/* * MicroBlaze helper routines. * * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com> * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "cpu.h" #include "qemu/host-utils.h" #define D(x) #if defined(CONFIG_USER_ONLY) void mb_cpu_do_interrupt(CPUState *cs) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; cs->exception_index = -1; env->res_addr = RES_ADDR_NONE; env->regs[14] = env->sregs[SR_PC]; } int mb_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, int mmu_idx) { cs->exception_index = 0xaa; cpu_dump_state(cs, stderr, fprintf, 0); return 1; } #else /* !CONFIG_USER_ONLY */ int mb_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, int mmu_idx) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; unsigned int hit; unsigned int mmu_available; int r = 1; int prot; mmu_available = 0; if (cpu->cfg.use_mmu) { mmu_available = 1; if ((cpu->cfg.pvr == C_PVR_FULL) && (env->pvr.regs[11] & PVR11_USE_MMU) != PVR11_USE_MMU) { mmu_available = 0; } } /* Translate if the MMU is available and enabled. */ if (mmu_available && (env->sregs[SR_MSR] & MSR_VM)) { target_ulong vaddr, paddr; struct microblaze_mmu_lookup lu; hit = mmu_translate(&env->mmu, &lu, address, rw, mmu_idx); if (hit) { vaddr = address & TARGET_PAGE_MASK; paddr = lu.paddr + vaddr - lu.vaddr; qemu_log_mask(CPU_LOG_MMU, "MMU map mmu=%d v=%x p=%x prot=%x\n", mmu_idx, vaddr, paddr, lu.prot); tlb_set_page(cs, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE); r = 0; } else { env->sregs[SR_EAR] = address; qemu_log_mask(CPU_LOG_MMU, "mmu=%d miss v=%" VADDR_PRIx "\n", mmu_idx, address); switch (lu.err) { case ERR_PROT: env->sregs[SR_ESR] = rw == 2 ? 17 : 16; env->sregs[SR_ESR] |= (rw == 1) << 10; break; case ERR_MISS: env->sregs[SR_ESR] = rw == 2 ? 19 : 18; env->sregs[SR_ESR] |= (rw == 1) << 10; break; default: abort(); break; } if (cs->exception_index == EXCP_MMU) { cpu_abort(cs, "recursive faults\n"); } /* TLB miss. */ cs->exception_index = EXCP_MMU; } } else { /* MMU disabled or not available. */ address &= TARGET_PAGE_MASK; prot = PAGE_BITS; tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE); r = 0; } return r; } void mb_cpu_do_interrupt(CPUState *cs) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; uint32_t t; /* IMM flag cannot propagate across a branch and into the dslot. */ assert(!((env->iflags & D_FLAG) && (env->iflags & IMM_FLAG))); assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG))); /* assert(env->sregs[SR_MSR] & (MSR_EE)); Only for HW exceptions. */ env->res_addr = RES_ADDR_NONE; switch (cs->exception_index) { case EXCP_HW_EXCP: if (!(env->pvr.regs[0] & PVR0_USE_EXC_MASK)) { qemu_log("Exception raised on system without exceptions!\n"); return; } env->regs[17] = env->sregs[SR_PC] + 4; env->sregs[SR_ESR] &= ~(1 << 12); /* Exception breaks branch + dslot sequence? */ if (env->iflags & D_FLAG) { env->sregs[SR_ESR] |= 1 << 12 ; env->sregs[SR_BTR] = env->btarget; } /* Disable the MMU. */ t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1; env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); env->sregs[SR_MSR] |= t; /* Exception in progress. */ env->sregs[SR_MSR] |= MSR_EIP; qemu_log_mask(CPU_LOG_INT, "hw exception at pc=%x ear=%x esr=%x iflags=%x\n", env->sregs[SR_PC], env->sregs[SR_EAR], env->sregs[SR_ESR], env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); env->iflags &= ~(IMM_FLAG | D_FLAG); env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x20; break; case EXCP_MMU: env->regs[17] = env->sregs[SR_PC]; env->sregs[SR_ESR] &= ~(1 << 12); /* Exception breaks branch + dslot sequence? */ if (env->iflags & D_FLAG) { D(qemu_log("D_FLAG set at exception bimm=%d\n", env->bimm)); env->sregs[SR_ESR] |= 1 << 12 ; env->sregs[SR_BTR] = env->btarget; /* Reexecute the branch. */ env->regs[17] -= 4; /* was the branch immprefixed?. */ if (env->bimm) { qemu_log_mask(CPU_LOG_INT, "bimm exception at pc=%x iflags=%x\n", env->sregs[SR_PC], env->iflags); env->regs[17] -= 4; log_cpu_state_mask(CPU_LOG_INT, cs, 0); } } else if (env->iflags & IMM_FLAG) { D(qemu_log("IMM_FLAG set at exception\n")); env->regs[17] -= 4; } /* Disable the MMU. */ t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1; env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); env->sregs[SR_MSR] |= t; /* Exception in progress. */ env->sregs[SR_MSR] |= MSR_EIP; qemu_log_mask(CPU_LOG_INT, "exception at pc=%x ear=%x iflags=%x\n", env->sregs[SR_PC], env->sregs[SR_EAR], env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); env->iflags &= ~(IMM_FLAG | D_FLAG); env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x20; break; case EXCP_IRQ: assert(!(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))); assert(env->sregs[SR_MSR] & MSR_IE); assert(!(env->iflags & D_FLAG)); t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1; #if 0 #include "disas/disas.h" /* Useful instrumentation when debugging interrupt issues in either the models or in sw. */ { const char *sym; sym = lookup_symbol(env->sregs[SR_PC]); if (sym && (!strcmp("netif_rx", sym) || !strcmp("process_backlog", sym))) { qemu_log( "interrupt at pc=%x msr=%x %x iflags=%x sym=%s\n", env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags, sym); log_cpu_state(cs, 0); } } #endif qemu_log_mask(CPU_LOG_INT, "interrupt at pc=%x msr=%x %x iflags=%x\n", env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags); env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM \ | MSR_UM | MSR_IE); env->sregs[SR_MSR] |= t; env->regs[14] = env->sregs[SR_PC]; env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x10; //log_cpu_state_mask(CPU_LOG_INT, cs, 0); break; case EXCP_BREAK: case EXCP_HW_BREAK: assert(!(env->iflags & IMM_FLAG)); assert(!(env->iflags & D_FLAG)); t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1; qemu_log_mask(CPU_LOG_INT, "break at pc=%x msr=%x %x iflags=%x\n", env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags); log_cpu_state_mask(CPU_LOG_INT, cs, 0); env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM); env->sregs[SR_MSR] |= t; env->sregs[SR_MSR] |= MSR_BIP; if (cs->exception_index == EXCP_HW_BREAK) { env->regs[16] = env->sregs[SR_PC]; env->sregs[SR_MSR] |= MSR_BIP; env->sregs[SR_PC] = cpu->cfg.base_vectors + 0x18; } else env->sregs[SR_PC] = env->btarget; break; default: cpu_abort(cs, "unhandled exception type=%d\n", cs->exception_index); break; } } hwaddr mb_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; target_ulong vaddr, paddr = 0; struct microblaze_mmu_lookup lu; unsigned int hit; if (env->sregs[SR_MSR] & MSR_VM) { hit = mmu_translate(&env->mmu, &lu, addr, 0, 0); if (hit) { vaddr = addr & TARGET_PAGE_MASK; paddr = lu.paddr + vaddr - lu.vaddr; } else paddr = 0; /* ???. */ } else paddr = addr & TARGET_PAGE_MASK; return paddr; } #endif bool mb_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); CPUMBState *env = &cpu->env; if ((interrupt_request & CPU_INTERRUPT_HARD) && (env->sregs[SR_MSR] & MSR_IE) && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)) && !(env->iflags & (D_FLAG | IMM_FLAG))) { cs->exception_index = EXCP_IRQ; mb_cpu_do_interrupt(cs); return true; } return false; }