO, \ 16, 0, MIPSDSP_LO); MUL_RETURN32_16_PH(mul_ph, mul_i16_i16, \ 16, 0, MIPSDSP_LO, \ 16, 0, MIPSDSP_LO); MUL_RETURN32_16_PH(mul_s_ph, sat16_mul_i16_i16, \ 16, 0, MIPSDSP_LO, \ 16, 0, MIPSDSP_LO); MUL_RETURN32_16_PH(mulq_s_ph, sat16_mul_q15_q15, \ 16, 0, MIPSDSP_LO, \ 16, 0, MIPSDSP_LO); #undef MUL_RETURN32_16_PH #define MUL_RETURN32_32_ph(name, func, movbits) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsh, rth; \ int32_t temp; \ \ rsh = (rs >> movbits) & MIPSDSP_LO; \ rth = (rt >> movbits) & MIPSDSP_LO; \ temp = mipsdsp_##func(rsh, rth, env); \ \ return (target_long)(int32_t)temp; \ } MUL_RETURN32_32_ph(muleq_s_w_phl, mul_q15_q15_overflowflag21, 16); MUL_RETURN32_32_ph(muleq_s_w_phr, mul_q15_q15_overflowflag21, 0); #undef MUL_RETURN32_32_ph #define MUL_VOID_PH(name, use_ac_env) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsh, rsl, rth, rtl; \ int32_t tempB, tempA; \ int64_t acc, dotp; \ \ MIPSDSP_SPLIT32_16(rs, rsh, rsl); \ MIPSDSP_SPLIT32_16(rt, rth, rtl); \ \ if (use_ac_env == 1) { \ tempB = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \ tempA = mipsdsp_mul_q15_q15(ac, rsl, rtl, env); \ } else { \ tempB = mipsdsp_mul_u16_u16(rsh, rth); \ tempA = mipsdsp_mul_u16_u16(rsl, rtl); \ } \ \ dotp = (int64_t)tempB - (int64_t)tempA; \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ dotp = dotp + acc; \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((dotp & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t)(dotp & MIPSDSP_LLO); \ } MUL_VOID_PH(mulsaq_s_w_ph, 1); MUL_VOID_PH(mulsa_w_ph, 0); #undef MUL_VOID_PH #if defined(TARGET_MIPS64) #define MUL_RETURN64_16_QH(name, func, \ rsmov1, rsmov2, rsmov3, rsmov4, rsfilter, \ rtmov1, rtmov2, rtmov3, rtmov4, rtfilter) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ uint16_t rs3, rs2, rs1, rs0; \ uint16_t rt3, rt2, rt1, rt0; \ uint16_t tempD, tempC, tempB, tempA; \ \ rs3 = (rs >> rsmov1) & rsfilter; \ rs2 = (rs >> rsmov2) & rsfilter; \ rs1 = (rs >> rsmov3) & rsfilter; \ rs0 = (rs >> rsmov4) & rsfilter; \ rt3 = (rt >> rtmov1) & rtfilter; \ rt2 = (rt >> rtmov2) & rtfilter; \ rt1 = (rt >> rtmov3) & rtfilter; \ rt0 = (rt >> rtmov4) & rtfilter; \ \ tempD = mipsdsp_##func(rs3, rt3, env); \ tempC = mipsdsp_##func(rs2, rt2, env); \ tempB = mipsdsp_##func(rs1, rt1, env); \ tempA = mipsdsp_##func(rs0, rt0, env); \ \ return MIPSDSP_RETURN64_16(tempD, tempC, tempB, tempA); \ } MUL_RETURN64_16_QH(muleu_s_qh_obl, mul_u8_u16, \ 56, 48, 40, 32, MIPSDSP_Q0, \ 48, 32, 16, 0, MIPSDSP_LO); MUL_RETURN64_16_QH(muleu_s_qh_obr, mul_u8_u16, \ 24, 16, 8, 0, MIPSDSP_Q0, \ 48, 32, 16, 0, MIPSDSP_LO); MUL_RETURN64_16_QH(mulq_rs_qh, rndq15_mul_q15_q15, \ 48, 32, 16, 0, MIPSDSP_LO, \ 48, 32, 16, 0, MIPSDSP_LO); #undef MUL_RETURN64_16_QH #define MUL_RETURN64_32_QH(name, \ rsmov1, rsmov2, \ rtmov1, rtmov2) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ uint16_t rsB, rsA; \ uint16_t rtB, rtA; \ uint32_t tempB, tempA; \ \ rsB = (rs >> rsmov1) & MIPSDSP_LO; \ rsA = (rs >> rsmov2) & MIPSDSP_LO; \ rtB = (rt >> rtmov1) & MIPSDSP_LO; \ rtA = (rt >> rtmov2) & MIPSDSP_LO; \ \ tempB = mipsdsp_mul_q15_q15(5, rsB, rtB, env); \ tempA = mipsdsp_mul_q15_q15(5, rsA, rtA, env); \ \ return ((uint64_t)tempB << 32) | (uint64_t)tempA; \ } MUL_RETURN64_32_QH(muleq_s_pw_qhl, 48, 32, 48, 32); MUL_RETURN64_32_QH(muleq_s_pw_qhr, 16, 0, 16, 0); #undef MUL_RETURN64_32_QH void helper_mulsaq_s_w_qh(target_ulong rs, target_ulong rt, uint32_t ac, CPUMIPSState *env) { int16_t rs3, rs2, rs1, rs0; int16_t rt3, rt2, rt1, rt0; int32_t tempD, tempC, tempB, tempA; int64_t acc[2]; int64_t temp[2]; int64_t temp_sum; MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); tempD = mipsdsp_mul_q15_q15(ac, rs3, rt3, env); tempC = mipsdsp_mul_q15_q15(ac, rs2, rt2, env); tempB = mipsdsp_mul_q15_q15(ac, rs1, rt1, env); tempA = mipsdsp_mul_q15_q15(ac, rs0, rt0, env); temp[0] = ((int32_t)tempD - (int32_t)tempC) + ((int32_t)tempB - (int32_t)tempA); temp[0] = (int64_t)(temp[0] << 30) >> 30; if (((temp[0] >> 33) & 0x01) == 0) { temp[1] = 0x00; } else { temp[1] = ~0ull; } acc[0] = env->active_tc.LO[ac]; acc[1] = env->active_tc.HI[ac]; temp_sum = acc[0] + temp[0]; if (((uint64_t)temp_sum < (uint64_t)acc[0]) && ((uint64_t)temp_sum < (uint64_t)temp[0])) { acc[1] += 1; } acc[0] = temp_sum; acc[1] += temp[1]; env->active_tc.HI[ac] = acc[1]; env->active_tc.LO[ac] = acc[0]; } #endif #define DP_QB(name, func, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ uint8_t rs3, rs2; \ uint8_t rt3, rt2; \ uint16_t tempB, tempA; \ uint64_t tempC, dotp; \ \ rs3 = (rs >> rsmov1) & MIPSDSP_Q0; \ rs2 = (rs >> rsmov2) & MIPSDSP_Q0; \ rt3 = (rt >> rtmov1) & MIPSDSP_Q0; \ rt2 = (rt >> rtmov2) & MIPSDSP_Q0; \ tempB = mipsdsp_##func(rs3, rt3); \ tempA = mipsdsp_##func(rs2, rt2); \ dotp = (int64_t)tempB + (int64_t)tempA; \ if (is_add) { \ tempC = (((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO)) \ + dotp; \ } else { \ tempC = (((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO)) \ - dotp; \ } \ \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((tempC & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t)(tempC & MIPSDSP_LLO); \ } DP_QB(dpau_h_qbl, mul_u8_u8, 1, 24, 16, 24, 16); DP_QB(dpau_h_qbr, mul_u8_u8, 1, 8, 0, 8, 0); DP_QB(dpsu_h_qbl, mul_u8_u8, 0, 24, 16, 24, 16); DP_QB(dpsu_h_qbr, mul_u8_u8, 0, 8, 0, 8, 0); #undef DP_QB #if defined(TARGET_MIPS64) #define DP_OB(name, add_sub, \ rsmov1, rsmov2, rsmov3, rsmov4, \ rtmov1, rtmov2, rtmov3, rtmov4) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ uint8_t rsD, rsC, rsB, rsA; \ uint8_t rtD, rtC, rtB, rtA; \ uint16_t tempD, tempC, tempB, tempA; \ uint64_t temp[2]; \ uint64_t acc[2]; \ uint64_t temp_sum; \ \ temp[0] = 0; \ temp[1] = 0; \ \ rsD = (rs >> rsmov1) & MIPSDSP_Q0; \ rsC = (rs >> rsmov2) & MIPSDSP_Q0; \ rsB = (rs >> rsmov3) & MIPSDSP_Q0; \ rsA = (rs >> rsmov4) & MIPSDSP_Q0; \ rtD = (rt >> rtmov1) & MIPSDSP_Q0; \ rtC = (rt >> rtmov2) & MIPSDSP_Q0; \ rtB = (rt >> rtmov3) & MIPSDSP_Q0; \ rtA = (rt >> rtmov4) & MIPSDSP_Q0; \ \ tempD = mipsdsp_mul_u8_u8(rsD, rtD); \ tempC = mipsdsp_mul_u8_u8(rsC, rtC); \ tempB = mipsdsp_mul_u8_u8(rsB, rtB); \ tempA = mipsdsp_mul_u8_u8(rsA, rtA); \ \ temp[0] = (uint64_t)tempD + (uint64_t)tempC + \ (uint64_t)tempB + (uint64_t)tempA; \ \ acc[0] = env->active_tc.LO[ac]; \ acc[1] = env->active_tc.HI[ac]; \ \ if (add_sub) { \ temp_sum = acc[0] + temp[0]; \ if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \ ((uint64_t)temp_sum < (uint64_t)temp[0])) { \ acc[1] += 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] + temp[1]; \ } else { \ temp_sum = acc[0] - temp[0]; \ if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \ acc[1] -= 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] - temp[1]; \ } \ \ env->active_tc.HI[ac] = temp[1]; \ env->active_tc.LO[ac] = temp[0]; \ } DP_OB(dpau_h_obl, 1, 56, 48, 40, 32, 56, 48, 40, 32); DP_OB(dpau_h_obr, 1, 24, 16, 8, 0, 24, 16, 8, 0); DP_OB(dpsu_h_obl, 0, 56, 48, 40, 32, 56, 48, 40, 32); DP_OB(dpsu_h_obr, 0, 24, 16, 8, 0, 24, 16, 8, 0); #undef DP_OB #endif #define DP_NOFUNC_PH(name, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsB, rsA, rtB, rtA; \ int32_t tempA, tempB; \ int64_t acc; \ \ rsB = (rs >> rsmov1) & MIPSDSP_LO; \ rsA = (rs >> rsmov2) & MIPSDSP_LO; \ rtB = (rt >> rtmov1) & MIPSDSP_LO; \ rtA = (rt >> rtmov2) & MIPSDSP_LO; \ \ tempB = (int32_t)rsB * (int32_t)rtB; \ tempA = (int32_t)rsA * (int32_t)rtA; \ \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ \ if (is_add) { \ acc = acc + ((int64_t)tempB + (int64_t)tempA); \ } else { \ acc = acc - ((int64_t)tempB + (int64_t)tempA); \ } \ \ env->active_tc.HI[ac] = (target_long)(int32_t)((acc & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t)(acc & MIPSDSP_LLO); \ } DP_NOFUNC_PH(dpa_w_ph, 1, 16, 0, 16, 0); DP_NOFUNC_PH(dpax_w_ph, 1, 16, 0, 0, 16); DP_NOFUNC_PH(dps_w_ph, 0, 16, 0, 16, 0); DP_NOFUNC_PH(dpsx_w_ph, 0, 16, 0, 0, 16); #undef DP_NOFUNC_PH #define DP_HASFUNC_PH(name, is_add, rsmov1, rsmov2, rtmov1, rtmov2) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsB, rsA, rtB, rtA; \ int32_t tempB, tempA; \ int64_t acc, dotp; \ \ rsB = (rs >> rsmov1) & MIPSDSP_LO; \ rsA = (rs >> rsmov2) & MIPSDSP_LO; \ rtB = (rt >> rtmov1) & MIPSDSP_LO; \ rtA = (rt >> rtmov2) & MIPSDSP_LO; \ \ tempB = mipsdsp_mul_q15_q15(ac, rsB, rtB, env); \ tempA = mipsdsp_mul_q15_q15(ac, rsA, rtA, env); \ \ dotp = (int64_t)tempB + (int64_t)tempA; \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ \ if (is_add) { \ acc = acc + dotp; \ } else { \ acc = acc - dotp; \ } \ \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((acc & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t) \ (acc & MIPSDSP_LLO); \ } DP_HASFUNC_PH(dpaq_s_w_ph, 1, 16, 0, 16, 0); DP_HASFUNC_PH(dpaqx_s_w_ph, 1, 16, 0, 0, 16); DP_HASFUNC_PH(dpsq_s_w_ph, 0, 16, 0, 16, 0); DP_HASFUNC_PH(dpsqx_s_w_ph, 0, 16, 0, 0, 16); #undef DP_HASFUNC_PH #define DP_128OPERATION_PH(name, is_add) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsh, rsl, rth, rtl; \ int32_t tempB, tempA, tempC62_31, tempC63; \ int64_t acc, dotp, tempC; \ \ MIPSDSP_SPLIT32_16(rs, rsh, rsl); \ MIPSDSP_SPLIT32_16(rt, rth, rtl); \ \ tempB = mipsdsp_mul_q15_q15(ac, rsh, rtl, env); \ tempA = mipsdsp_mul_q15_q15(ac, rsl, rth, env); \ \ dotp = (int64_t)tempB + (int64_t)tempA; \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ if (is_add) { \ tempC = acc + dotp; \ } else { \ tempC = acc - dotp; \ } \ tempC63 = (tempC >> 63) & 0x01; \ tempC62_31 = (tempC >> 31) & 0xFFFFFFFF; \ \ if ((tempC63 == 0) && (tempC62_31 != 0x00000000)) { \ tempC = 0x7FFFFFFF; \ set_DSPControl_overflow_flag(1, 16 + ac, env); \ } \ \ if ((tempC63 == 1) && (tempC62_31 != 0xFFFFFFFF)) { \ tempC = (int64_t)(int32_t)0x80000000; \ set_DSPControl_overflow_flag(1, 16 + ac, env); \ } \ \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((tempC & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t) \ (tempC & MIPSDSP_LLO); \ } DP_128OPERATION_PH(dpaqx_sa_w_ph, 1); DP_128OPERATION_PH(dpsqx_sa_w_ph, 0); #undef DP_128OPERATION_HP #if defined(TARGET_MIPS64) #define DP_QH(name, is_add, use_ac_env) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int32_t rs3, rs2, rs1, rs0; \ int32_t rt3, rt2, rt1, rt0; \ int32_t tempD, tempC, tempB, tempA; \ int64_t acc[2]; \ int64_t temp[2]; \ int64_t temp_sum; \ \ MIPSDSP_SPLIT64_16(rs, rs3, rs2, rs1, rs0); \ MIPSDSP_SPLIT64_16(rt, rt3, rt2, rt1, rt0); \ \ if (use_ac_env) { \ tempD = mipsdsp_mul_q15_q15(ac, rs3, rt3, env); \ tempC = mipsdsp_mul_q15_q15(ac, rs2, rt2, env); \ tempB = mipsdsp_mul_q15_q15(ac, rs1, rt1, env); \ tempA = mipsdsp_mul_q15_q15(ac, rs0, rt0, env); \ } else { \ tempD = mipsdsp_mul_u16_u16(rs3, rt3); \ tempC = mipsdsp_mul_u16_u16(rs2, rt2); \ tempB = mipsdsp_mul_u16_u16(rs1, rt1); \ tempA = mipsdsp_mul_u16_u16(rs0, rt0); \ } \ \ temp[0] = (int64_t)tempD + (int64_t)tempC + \ (int64_t)tempB + (int64_t)tempA; \ \ if (temp[0] >= 0) { \ temp[1] = 0; \ } else { \ temp[1] = ~0ull; \ } \ \ acc[1] = env->active_tc.HI[ac]; \ acc[0] = env->active_tc.LO[ac]; \ \ if (is_add) { \ temp_sum = acc[0] + temp[0]; \ if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \ ((uint64_t)temp_sum < (uint64_t)temp[0])) { \ acc[1] = acc[1] + 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] + temp[1]; \ } else { \ temp_sum = acc[0] - temp[0]; \ if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \ acc[1] = acc[1] - 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] - temp[1]; \ } \ \ env->active_tc.HI[ac] = temp[1]; \ env->active_tc.LO[ac] = temp[0]; \ } DP_QH(dpa_w_qh, 1, 0); DP_QH(dpaq_s_w_qh, 1, 1); DP_QH(dps_w_qh, 0, 0); DP_QH(dpsq_s_w_qh, 0, 1); #undef DP_QH #endif #define DP_L_W(name, is_add) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int32_t temp63; \ int64_t dotp, acc; \ uint64_t temp; \ bool overflow; \ \ dotp = mipsdsp_mul_q31_q31(ac, rs, rt, env); \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ if (is_add) { \ temp = acc + dotp; \ overflow = MIPSDSP_OVERFLOW_ADD((uint64_t)acc, (uint64_t)dotp, \ temp, (0x01ull << 63)); \ } else { \ temp = acc - dotp; \ overflow = MIPSDSP_OVERFLOW_SUB((uint64_t)acc, (uint64_t)dotp, \ temp, (0x01ull << 63)); \ } \ \ if (overflow) { \ temp63 = (temp >> 63) & 0x01; \ if (temp63 == 1) { \ temp = (0x01ull << 63) - 1; \ } else { \ temp = 0x01ull << 63; \ } \ \ set_DSPControl_overflow_flag(1, 16 + ac, env); \ } \ \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((temp & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t) \ (temp & MIPSDSP_LLO); \ } DP_L_W(dpaq_sa_l_w, 1); DP_L_W(dpsq_sa_l_w, 0); #undef DP_L_W #if defined(TARGET_MIPS64) #define DP_L_PW(name, func) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int32_t rs1, rs0; \ int32_t rt1, rt0; \ int64_t tempB[2], tempA[2]; \ int64_t temp[2]; \ int64_t acc[2]; \ int64_t temp_sum; \ \ temp[0] = 0; \ temp[1] = 0; \ \ MIPSDSP_SPLIT64_32(rs, rs1, rs0); \ MIPSDSP_SPLIT64_32(rt, rt1, rt0); \ \ tempB[0] = mipsdsp_mul_q31_q31(ac, rs1, rt1, env); \ tempA[0] = mipsdsp_mul_q31_q31(ac, rs0, rt0, env); \ \ if (tempB[0] >= 0) { \ tempB[1] = 0x00; \ } else { \ tempB[1] = ~0ull; \ } \ \ if (tempA[0] >= 0) { \ tempA[1] = 0x00; \ } else { \ tempA[1] = ~0ull; \ } \ \ temp_sum = tempB[0] + tempA[0]; \ if (((uint64_t)temp_sum < (uint64_t)tempB[0]) && \ ((uint64_t)temp_sum < (uint64_t)tempA[0])) { \ temp[1] += 1; \ } \ temp[0] = temp_sum; \ temp[1] += tempB[1] + tempA[1]; \ \ mipsdsp_##func(acc, ac, temp, env); \ \ env->active_tc.HI[ac] = acc[1]; \ env->active_tc.LO[ac] = acc[0]; \ } DP_L_PW(dpaq_sa_l_pw, sat64_acc_add_q63); DP_L_PW(dpsq_sa_l_pw, sat64_acc_sub_q63); #undef DP_L_PW void helper_mulsaq_s_l_pw(target_ulong rs, target_ulong rt, uint32_t ac, CPUMIPSState *env) { int32_t rs1, rs0; int32_t rt1, rt0; int64_t tempB[2], tempA[2]; int64_t temp[2]; int64_t acc[2]; int64_t temp_sum; rs1 = (rs >> 32) & MIPSDSP_LLO; rs0 = rs & MIPSDSP_LLO; rt1 = (rt >> 32) & MIPSDSP_LLO; rt0 = rt & MIPSDSP_LLO; tempB[0] = mipsdsp_mul_q31_q31(ac, rs1, rt1, env); tempA[0] = mipsdsp_mul_q31_q31(ac, rs0, rt0, env); if (tempB[0] >= 0) { tempB[1] = 0x00; } else { tempB[1] = ~0ull; } if (tempA[0] >= 0) { tempA[1] = 0x00; } else { tempA[1] = ~0ull; } acc[0] = env->active_tc.LO[ac]; acc[1] = env->active_tc.HI[ac]; temp_sum = tempB[0] - tempA[0]; if ((uint64_t)temp_sum > (uint64_t)tempB[0]) { tempB[1] -= 1; } temp[0] = temp_sum; temp[1] = tempB[1] - tempA[1]; if ((temp[1] & 0x01) == 0) { temp[1] = 0x00; } else { temp[1] = ~0ull; } temp_sum = acc[0] + temp[0]; if (((uint64_t)temp_sum < (uint64_t)acc[0]) && ((uint64_t)temp_sum < (uint64_t)temp[0])) { acc[1] += 1; } acc[0] = temp_sum; acc[1] += temp[1]; env->active_tc.HI[ac] = acc[1]; env->active_tc.LO[ac] = acc[0]; } #endif #define MAQ_S_W(name, mov) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsh, rth; \ int32_t tempA; \ int64_t tempL, acc; \ \ rsh = (rs >> mov) & MIPSDSP_LO; \ rth = (rt >> mov) & MIPSDSP_LO; \ tempA = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \ acc = ((uint64_t)env->active_tc.HI[ac] << 32) | \ ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); \ tempL = (int64_t)tempA + acc; \ env->active_tc.HI[ac] = (target_long)(int32_t) \ ((tempL & MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t) \ (tempL & MIPSDSP_LLO); \ } MAQ_S_W(maq_s_w_phl, 16); MAQ_S_W(maq_s_w_phr, 0); #undef MAQ_S_W #define MAQ_SA_W(name, mov) \ void helper_##name(uint32_t ac, target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int16_t rsh, rth; \ int32_t tempA; \ \ rsh = (rs >> mov) & MIPSDSP_LO; \ rth = (rt >> mov) & MIPSDSP_LO; \ tempA = mipsdsp_mul_q15_q15(ac, rsh, rth, env); \ tempA = mipsdsp_sat32_acc_q31(ac, tempA, env); \ \ env->active_tc.HI[ac] = (target_long)(int32_t)(((int64_t)tempA & \ MIPSDSP_LHI) >> 32); \ env->active_tc.LO[ac] = (target_long)(int32_t)((int64_t)tempA & \ MIPSDSP_LLO); \ } MAQ_SA_W(maq_sa_w_phl, 16); MAQ_SA_W(maq_sa_w_phr, 0); #undef MAQ_SA_W #define MULQ_W(name, addvar) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int32_t rs_t, rt_t; \ int32_t tempI; \ int64_t tempL; \ \ rs_t = rs & MIPSDSP_LLO; \ rt_t = rt & MIPSDSP_LLO; \ \ if ((rs_t == 0x80000000) && (rt_t == 0x80000000)) { \ tempL = 0x7FFFFFFF00000000ull; \ set_DSPControl_overflow_flag(1, 21, env); \ } else { \ tempL = ((int64_t)rs_t * (int64_t)rt_t) << 1; \ tempL += addvar; \ } \ tempI = (tempL & MIPSDSP_LHI) >> 32; \ \ return (target_long)(int32_t)tempI; \ } MULQ_W(mulq_s_w, 0); MULQ_W(mulq_rs_w, 0x80000000ull); #undef MULQ_W #if defined(TARGET_MIPS64) #define MAQ_S_W_QH(name, mov) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int16_t rs_t, rt_t; \ int32_t temp_mul; \ int64_t temp[2]; \ int64_t acc[2]; \ int64_t temp_sum; \ \ temp[0] = 0; \ temp[1] = 0; \ \ rs_t = (rs >> mov) & MIPSDSP_LO; \ rt_t = (rt >> mov) & MIPSDSP_LO; \ temp_mul = mipsdsp_mul_q15_q15(ac, rs_t, rt_t, env); \ \ temp[0] = (int64_t)temp_mul; \ if (temp[0] >= 0) { \ temp[1] = 0x00; \ } else { \ temp[1] = ~0ull; \ } \ \ acc[0] = env->active_tc.LO[ac]; \ acc[1] = env->active_tc.HI[ac]; \ \ temp_sum = acc[0] + temp[0]; \ if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \ ((uint64_t)temp_sum < (uint64_t)temp[0])) { \ acc[1] += 1; \ } \ acc[0] = temp_sum; \ acc[1] += temp[1]; \ \ env->active_tc.HI[ac] = acc[1]; \ env->active_tc.LO[ac] = acc[0]; \ } MAQ_S_W_QH(maq_s_w_qhll, 48); MAQ_S_W_QH(maq_s_w_qhlr, 32); MAQ_S_W_QH(maq_s_w_qhrl, 16); MAQ_S_W_QH(maq_s_w_qhrr, 0); #undef MAQ_S_W_QH #define MAQ_SA_W(name, mov) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int16_t rs_t, rt_t; \ int32_t temp; \ int64_t acc[2]; \ \ rs_t = (rs >> mov) & MIPSDSP_LO; \ rt_t = (rt >> mov) & MIPSDSP_LO; \ temp = mipsdsp_mul_q15_q15(ac, rs_t, rt_t, env); \ temp = mipsdsp_sat32_acc_q31(ac, temp, env); \ \ acc[0] = (int64_t)(int32_t)temp; \ if (acc[0] >= 0) { \ acc[1] = 0x00; \ } else { \ acc[1] = ~0ull; \ } \ \ env->active_tc.HI[ac] = acc[1]; \ env->active_tc.LO[ac] = acc[0]; \ } MAQ_SA_W(maq_sa_w_qhll, 48); MAQ_SA_W(maq_sa_w_qhlr, 32); MAQ_SA_W(maq_sa_w_qhrl, 16); MAQ_SA_W(maq_sa_w_qhrr, 0); #undef MAQ_SA_W #define MAQ_S_L_PW(name, mov) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int32_t rs_t, rt_t; \ int64_t temp[2]; \ int64_t acc[2]; \ int64_t temp_sum; \ \ temp[0] = 0; \ temp[1] = 0; \ \ rs_t = (rs >> mov) & MIPSDSP_LLO; \ rt_t = (rt >> mov) & MIPSDSP_LLO; \ \ temp[0] = mipsdsp_mul_q31_q31(ac, rs_t, rt_t, env); \ if (temp[0] >= 0) { \ temp[1] = 0x00; \ } else { \ temp[1] = ~0ull; \ } \ \ acc[0] = env->active_tc.LO[ac]; \ acc[1] = env->active_tc.HI[ac]; \ \ temp_sum = acc[0] + temp[0]; \ if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \ ((uint64_t)temp_sum < (uint64_t)temp[0])) { \ acc[1] += 1; \ } \ acc[0] = temp_sum; \ acc[1] += temp[1]; \ \ env->active_tc.HI[ac] = acc[1]; \ env->active_tc.LO[ac] = acc[0]; \ } MAQ_S_L_PW(maq_s_l_pwl, 32); MAQ_S_L_PW(maq_s_l_pwr, 0); #undef MAQ_S_L_PW #define DM_OPERATE(name, func, is_add, sigext) \ void helper_##name(target_ulong rs, target_ulong rt, uint32_t ac, \ CPUMIPSState *env) \ { \ int32_t rs1, rs0; \ int32_t rt1, rt0; \ int64_t tempBL[2], tempAL[2]; \ int64_t acc[2]; \ int64_t temp[2]; \ int64_t temp_sum; \ \ temp[0] = 0x00; \ temp[1] = 0x00; \ \ MIPSDSP_SPLIT64_32(rs, rs1, rs0); \ MIPSDSP_SPLIT64_32(rt, rt1, rt0); \ \ if (sigext) { \ tempBL[0] = (int64_t)mipsdsp_##func(rs1, rt1); \ tempAL[0] = (int64_t)mipsdsp_##func(rs0, rt0); \ \ if (tempBL[0] >= 0) { \ tempBL[1] = 0x0; \ } else { \ tempBL[1] = ~0ull; \ } \ \ if (tempAL[0] >= 0) { \ tempAL[1] = 0x0; \ } else { \ tempAL[1] = ~0ull; \ } \ } else { \ tempBL[0] = mipsdsp_##func(rs1, rt1); \ tempAL[0] = mipsdsp_##func(rs0, rt0); \ tempBL[1] = 0; \ tempAL[1] = 0; \ } \ \ acc[1] = env->active_tc.HI[ac]; \ acc[0] = env->active_tc.LO[ac]; \ \ temp_sum = tempBL[0] + tempAL[0]; \ if (((uint64_t)temp_sum < (uint64_t)tempBL[0]) && \ ((uint64_t)temp_sum < (uint64_t)tempAL[0])) { \ temp[1] += 1; \ } \ temp[0] = temp_sum; \ temp[1] += tempBL[1] + tempAL[1]; \ \ if (is_add) { \ temp_sum = acc[0] + temp[0]; \ if (((uint64_t)temp_sum < (uint64_t)acc[0]) && \ ((uint64_t)temp_sum < (uint64_t)temp[0])) { \ acc[1] += 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] + temp[1]; \ } else { \ temp_sum = acc[0] - temp[0]; \ if ((uint64_t)temp_sum > (uint64_t)acc[0]) { \ acc[1] -= 1; \ } \ temp[0] = temp_sum; \ temp[1] = acc[1] - temp[1]; \ } \ \ env->active_tc.HI[ac] = temp[1]; \ env->active_tc.LO[ac] = temp[0]; \ } DM_OPERATE(dmadd, mul_i32_i32, 1, 1); DM_OPERATE(dmaddu, mul_u32_u32, 1, 0); DM_OPERATE(dmsub, mul_i32_i32, 0, 1); DM_OPERATE(dmsubu, mul_u32_u32, 0, 0); #undef DM_OPERATE #endif /** DSP Bit/Manipulation Sub-class insns **/ target_ulong helper_bitrev(target_ulong rt) { int32_t temp; uint32_t rd; int i; temp = rt & MIPSDSP_LO; rd = 0; for (i = 0; i < 16; i++) { rd = (rd << 1) | (temp & 1); temp = temp >> 1; } return (target_ulong)rd; } #define BIT_INSV(name, posfilter, ret_type) \ target_ulong helper_##name(CPUMIPSState *env, target_ulong rs, \ target_ulong rt) \ { \ uint32_t pos, size, msb, lsb; \ uint32_t const sizefilter = 0x3F; \ target_ulong temp; \ target_ulong dspc; \ \ dspc = env->active_tc.DSPControl; \ \ pos = dspc & posfilter; \ size = (dspc >> 7) & sizefilter; \ \ msb = pos + size - 1; \ lsb = pos; \ \ if (lsb > msb || (msb > TARGET_LONG_BITS)) { \ return rt; \ } \ \ temp = deposit64(rt, pos, size, rs); \ \ return (target_long)(ret_type)temp; \ } BIT_INSV(insv, 0x1F, int32_t); #ifdef TARGET_MIPS64 BIT_INSV(dinsv, 0x7F, target_long); #endif #undef BIT_INSV /** DSP Compare-Pick Sub-class insns **/ #define CMP_HAS_RET(name, func, split_num, filter, bit_size) \ target_ulong helper_##name(target_ulong rs, target_ulong rt) \ { \ uint32_t rs_t, rt_t; \ uint8_t cc; \ uint32_t temp = 0; \ int i; \ \ for (i = 0; i < split_num; i++) { \ rs_t = (rs >> (bit_size * i)) & filter; \ rt_t = (rt >> (bit_size * i)) & filter; \ cc = mipsdsp_##func(rs_t, rt_t); \ temp |= cc << i; \ } \ \ return (target_ulong)temp; \ } CMP_HAS_RET(cmpgu_eq_qb, cmpu_eq, 4, MIPSDSP_Q0, 8); CMP_HAS_RET(cmpgu_lt_qb, cmpu_lt, 4, MIPSDSP_Q0, 8); CMP_HAS_RET(cmpgu_le_qb, cmpu_le, 4, MIPSDSP_Q0, 8); #ifdef TARGET_MIPS64 CMP_HAS_RET(cmpgu_eq_ob, cmpu_eq, 8, MIPSDSP_Q0, 8); CMP_HAS_RET(cmpgu_lt_ob, cmpu_lt, 8, MIPSDSP_Q0, 8); CMP_HAS_RET(cmpgu_le_ob, cmpu_le, 8, MIPSDSP_Q0, 8); #endif #undef CMP_HAS_RET #define CMP_NO_RET(name, func, split_num, filter, bit_size) \ void helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int##bit_size##_t rs_t, rt_t; \ int##bit_size##_t flag = 0; \ int##bit_size##_t cc; \ int i; \ \ for (i = 0; i < split_num; i++) { \ rs_t = (rs >> (bit_size * i)) & filter; \ rt_t = (rt >> (bit_size * i)) & filter; \ \ cc = mipsdsp_##func((int32_t)rs_t, (int32_t)rt_t); \ flag |= cc << i; \ } \ \ set_DSPControl_24(flag, split_num, env); \ } CMP_NO_RET(cmpu_eq_qb, cmpu_eq, 4, MIPSDSP_Q0, 8); CMP_NO_RET(cmpu_lt_qb, cmpu_lt, 4, MIPSDSP_Q0, 8); CMP_NO_RET(cmpu_le_qb, cmpu_le, 4, MIPSDSP_Q0, 8); CMP_NO_RET(cmp_eq_ph, cmp_eq, 2, MIPSDSP_LO, 16); CMP_NO_RET(cmp_lt_ph, cmp_lt, 2, MIPSDSP_LO, 16); CMP_NO_RET(cmp_le_ph, cmp_le, 2, MIPSDSP_LO, 16); #ifdef TARGET_MIPS64 CMP_NO_RET(cmpu_eq_ob, cmpu_eq, 8, MIPSDSP_Q0, 8); CMP_NO_RET(cmpu_lt_ob, cmpu_lt, 8, MIPSDSP_Q0, 8); CMP_NO_RET(cmpu_le_ob, cmpu_le, 8, MIPSDSP_Q0, 8); CMP_NO_RET(cmp_eq_qh, cmp_eq, 4, MIPSDSP_LO, 16); CMP_NO_RET(cmp_lt_qh, cmp_lt, 4, MIPSDSP_LO, 16); CMP_NO_RET(cmp_le_qh, cmp_le, 4, MIPSDSP_LO, 16); CMP_NO_RET(cmp_eq_pw, cmp_eq, 2, MIPSDSP_LLO, 32); CMP_NO_RET(cmp_lt_pw, cmp_lt, 2, MIPSDSP_LLO, 32); CMP_NO_RET(cmp_le_pw, cmp_le, 2, MIPSDSP_LLO, 32); #endif #undef CMP_NO_RET #if defined(TARGET_MIPS64) #define CMPGDU_OB(name) \ target_ulong helper_cmpgdu_##name##_ob(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ int i; \ uint8_t rs_t, rt_t; \ uint32_t cond; \ \ cond = 0; \ \ for (i = 0; i < 8; i++) { \ rs_t = (rs >> (8 * i)) & MIPSDSP_Q0; \ rt_t = (rt >> (8 * i)) & MIPSDSP_Q0; \ \ if (mipsdsp_cmpu_##name(rs_t, rt_t)) { \ cond |= 0x01 << i; \ } \ } \ \ set_DSPControl_24(cond, 8, env); \ \ return (uint64_t)cond; \ } CMPGDU_OB(eq) CMPGDU_OB(lt) CMPGDU_OB(le) #undef CMPGDU_OB #endif #define PICK_INSN(name, split_num, filter, bit_size, ret32bit) \ target_ulong helper_##name(target_ulong rs, target_ulong rt, \ CPUMIPSState *env) \ { \ uint32_t rs_t, rt_t; \ uint32_t cc; \ target_ulong dsp; \ int i; \ target_ulong result = 0; \ \ dsp = env->active_tc.DSPControl; \ for (i = 0; i < split_num; i++) { \ rs_t = (rs >> (bit_size * i)) & filter; \ rt_t = (rt >> (bit_size * i)) & filter; \ cc = (dsp >> (24 + i)) & 0x01; \ cc = cc == 1 ? rs_t : rt_t; \ \ result |= (target_ulong)cc << (bit_size * i); \ } \ \ if (ret32bit) { \ result = (target_long)(int32_t)(result & MIPSDSP_LLO); \ } \ \ return result; \ } PICK_INSN(pick_qb, 4, MIPSDSP_Q0, 8, 1); PICK_INSN(pick_ph, 2, MIPSDSP_LO, 16, 1); #ifdef TARGET_MIPS64 PICK_INSN(pick_ob, 8, MIPSDSP_Q0, 8, 0); PICK_INSN(pick_qh, 4, MIPSDSP_LO, 16, 0); PICK_INSN(pick_pw, 2, MIPSDSP_LLO, 32, 0); #endif #undef PICK_INSN target_ulong helper_packrl_ph(target_ulong rs, target_ulong rt) { uint32_t rsl, rth; rsl = rs & MIPSDSP_LO; rth = (rt & MIPSDSP_HI) >> 16; return (target_long)(int32_t)((rsl << 16) | rth); } #if defined(TARGET_MIPS64) target_ulong helper_packrl_pw(target_ulong rs, target_ulong rt) { uint32_t rs0, rt1; rs0 = rs & MIPSDSP_LLO; rt1 = (rt >> 32) & MIPSDSP_LLO; return ((uint64_t)rs0 << 32) | (uint64_t)rt1; } #endif /** DSP Accumulator and DSPControl Access Sub-class insns **/ target_ulong helper_extr_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { int32_t tempI; int64_t tempDL[2]; shift = shift & 0x1F; mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env); if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && (tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { set_DSPControl_overflow_flag(1, 23, env); } tempI = (tempDL[0] >> 1) & MIPSDSP_LLO; tempDL[0] += 1; if (tempDL[0] == 0) { tempDL[1] += 1; } if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && ((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { set_DSPControl_overflow_flag(1, 23, env); } return (target_long)tempI; } target_ulong helper_extr_r_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { int64_t tempDL[2]; shift = shift & 0x1F; mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env); if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && (tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { set_DSPControl_overflow_flag(1, 23, env); } tempDL[0] += 1; if (tempDL[0] == 0) { tempDL[1] += 1; } if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && ((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { set_DSPControl_overflow_flag(1, 23, env); } return (target_long)(int32_t)(tempDL[0] >> 1); } target_ulong helper_extr_rs_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { int32_t tempI, temp64; int64_t tempDL[2]; shift = shift & 0x1F; mipsdsp_rndrashift_short_acc(tempDL, ac, shift, env); if ((tempDL[1] != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && (tempDL[1] != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { set_DSPControl_overflow_flag(1, 23, env); } tempDL[0] += 1; if (tempDL[0] == 0) { tempDL[1] += 1; } tempI = tempDL[0] >> 1; if (((tempDL[1] & 0x01) != 0 || (tempDL[0] & MIPSDSP_LHI) != 0) && ((tempDL[1] & 0x01) != 1 || (tempDL[0] & MIPSDSP_LHI) != MIPSDSP_LHI)) { temp64 = tempDL[1] & 0x01; if (temp64 == 0) { tempI = 0x7FFFFFFF; } else { tempI = 0x80000000; } set_DSPControl_overflow_flag(1, 23, env); } return (target_long)tempI; } #if defined(TARGET_MIPS64) target_ulong helper_dextr_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); return (int64_t)(int32_t)(temp[0] >> 1); } target_ulong helper_dextr_r_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; uint32_t temp128; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); temp[0] += 1; if (temp[0] == 0) { temp[1] += 1; if (temp[1] == 0) { temp[2] += 1; } } temp128 = temp[2] & 0x01; if ((temp128 != 0 || temp[1] != 0) && (temp128 != 1 || temp[1] != ~0ull)) { set_DSPControl_overflow_flag(1, 23, env); } return (int64_t)(int32_t)(temp[0] >> 1); } target_ulong helper_dextr_rs_w(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; uint32_t temp128; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); temp[0] += 1; if (temp[0] == 0) { temp[1] += 1; if (temp[1] == 0) { temp[2] += 1; } } temp128 = temp[2] & 0x01; if ((temp128 != 0 || temp[1] != 0) && (temp128 != 1 || temp[1] != ~0ull)) { if (temp128 == 0) { temp[0] = 0x0FFFFFFFF; } else { temp[0] = 0x0100000000ULL; } set_DSPControl_overflow_flag(1, 23, env); } return (int64_t)(int32_t)(temp[0] >> 1); } target_ulong helper_dextr_l(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; target_ulong result; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); result = (temp[1] << 63) | (temp[0] >> 1); return result; } target_ulong helper_dextr_r_l(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; uint32_t temp128; target_ulong result; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); temp[0] += 1; if (temp[0] == 0) { temp[1] += 1; if (temp[1] == 0) { temp[2] += 1; } } temp128 = temp[2] & 0x01; if ((temp128 != 0 || temp[1] != 0) && (temp128 != 1 || temp[1] != ~0ull)) { set_DSPControl_overflow_flag(1, 23, env); } result = (temp[1] << 63) | (temp[0] >> 1); return result; } target_ulong helper_dextr_rs_l(target_ulong ac, target_ulong shift, CPUMIPSState *env) { uint64_t temp[3]; uint32_t temp128; target_ulong result; shift = shift & 0x3F; mipsdsp_rndrashift_acc(temp, ac, shift, env); temp[0] += 1; if (temp[0] == 0) { temp[1] += 1; if (temp[1] == 0) { temp[2] += 1; } } temp128 = temp[2] & 0x01; if ((temp128 != 0 || temp[1] != 0) && (temp128 != 1 || temp[1] != ~0ull)) { if (temp128 == 0) { temp[1] &= ~0x00ull - 1; temp[0] |= ~0x00ull - 1; } else { temp[1] |= 0x01; temp[0] &= 0x01; } set_DSPControl_overflow_flag(1, 23, env); } result = (temp[1] << 63) | (temp[0] >> 1); return result; } #endif target_ulong helper_extr_s_h(target_ulong ac, target_ulong shift, CPUMIPSState *env) { int64_t temp, acc; shift = shift & 0x1F; acc = ((int64_t)env->active_tc.HI[ac] << 32) | ((int64_t)env->active_tc.LO[ac] & 0xFFFFFFFF); temp = acc >> shift; if (temp > (int64_t)0x7FFF) { temp = 0x00007FFF; set_DSPControl_overflow_flag(1, 23, env); } else if (temp < (int64_t)0xFFFFFFFFFFFF8000ULL) { temp = 0xFFFF8000; set_DSPControl_overflow_flag(1, 23, env); } return (target_long)(int32_t)(temp & 0xFFFFFFFF); } #if defined(TARGET_MIPS64) target_ulong helper_dextr_s_h(target_ulong ac, target_ulong shift, CPUMIPSState *env) { int64_t temp[2]; uint32_t temp127; shift = shift & 0x1F; mipsdsp_rashift_acc((uint64_t *)temp, ac, shift, env); temp127 = (temp[1] >> 63) & 0x01; if ((temp127 == 0) && (temp[1] > 0 || temp[0] > 32767)) { temp[0] &= 0xFFFF0000; temp[0] |= 0x00007FFF; set_DSPControl_overflow_flag(1, 23, env); } else if ((temp127 == 1) && (temp[1] < 0xFFFFFFFFFFFFFFFFll || temp[0] < 0xFFFFFFFFFFFF1000ll)) { temp[0] &= 0xFFFF0000; temp[0] |= 0x00008000; set_DSPControl_overflow_flag(1, 23, env); } return (int64_t)(int16_t)(temp[0] & MIPSDSP_LO); } #endif target_ulong helper_extp(target_ulong ac, target_ulong size, CPUMIPSState *env) { int32_t start_pos; int sub; uint32_t temp; uint64_t acc; size = size & 0x1F; temp = 0; start_pos = get_DSPControl_pos(env); sub = start_pos - (size + 1); if (sub >= -1) { acc = ((uint64_t)env->active_tc.HI[ac] << 32) | ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); temp = (acc >> (start_pos - size)) & (~0U >> (31 - size)); set_DSPControl_efi(0, env); } else { set_DSPControl_efi(1, env); } return (target_ulong)temp; } target_ulong helper_extpdp(target_ulong ac, target_ulong size, CPUMIPSState *env) { int32_t start_pos; int sub; uint32_t temp; uint64_t acc; size = size & 0x1F; temp = 0; start_pos = get_DSPControl_pos(env); sub = start_pos - (size + 1); if (sub >= -1) { acc = ((uint64_t)env->active_tc.HI[ac] << 32) | ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); temp = extract64(acc, start_pos - size, size + 1); set_DSPControl_pos(sub, env); set_DSPControl_efi(0, env); } else { set_DSPControl_efi(1, env); } return (target_ulong)temp; } #if defined(TARGET_MIPS64) target_ulong helper_dextp(target_ulong ac, target_ulong size, CPUMIPSState *env) { int start_pos; int len; int sub; uint64_t tempB, tempA; uint64_t temp; temp = 0; size = size & 0x3F; start_pos = get_DSPControl_pos(env); len = start_pos - size; tempB = env->active_tc.HI[ac]; tempA = env->active_tc.LO[ac]; sub = start_pos - (size + 1); if (sub >= -1) { temp = (tempB << (64 - len)) | (tempA >> len); temp = temp & ((0x01 << (size + 1)) - 1); set_DSPControl_efi(0, env); } else { set_DSPControl_efi(1, env); } return temp; } target_ulong helper_dextpdp(target_ulong ac, target_ulong size, CPUMIPSState *env) { int start_pos; int len; int sub; uint64_t tempB, tempA; uint64_t temp; temp = 0; size = size & 0x3F; start_pos = get_DSPControl_pos(env); len = start_pos - size; tempB = env->active_tc.HI[ac]; tempA = env->active_tc.LO[ac]; sub = start_pos - (size + 1); if (sub >= -1) { temp = (tempB << (64 - len)) | (tempA >> len); temp = temp & ((0x01 << (size + 1)) - 1); set_DSPControl_pos(sub, env); set_DSPControl_efi(0, env); } else { set_DSPControl_efi(1, env); } return temp; } #endif void helper_shilo(target_ulong ac, target_ulong rs, CPUMIPSState *env) { int8_t rs5_0; uint64_t temp, acc; rs5_0 = rs & 0x3F; rs5_0 = (int8_t)(rs5_0 << 2) >> 2; if (unlikely(rs5_0 == 0)) { return; } acc = (((uint64_t)env->active_tc.HI[ac] << 32) & MIPSDSP_LHI) | ((uint64_t)env->active_tc.LO[ac] & MIPSDSP_LLO); if (rs5_0 > 0) { temp = acc >> rs5_0; } else { temp = acc << -rs5_0; } env->active_tc.HI[ac] = (target_ulong)(int32_t)((temp & MIPSDSP_LHI) >> 32); env->active_tc.LO[ac] = (target_ulong)(int32_t)(temp & MIPSDSP_LLO); } #if defined(TARGET_MIPS64) void helper_dshilo(target_ulong shift, target_ulong ac, CPUMIPSState *env) { int8_t shift_t; uint64_t tempB, tempA; shift_t = (int8_t)(shift << 1) >> 1; tempB = env->active_tc.HI[ac]; tempA = env->active_tc.LO[ac]; if (shift_t != 0) { if (shift_t >= 0) { tempA = (tempB << (64 - shift_t)) | (tempA >> shift_t); tempB = tempB >> shift_t; } else { shift_t = -shift_t; tempB = (tempB << shift_t) | (tempA >> (64 - shift_t)); tempA = tempA << shift_t; } } env->active_tc.HI[ac] = tempB; env->active_tc.LO[ac] = tempA; } #endif void helper_mthlip(target_ulong ac, target_ulong rs, CPUMIPSState *env) { int32_t tempA, tempB, pos; tempA = rs; tempB = env->active_tc.LO[ac]; env->active_tc.HI[ac] = (target_long)tempB; env->active_tc.LO[ac] = (target_long)tempA; pos = get_DSPControl_pos(env); if (pos > 32) { return; } else { set_DSPControl_pos(pos + 32, env); } } #if defined(TARGET_MIPS64) void helper_dmthlip(target_ulong rs, target_ulong ac, CPUMIPSState *env) { uint8_t ac_t; uint8_t pos; uint64_t tempB, tempA; ac_t = ac & 0x3; tempA = rs; tempB = env->active_tc.LO[ac_t]; env->active_tc.HI[ac_t] = tempB; env->active_tc.LO[ac_t] = tempA; pos = get_DSPControl_pos(env); if (pos <= 64) { pos = pos + 64; set_DSPControl_pos(pos, env); } } #endif void cpu_wrdsp(uint32_t rs, uint32_t mask_num, CPUMIPSState *env) { uint8_t mask[6]; uint8_t i; uint32_t newbits, overwrite; target_ulong dsp; newbits = 0x00; overwrite = 0xFFFFFFFF; dsp = env->active_tc.DSPControl; for (i = 0; i < 6; i++) { mask[i] = (mask_num >> i) & 0x01; } if (mask[0] == 1) { #if defined(TARGET_MIPS64) overwrite &= 0xFFFFFF80; newbits &= 0xFFFFFF80; newbits |= 0x0000007F & rs; #else overwrite &= 0xFFFFFFC0; newbits &= 0xFFFFFFC0; newbits |= 0x0000003F & rs; #endif } if (mask[1] == 1) { overwrite &= 0xFFFFE07F; newbits &= 0xFFFFE07F; newbits |= 0x00001F80 & rs; } if (mask[2] == 1) { overwrite &= 0xFFFFDFFF; newbits &= 0xFFFFDFFF; newbits |= 0x00002000 & rs; } if (mask[3] == 1) { overwrite &= 0xFF00FFFF; newbits &= 0xFF00FFFF; newbits |= 0x00FF0000 & rs; } if (mask[4] == 1) { overwrite &= 0x00FFFFFF; newbits &= 0x00FFFFFF; #if defined(TARGET_MIPS64) newbits |= 0xFF000000 & rs; #else newbits |= 0x0F000000 & rs; #endif } if (mask[5] == 1) { overwrite &= 0xFFFFBFFF; newbits &= 0xFFFFBFFF; newbits |= 0x00004000 & rs; } dsp = dsp & overwrite; dsp = dsp | newbits; env->active_tc.DSPControl = dsp; } void helper_wrdsp(target_ulong rs, target_ulong mask_num, CPUMIPSState *env) { return cpu_wrdsp(rs, mask_num, env); } uint32_t cpu_rddsp(uint32_t mask_num, CPUMIPSState *env) { uint8_t mask[6]; uint32_t ruler, i; target_ulong temp; target_ulong dsp; ruler = 0x01; for (i = 0; i < 6; i++) { mask[i] = (mask_num & ruler) >> i ; ruler = ruler << 1; } temp = 0x00; dsp = env->active_tc.DSPControl; if (mask[0] == 1) { #if defined(TARGET_MIPS64) temp |= dsp & 0x7F; #else temp |= dsp & 0x3F; #endif } if (mask[1] == 1) { temp |= dsp & 0x1F80; } if (mask[2] == 1) { temp |= dsp & 0x2000; } if (mask[3] == 1) { temp |= dsp & 0x00FF0000; } if (mask[4] == 1) { #if defined(TARGET_MIPS64) temp |= dsp & 0xFF000000; #else temp |= dsp & 0x0F000000; #endif } if (mask[5] == 1) { temp |= dsp & 0x4000; } return temp; } target_ulong helper_rddsp(target_ulong mask_num, CPUMIPSState *env) { return cpu_rddsp(mask_num, env); } #undef MIPSDSP_LHI #undef MIPSDSP_LLO #undef MIPSDSP_HI #undef MIPSDSP_LO #undef MIPSDSP_Q3 #undef MIPSDSP_Q2 #undef MIPSDSP_Q1 #undef MIPSDSP_Q0 #undef MIPSDSP_SPLIT32_8 #undef MIPSDSP_SPLIT32_16 #undef MIPSDSP_RETURN32_8 #undef MIPSDSP_RETURN32_16 #ifdef TARGET_MIPS64 #undef MIPSDSP_SPLIT64_16 #undef MIPSDSP_SPLIT64_32 #undef MIPSDSP_RETURN64_16 #undef MIPSDSP_RETURN64_32 #endif