/* * m68k translation * * Copyright (c) 2005-2007 CodeSourcery * Written by Paul Brook * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include "config.h" #include "cpu.h" #include "exec-all.h" #include "disas.h" #include "m68k-qreg.h" //#define DEBUG_DISPATCH 1 static inline void qemu_assert(int cond, const char *msg) { if (!cond) { fprintf (stderr, "badness: %s\n", msg); abort(); } } /* internal defines */ typedef struct DisasContext { CPUM68KState *env; target_ulong insn_pc; /* Start of the current instruction. */ target_ulong pc; int is_jmp; int cc_op; int user; uint32_t fpcr; struct TranslationBlock *tb; int singlestep_enabled; } DisasContext; #define DISAS_JUMP_NEXT 4 #if defined(CONFIG_USER_ONLY) #define IS_USER(s) 1 #else #define IS_USER(s) s->user #endif /* XXX: move that elsewhere */ /* ??? Fix exceptions. */ static void *gen_throws_exception; #define gen_last_qop NULL static uint16_t *gen_opc_ptr; static uint32_t *gen_opparam_ptr; extern FILE *logfile; extern int loglevel; enum { #define DEF(s, n, copy_size) INDEX_op_ ## s, #include "opc.h" #undef DEF NB_OPS, }; #include "gen-op.h" #if defined(CONFIG_USER_ONLY) #define gen_st(s, name, addr, val) gen_op_st##name##_raw(addr, val) #define gen_ld(s, name, val, addr) gen_op_ld##name##_raw(val, addr) #else #define gen_st(s, name, addr, val) do { \ if (IS_USER(s)) \ gen_op_st##name##_user(addr, val); \ else \ gen_op_st##name##_kernel(addr, val); \ } while (0) #define gen_ld(s, name, val, addr) do { \ if (IS_USER(s)) \ gen_op_ld##name##_user(val, addr); \ else \ gen_op_ld##name##_kernel(val, addr); \ } while (0) #endif #include "op-hacks.h" #define OS_BYTE 0 #define OS_WORD 1 #define OS_LONG 2 #define OS_SINGLE 4 #define OS_DOUBLE 5 #define DREG(insn, pos) (((insn >> pos) & 7) + QREG_D0) #define AREG(insn, pos) (((insn >> pos) & 7) + QREG_A0) #define FREG(insn, pos) (((insn >> pos) & 7) + QREG_F0) typedef void (*disas_proc)(DisasContext *, uint16_t); #ifdef DEBUG_DISPATCH #define DISAS_INSN(name) \ static void real_disas_##name (DisasContext *s, uint16_t insn); \ static void disas_##name (DisasContext *s, uint16_t insn) { \ if (logfile) fprintf(logfile, "Dispatch " #name "\n"); \ real_disas_##name(s, insn); } \ static void real_disas_##name (DisasContext *s, uint16_t insn) #else #define DISAS_INSN(name) \ static void disas_##name (DisasContext *s, uint16_t insn) #endif /* Generate a load from the specified address. Narrow values are sign extended to full register width. */ static inline int gen_load(DisasContext * s, int opsize, int addr, int sign) { int tmp; switch(opsize) { case OS_BYTE: tmp = gen_new_qreg(QMODE_I32); if (sign) gen_ld(s, 8s32, tmp, addr); else gen_ld(s, 8u32, tmp, addr); break; case OS_WORD: tmp = gen_new_qreg(QMODE_I32); if (sign) gen_ld(s, 16s32, tmp, addr); else gen_ld(s, 16u32, tmp, addr); break; case OS_LONG: tmp = gen_new_qreg(QMODE_I32); gen_ld(s, 32, tmp, addr); break; case OS_SINGLE: tmp = gen_new_qreg(QMODE_F32); gen_ld(s, f32, tmp, addr); break; case OS_DOUBLE: tmp = gen_new_qreg(QMODE_F64); gen_ld(s, f64, tmp, addr); break; default: qemu_assert(0, "bad load size"); } gen_throws_exception = gen_last_qop; return tmp; } /* Generate a store. */ static inline void gen_store(DisasContext *s, int opsize, int addr, int val) { switch(opsize) { case OS_BYTE: gen_st(s, 8, addr, val); break; case OS_WORD: gen_st(s, 16, addr, val); break; case OS_LONG: gen_st(s, 32, addr, val); break; case OS_SINGLE: gen_st(s, f32, addr, val); break; case OS_DOUBLE: gen_st(s, f64, addr, val); break; default: qemu_assert(0, "bad store size"); } gen_throws_exception = gen_last_qop; } /* Generate an unsigned load if VAL is 0 a signed load if val is -1, otherwise generate a store. */ static int gen_ldst(DisasContext *s, int opsize, int addr, int val) { if (val > 0) { gen_store(s, opsize, addr, val); return 0; } else { return gen_load(s, opsize, addr, val != 0); } } /* Read a 32-bit immediate constant. */ static inline uint32_t read_im32(DisasContext *s) { uint32_t im; im = ((uint32_t)lduw_code(s->pc)) << 16; s->pc += 2; im |= lduw_code(s->pc); s->pc += 2; return im; } /* Calculate and address index. */ static int gen_addr_index(uint16_t ext, int tmp) { int add; int scale; add = (ext & 0x8000) ? AREG(ext, 12) : DREG(ext, 12); if ((ext & 0x800) == 0) { gen_op_ext16s32(tmp, add); add = tmp; } scale = (ext >> 9) & 3; if (scale != 0) { gen_op_shl32(tmp, add, gen_im32(scale)); add = tmp; } return add; } /* Handle a base + index + displacement effective addresss. A base of -1 means pc-relative. */ static int gen_lea_indexed(DisasContext *s, int opsize, int base) { uint32_t offset; uint16_t ext; int add; int tmp; uint32_t bd, od; offset = s->pc; ext = lduw_code(s->pc); s->pc += 2; if ((ext & 0x800) == 0 && !m68k_feature(s->env, M68K_FEATURE_WORD_INDEX)) return -1; if (ext & 0x100) { /* full extension word format */ if (!m68k_feature(s->env, M68K_FEATURE_EXT_FULL)) return -1; if ((ext & 0x30) > 0x10) { /* base displacement */ if ((ext & 0x30) == 0x20) { bd = (int16_t)lduw_code(s->pc); s->pc += 2; } else { bd = read_im32(s); } } else { bd = 0; } tmp = gen_new_qreg(QMODE_I32); if ((ext & 0x44) == 0) { /* pre-index */ add = gen_addr_index(ext, tmp); } else { add = QREG_NULL; } if ((ext & 0x80) == 0) { /* base not suppressed */ if (base == -1) { base = gen_im32(offset + bd); bd = 0; } if (add) { gen_op_add32(tmp, add, base); add = tmp; } else { add = base; } } if (add) { if (bd != 0) { gen_op_add32(tmp, add, gen_im32(bd)); add = tmp; } } else { add = gen_im32(bd); } if ((ext & 3) != 0) { /* memory indirect */ base = gen_load(s, OS_LONG, add, 0); if ((ext & 0x44) == 4) { add = gen_addr_index(ext, tmp); gen_op_add32(tmp, add, base); add = tmp; } else { add = base; } if ((ext & 3) > 1) { /* outer displacement */ if ((ext & 3) == 2) { od = (int16_t)lduw_code(s->pc); s->pc += 2; } else { od = read_im32(s); } } else { od = 0; } if (od != 0) { gen_op_add32(tmp, add, gen_im32(od)); add = tmp; } } } else { /* brief extension word format */ tmp = gen_new_qreg(QMODE_I32); add = gen_addr_index(ext, tmp); if (base != -1) { gen_op_add32(tmp, add, base); if ((int8_t)ext) gen_op_add32(tmp, tmp, gen_im32((int8_t)ext)); } else { gen_op_add32(tmp, add, gen_im32(offset + (int8_t)ext)); } add = tmp; } return add; } /* Update the CPU env CC_OP state. */ static inline void gen_flush_cc_op(DisasContext *s) { if (s->cc_op != CC_OP_DYNAMIC) gen_op_mov32(QREG_CC_OP, gen_im32(s->cc_op)); } /* Evaluate all the CC flags. */ static inline void gen_flush_flags(DisasContext *s) { if (s->cc_op == CC_OP_FLAGS) return; gen_op_flush_flags(s->cc_op); s->cc_op = CC_OP_FLAGS; } static inline int opsize_bytes(int opsize) { switch (opsize) { case OS_BYTE: return 1; case OS_WORD: return 2; case OS_LONG: return 4; case OS_SINGLE: return 4; case OS_DOUBLE: return 8; default: qemu_assert(0, "bad operand size"); } } /* Assign value to a register. If the width is less than the register width only the low part of the register is set. */ static void gen_partset_reg(int opsize, int reg, int val) { int tmp; switch (opsize) { case OS_BYTE: gen_op_and32(reg, reg, gen_im32(0xffffff00)); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, val, gen_im32(0xff)); gen_op_or32(reg, reg, tmp); break; case OS_WORD: gen_op_and32(reg, reg, gen_im32(0xffff0000)); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, val, gen_im32(0xffff)); gen_op_or32(reg, reg, tmp); break; case OS_LONG: gen_op_mov32(reg, val); break; case OS_SINGLE: gen_op_pack_32_f32(reg, val); break; default: qemu_assert(0, "Bad operand size"); break; } } /* Sign or zero extend a value. */ static inline int gen_extend(int val, int opsize, int sign) { int tmp; switch (opsize) { case OS_BYTE: tmp = gen_new_qreg(QMODE_I32); if (sign) gen_op_ext8s32(tmp, val); else gen_op_ext8u32(tmp, val); break; case OS_WORD: tmp = gen_new_qreg(QMODE_I32); if (sign) gen_op_ext16s32(tmp, val); else gen_op_ext16u32(tmp, val); break; case OS_LONG: tmp = val; break; case OS_SINGLE: tmp = gen_new_qreg(QMODE_F32); gen_op_pack_f32_32(tmp, val); break; default: qemu_assert(0, "Bad operand size"); } return tmp; } /* Generate code for an "effective address". Does not adjust the base register for autoincrememnt addressing modes. */ static int gen_lea(DisasContext *s, uint16_t insn, int opsize) { int reg; int tmp; uint16_t ext; uint32_t offset; reg = insn & 7; switch ((insn >> 3) & 7) { case 0: /* Data register direct. */ case 1: /* Address register direct. */ return -1; case 2: /* Indirect register */ case 3: /* Indirect postincrement. */ reg += QREG_A0; return reg; case 4: /* Indirect predecrememnt. */ reg += QREG_A0; tmp = gen_new_qreg(QMODE_I32); gen_op_sub32(tmp, reg, gen_im32(opsize_bytes(opsize))); return tmp; case 5: /* Indirect displacement. */ reg += QREG_A0; tmp = gen_new_qreg(QMODE_I32); ext = lduw_code(s->pc); s->pc += 2; gen_op_add32(tmp, reg, gen_im32((int16_t)ext)); return tmp; case 6: /* Indirect index + displacement. */ reg += QREG_A0; return gen_lea_indexed(s, opsize, reg); case 7: /* Other */ switch (reg) { case 0: /* Absolute short. */ offset = ldsw_code(s->pc); s->pc += 2; return gen_im32(offset); case 1: /* Absolute long. */ offset = read_im32(s); return gen_im32(offset); case 2: /* pc displacement */ tmp = gen_new_qreg(QMODE_I32); offset = s->pc; offset += ldsw_code(s->pc); s->pc += 2; return gen_im32(offset); case 3: /* pc index+displacement. */ return gen_lea_indexed(s, opsize, -1); case 4: /* Immediate. */ default: return -1; } } /* Should never happen. */ return -1; } /* Helper function for gen_ea. Reuse the computed address between the for read/write operands. */ static inline int gen_ea_once(DisasContext *s, uint16_t insn, int opsize, int val, int *addrp) { int tmp; if (addrp && val > 0) { tmp = *addrp; } else { tmp = gen_lea(s, insn, opsize); if (tmp == -1) return -1; if (addrp) *addrp = tmp; } return gen_ldst(s, opsize, tmp, val); } /* Generate code to load/store a value ito/from an EA. If VAL > 0 this is a write otherwise it is a read (0 == sign extend, -1 == zero extend). ADDRP is non-null for readwrite operands. */ static int gen_ea(DisasContext *s, uint16_t insn, int opsize, int val, int *addrp) { int reg; int result; uint32_t offset; reg = insn & 7; switch ((insn >> 3) & 7) { case 0: /* Data register direct. */ reg += QREG_D0; if (val > 0) { gen_partset_reg(opsize, reg, val); return 0; } else { return gen_extend(reg, opsize, val); } case 1: /* Address register direct. */ reg += QREG_A0; if (val > 0) { gen_op_mov32(reg, val); return 0; } else { return gen_extend(reg, opsize, val); } case 2: /* Indirect register */ reg += QREG_A0; return gen_ldst(s, opsize, reg, val); case 3: /* Indirect postincrement. */ reg += QREG_A0; result = gen_ldst(s, opsize, reg, val); /* ??? This is not exception safe. The instruction may still fault after this point. */ if (val > 0 || !addrp) gen_op_add32(reg, reg, gen_im32(opsize_bytes(opsize))); return result; case 4: /* Indirect predecrememnt. */ { int tmp; if (addrp && val > 0) { tmp = *addrp; } else { tmp = gen_lea(s, insn, opsize); if (tmp == -1) return -1; if (addrp) *addrp = tmp; } result = gen_ldst(s, opsize, tmp, val); /* ??? This is not exception safe. The instruction may still fault after this point. */ if (val > 0 || !addrp) { reg += QREG_A0; gen_op_mov32(reg, tmp); } } return result; case 5: /* Indirect displacement. */ case 6: /* Indirect index + displacement. */ return gen_ea_once(s, insn, opsize, val, addrp); case 7: /* Other */ switch (reg) { case 0: /* Absolute short. */ case 1: /* Absolute long. */ case 2: /* pc displacement */ case 3: /* pc index+displacement. */ return gen_ea_once(s, insn, opsize, val, addrp); case 4: /* Immediate. */ /* Sign extend values for consistency. */ switch (opsize) { case OS_BYTE: if (val) offset = ldsb_code(s->pc + 1); else offset = ldub_code(s->pc + 1); s->pc += 2; break; case OS_WORD: if (val) offset = ldsw_code(s->pc); else offset = lduw_code(s->pc); s->pc += 2; break; case OS_LONG: offset = read_im32(s); break; default: qemu_assert(0, "Bad immediate operand"); } return gen_im32(offset); default: return -1; } } /* Should never happen. */ return -1; } static void gen_logic_cc(DisasContext *s, int val) { gen_op_logic_cc(val); s->cc_op = CC_OP_LOGIC; } static void gen_jmpcc(DisasContext *s, int cond, int l1) { int tmp; gen_flush_flags(s); switch (cond) { case 0: /* T */ gen_op_jmp(l1); break; case 1: /* F */ break; case 2: /* HI (!C && !Z) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C | CCF_Z)); gen_op_jmp_z32(tmp, l1); break; case 3: /* LS (C || Z) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C | CCF_Z)); gen_op_jmp_nz32(tmp, l1); break; case 4: /* CC (!C) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C)); gen_op_jmp_z32(tmp, l1); break; case 5: /* CS (C) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C)); gen_op_jmp_nz32(tmp, l1); break; case 6: /* NE (!Z) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z)); gen_op_jmp_z32(tmp, l1); break; case 7: /* EQ (Z) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z)); gen_op_jmp_nz32(tmp, l1); break; case 8: /* VC (!V) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V)); gen_op_jmp_z32(tmp, l1); break; case 9: /* VS (V) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V)); gen_op_jmp_nz32(tmp, l1); break; case 10: /* PL (!N) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_N)); gen_op_jmp_z32(tmp, l1); break; case 11: /* MI (N) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_N)); gen_op_jmp_nz32(tmp, l1); break; case 12: /* GE (!(N ^ V)) */ tmp = gen_new_qreg(QMODE_I32); gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2)); gen_op_xor32(tmp, tmp, QREG_CC_DEST); gen_op_and32(tmp, tmp, gen_im32(CCF_V)); gen_op_jmp_z32(tmp, l1); break; case 13: /* LT (N ^ V) */ tmp = gen_new_qreg(QMODE_I32); gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2)); gen_op_xor32(tmp, tmp, QREG_CC_DEST); gen_op_and32(tmp, tmp, gen_im32(CCF_V)); gen_op_jmp_nz32(tmp, l1); break; case 14: /* GT (!(Z || (N ^ V))) */ { int l2; l2 = gen_new_label(); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z)); gen_op_jmp_nz32(tmp, l2); tmp = gen_new_qreg(QMODE_I32); gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2)); gen_op_xor32(tmp, tmp, QREG_CC_DEST); gen_op_and32(tmp, tmp, gen_im32(CCF_V)); gen_op_jmp_nz32(tmp, l2); gen_op_jmp(l1); gen_set_label(l2); } break; case 15: /* LE (Z || (N ^ V)) */ tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z)); gen_op_jmp_nz32(tmp, l1); tmp = gen_new_qreg(QMODE_I32); gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2)); gen_op_xor32(tmp, tmp, QREG_CC_DEST); gen_op_and32(tmp, tmp, gen_im32(CCF_V)); gen_op_jmp_nz32(tmp, l1); break; default: /* Should ever happen. */ abort(); } } DISAS_INSN(scc) { int l1; int cond; int reg; l1 = gen_new_label(); cond = (insn >> 8) & 0xf; reg = DREG(insn, 0); gen_op_and32(reg, reg, gen_im32(0xffffff00)); gen_jmpcc(s, cond ^ 1, l1); gen_op_or32(reg, reg, gen_im32(0xff)); gen_set_label(l1); } /* Force a TB lookup after an instruction that changes the CPU state. */ static void gen_lookup_tb(DisasContext *s) { gen_flush_cc_op(s); gen_op_mov32(QREG_PC, gen_im32(s->pc)); s->is_jmp = DISAS_UPDATE; } /* Generate a jump to to the address in qreg DEST. */ static void gen_jmp(DisasContext *s, int dest) { gen_flush_cc_op(s); gen_op_mov32(QREG_PC, dest); s->is_jmp = DISAS_JUMP; } static void gen_exception(DisasContext *s, uint32_t where, int nr) { gen_flush_cc_op(s); gen_jmp(s, gen_im32(where)); gen_op_raise_exception(nr); } static inline void gen_addr_fault(DisasContext *s) { gen_exception(s, s->insn_pc, EXCP_ADDRESS); } #define SRC_EA(result, opsize, val, addrp) do { \ result = gen_ea(s, insn, opsize, val, addrp); \ if (result == -1) { \ gen_addr_fault(s); \ return; \ } \ } while (0) #define DEST_EA(insn, opsize, val, addrp) do { \ int ea_result = gen_ea(s, insn, opsize, val, addrp); \ if (ea_result == -1) { \ gen_addr_fault(s); \ return; \ } \ } while (0) /* Generate a jump to an immediate address. */ static void gen_jmp_tb(DisasContext *s, int n, uint32_t dest) { TranslationBlock *tb; tb = s->tb; if (__builtin_expect (s->singlestep_enabled, 0)) { gen_exception(s, dest, EXCP_DEBUG); } else if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) || (s->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) { gen_op_goto_tb(0, n, (long)tb); gen_op_mov32(QREG_PC, gen_im32(dest)); gen_op_mov32(QREG_T0, gen_im32((long)tb + n)); gen_op_exit_tb(); } else { gen_jmp(s, gen_im32(dest)); gen_op_mov32(QREG_T0, gen_im32(0)); gen_op_exit_tb(); } s->is_jmp = DISAS_TB_JUMP; } DISAS_INSN(undef_mac) { gen_exception(s, s->pc - 2, EXCP_LINEA); } DISAS_INSN(undef_fpu) { gen_exception(s, s->pc - 2, EXCP_LINEF); } DISAS_INSN(undef) { gen_exception(s, s->pc - 2, EXCP_UNSUPPORTED); cpu_abort(cpu_single_env, "Illegal instruction: %04x @ %08x", insn, s->pc - 2); } DISAS_INSN(mulw) { int reg; int tmp; int src; int sign; sign = (insn & 0x100) != 0; reg = DREG(insn, 9); tmp = gen_new_qreg(QMODE_I32); if (sign) gen_op_ext16s32(tmp, reg); else gen_op_ext16u32(tmp, reg); SRC_EA(src, OS_WORD, sign ? -1 : 0, NULL); gen_op_mul32(tmp, tmp, src); gen_op_mov32(reg, tmp); /* Unlike m68k, coldfire always clears the overflow bit. */ gen_logic_cc(s, tmp); } DISAS_INSN(divw) { int reg; int tmp; int src; int sign; sign = (insn & 0x100) != 0; reg = DREG(insn, 9); if (sign) { gen_op_ext16s32(QREG_DIV1, reg); } else { gen_op_ext16u32(QREG_DIV1, reg); } SRC_EA(src, OS_WORD, sign ? -1 : 0, NULL); gen_op_mov32(QREG_DIV2, src); if (sign) { gen_op_divs(1); } else { gen_op_divu(1); } tmp = gen_new_qreg(QMODE_I32); src = gen_new_qreg(QMODE_I32); gen_op_ext16u32(tmp, QREG_DIV1); gen_op_shl32(src, QREG_DIV2, gen_im32(16)); gen_op_or32(reg, tmp, src); gen_op_flags_set(); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(divl) { int num; int den; int reg; uint16_t ext; ext = lduw_code(s->pc); s->pc += 2; if (ext & 0x87f8) { gen_exception(s, s->pc - 4, EXCP_UNSUPPORTED); return; } num = DREG(ext, 12); reg = DREG(ext, 0); gen_op_mov32(QREG_DIV1, num); SRC_EA(den, OS_LONG, 0, NULL); gen_op_mov32(QREG_DIV2, den); if (ext & 0x0800) { gen_op_divs(2); } else { gen_op_divu(2); } if (num == reg) { /* div */ gen_op_mov32 (reg, QREG_DIV1); } else { /* rem */ gen_op_mov32 (reg, QREG_DIV2); } gen_op_flags_set(); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(addsub) { int reg; int dest; int src; int tmp; int addr; int add; add = (insn & 0x4000) != 0; reg = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); if (insn & 0x100) { SRC_EA(tmp, OS_LONG, 0, &addr); src = reg; } else { tmp = reg; SRC_EA(src, OS_LONG, 0, NULL); } if (add) { gen_op_add32(dest, tmp, src); gen_op_update_xflag_lt(dest, src); s->cc_op = CC_OP_ADD; } else { gen_op_update_xflag_lt(tmp, src); gen_op_sub32(dest, tmp, src); s->cc_op = CC_OP_SUB; } gen_op_update_cc_add(dest, src); if (insn & 0x100) { DEST_EA(insn, OS_LONG, dest, &addr); } else { gen_op_mov32(reg, dest); } } /* Reverse the order of the bits in REG. */ DISAS_INSN(bitrev) { int val; int tmp1; int tmp2; int reg; val = gen_new_qreg(QMODE_I32); tmp1 = gen_new_qreg(QMODE_I32); tmp2 = gen_new_qreg(QMODE_I32); reg = DREG(insn, 0); gen_op_mov32(val, reg); /* Reverse bits within each nibble. */ gen_op_shl32(tmp1, val, gen_im32(3)); gen_op_and32(tmp1, tmp1, gen_im32(0x88888888)); gen_op_shl32(tmp2, val, gen_im32(1)); gen_op_and32(tmp2, tmp2, gen_im32(0x44444444)); gen_op_or32(tmp1, tmp1, tmp2); gen_op_shr32(tmp2, val, gen_im32(1)); gen_op_and32(tmp2, tmp2, gen_im32(0x22222222)); gen_op_or32(tmp1, tmp1, tmp2); gen_op_shr32(tmp2, val, gen_im32(3)); gen_op_and32(tmp2, tmp2, gen_im32(0x11111111)); gen_op_or32(tmp1, tmp1, tmp2); /* Reverse nibbles withing bytes. */ gen_op_shl32(val, tmp1, gen_im32(4)); gen_op_and32(val, val, gen_im32(0xf0f0f0f0)); gen_op_shr32(tmp2, tmp1, gen_im32(4)); gen_op_and32(tmp2, tmp2, gen_im32(0x0f0f0f0f)); gen_op_or32(val, val, tmp2); /* Reverse bytes. */ gen_op_bswap32(reg, val); gen_op_mov32(reg, val); } DISAS_INSN(bitop_reg) { int opsize; int op; int src1; int src2; int tmp; int addr; int dest; if ((insn & 0x38) != 0) opsize = OS_BYTE; else opsize = OS_LONG; op = (insn >> 6) & 3; SRC_EA(src1, opsize, 0, op ? &addr: NULL); src2 = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); gen_flush_flags(s); tmp = gen_new_qreg(QMODE_I32); if (opsize == OS_BYTE) gen_op_and32(tmp, src2, gen_im32(7)); else gen_op_and32(tmp, src2, gen_im32(31)); src2 = tmp; tmp = gen_new_qreg(QMODE_I32); gen_op_shl32(tmp, gen_im32(1), src2); gen_op_btest(src1, tmp); switch (op) { case 1: /* bchg */ gen_op_xor32(dest, src1, tmp); break; case 2: /* bclr */ gen_op_not32(tmp, tmp); gen_op_and32(dest, src1, tmp); break; case 3: /* bset */ gen_op_or32(dest, src1, tmp); break; default: /* btst */ break; } if (op) DEST_EA(insn, opsize, dest, &addr); } DISAS_INSN(sats) { int reg; int tmp; int l1; reg = DREG(insn, 0); tmp = gen_new_qreg(QMODE_I32); gen_flush_flags(s); gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V)); l1 = gen_new_label(); gen_op_jmp_z32(tmp, l1); tmp = gen_new_qreg(QMODE_I32); gen_op_shr32(tmp, reg, gen_im32(31)); gen_op_xor32(tmp, tmp, gen_im32(0x80000000)); gen_op_mov32(reg, tmp); gen_set_label(l1); gen_logic_cc(s, tmp); } static void gen_push(DisasContext *s, int val) { int tmp; tmp = gen_new_qreg(QMODE_I32); gen_op_sub32(tmp, QREG_SP, gen_im32(4)); gen_store(s, OS_LONG, tmp, val); gen_op_mov32(QREG_SP, tmp); } DISAS_INSN(movem) { int addr; int i; uint16_t mask; int reg; int tmp; int is_load; mask = lduw_code(s->pc); s->pc += 2; tmp = gen_lea(s, insn, OS_LONG); if (tmp == -1) { gen_addr_fault(s); return; } addr = gen_new_qreg(QMODE_I32); gen_op_mov32(addr, tmp); is_load = ((insn & 0x0400) != 0); for (i = 0; i < 16; i++, mask >>= 1) { if (mask & 1) { if (i < 8) reg = DREG(i, 0); else reg = AREG(i, 0); if (is_load) { tmp = gen_load(s, OS_LONG, addr, 0); gen_op_mov32(reg, tmp); } else { gen_store(s, OS_LONG, addr, reg); } if (mask != 1) gen_op_add32(addr, addr, gen_im32(4)); } } } DISAS_INSN(bitop_im) { int opsize; int op; int src1; uint32_t mask; int bitnum; int tmp; int addr; int dest; if ((insn & 0x38) != 0) opsize = OS_BYTE; else opsize = OS_LONG; op = (insn >> 6) & 3; bitnum = lduw_code(s->pc); s->pc += 2; if (bitnum & 0xff00) { disas_undef(s, insn); return; } SRC_EA(src1, opsize, 0, op ? &addr: NULL); gen_flush_flags(s); tmp = gen_new_qreg(QMODE_I32); if (opsize == OS_BYTE) bitnum &= 7; else bitnum &= 31; mask = 1 << bitnum; gen_op_btest(src1, gen_im32(mask)); if (op) dest = gen_new_qreg(QMODE_I32); else dest = -1; switch (op) { case 1: /* bchg */ gen_op_xor32(dest, src1, gen_im32(mask)); break; case 2: /* bclr */ gen_op_and32(dest, src1, gen_im32(~mask)); break; case 3: /* bset */ gen_op_or32(dest, src1, gen_im32(mask)); break; default: /* btst */ break; } if (op) DEST_EA(insn, opsize, dest, &addr); } DISAS_INSN(arith_im) { int op; int src1; int dest; int src2; int addr; op = (insn >> 9) & 7; SRC_EA(src1, OS_LONG, 0, (op == 6) ? NULL : &addr); src2 = gen_im32(read_im32(s)); dest = gen_new_qreg(QMODE_I32); switch (op) { case 0: /* ori */ gen_op_or32(dest, src1, src2); gen_logic_cc(s, dest); break; case 1: /* andi */ gen_op_and32(dest, src1, src2); gen_logic_cc(s, dest); break; case 2: /* subi */ gen_op_mov32(dest, src1); gen_op_update_xflag_lt(dest, src2); gen_op_sub32(dest, dest, src2); gen_op_update_cc_add(dest, src2); s->cc_op = CC_OP_SUB; break; case 3: /* addi */ gen_op_mov32(dest, src1); gen_op_add32(dest, dest, src2); gen_op_update_cc_add(dest, src2); gen_op_update_xflag_lt(dest, src2); s->cc_op = CC_OP_ADD; break; case 5: /* eori */ gen_op_xor32(dest, src1, src2); gen_logic_cc(s, dest); break; case 6: /* cmpi */ gen_op_mov32(dest, src1); gen_op_sub32(dest, dest, src2); gen_op_update_cc_add(dest, src2); s->cc_op = CC_OP_SUB; break; default: abort(); } if (op != 6) { DEST_EA(insn, OS_LONG, dest, &addr); } } DISAS_INSN(byterev) { int reg; reg = DREG(insn, 0); gen_op_bswap32(reg, reg); } DISAS_INSN(move) { int src; int dest; int op; int opsize; switch (insn >> 12) { case 1: /* move.b */ opsize = OS_BYTE; break; case 2: /* move.l */ opsize = OS_LONG; break; case 3: /* move.w */ opsize = OS_WORD; break; default: abort(); } SRC_EA(src, opsize, -1, NULL); op = (insn >> 6) & 7; if (op == 1) { /* movea */ /* The value will already have been sign extended. */ dest = AREG(insn, 9); gen_op_mov32(dest, src); } else { /* normal move */ uint16_t dest_ea; dest_ea = ((insn >> 9) & 7) | (op << 3); DEST_EA(dest_ea, opsize, src, NULL); /* This will be correct because loads sign extend. */ gen_logic_cc(s, src); } } DISAS_INSN(negx) { int reg; int dest; int tmp; gen_flush_flags(s); reg = DREG(insn, 0); dest = gen_new_qreg(QMODE_I32); gen_op_mov32 (dest, gen_im32(0)); gen_op_subx_cc(dest, reg); /* !Z is sticky. */ tmp = gen_new_qreg(QMODE_I32); gen_op_mov32 (tmp, QREG_CC_DEST); gen_op_update_cc_add(dest, reg); gen_op_mov32(reg, dest); s->cc_op = CC_OP_DYNAMIC; gen_flush_flags(s); gen_op_or32(tmp, tmp, gen_im32(~CCF_Z)); gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(lea) { int reg; int tmp; reg = AREG(insn, 9); tmp = gen_lea(s, insn, OS_LONG); if (tmp == -1) { gen_addr_fault(s); return; } gen_op_mov32(reg, tmp); } DISAS_INSN(clr) { int opsize; switch ((insn >> 6) & 3) { case 0: /* clr.b */ opsize = OS_BYTE; break; case 1: /* clr.w */ opsize = OS_WORD; break; case 2: /* clr.l */ opsize = OS_LONG; break; default: abort(); } DEST_EA(insn, opsize, gen_im32(0), NULL); gen_logic_cc(s, gen_im32(0)); } static int gen_get_ccr(DisasContext *s) { int dest; gen_flush_flags(s); dest = gen_new_qreg(QMODE_I32); gen_op_get_xflag(dest); gen_op_shl32(dest, dest, gen_im32(4)); gen_op_or32(dest, dest, QREG_CC_DEST); return dest; } DISAS_INSN(move_from_ccr) { int reg; int ccr; ccr = gen_get_ccr(s); reg = DREG(insn, 0); gen_partset_reg(OS_WORD, reg, ccr); } DISAS_INSN(neg) { int reg; int src1; reg = DREG(insn, 0); src1 = gen_new_qreg(QMODE_I32); gen_op_mov32(src1, reg); gen_op_neg32(reg, src1); s->cc_op = CC_OP_SUB; gen_op_update_cc_add(reg, src1); gen_op_update_xflag_lt(gen_im32(0), src1); s->cc_op = CC_OP_SUB; } static void gen_set_sr_im(DisasContext *s, uint16_t val, int ccr_only) { gen_op_logic_cc(gen_im32(val & 0xf)); gen_op_update_xflag_tst(gen_im32((val & 0x10) >> 4)); if (!ccr_only) { gen_op_mov32(QREG_SR, gen_im32(val & 0xff00)); } } static void gen_set_sr(DisasContext *s, uint16_t insn, int ccr_only) { int src1; int reg; s->cc_op = CC_OP_FLAGS; if ((insn & 0x38) == 0) { src1 = gen_new_qreg(QMODE_I32); reg = DREG(insn, 0); gen_op_and32(src1, reg, gen_im32(0xf)); gen_op_logic_cc(src1); gen_op_shr32(src1, reg, gen_im32(4)); gen_op_and32(src1, src1, gen_im32(1)); gen_op_update_xflag_tst(src1); if (!ccr_only) { gen_op_and32(QREG_SR, reg, gen_im32(0xff00)); } } else if ((insn & 0x3f) == 0x3c) { uint16_t val; val = lduw_code(s->pc); s->pc += 2; gen_set_sr_im(s, val, ccr_only); } else disas_undef(s, insn); } DISAS_INSN(move_to_ccr) { gen_set_sr(s, insn, 1); } DISAS_INSN(not) { int reg; reg = DREG(insn, 0); gen_op_not32(reg, reg); gen_logic_cc(s, reg); } DISAS_INSN(swap) { int dest; int src1; int src2; int reg; dest = gen_new_qreg(QMODE_I32); src1 = gen_new_qreg(QMODE_I32); src2 = gen_new_qreg(QMODE_I32); reg = DREG(insn, 0); gen_op_shl32(src1, reg, gen_im32(16)); gen_op_shr32(src2, reg, gen_im32(16)); gen_op_or32(dest, src1, src2); gen_op_mov32(reg, dest); gen_logic_cc(s, dest); } DISAS_INSN(pea) { int tmp; tmp = gen_lea(s, insn, OS_LONG); if (tmp == -1) { gen_addr_fault(s); return; } gen_push(s, tmp); } DISAS_INSN(ext) { int reg; int op; int tmp; reg = DREG(insn, 0); op = (insn >> 6) & 7; tmp = gen_new_qreg(QMODE_I32); if (op == 3) gen_op_ext16s32(tmp, reg); else gen_op_ext8s32(tmp, reg); if (op == 2) gen_partset_reg(OS_WORD, reg, tmp); else gen_op_mov32(reg, tmp); gen_logic_cc(s, tmp); } DISAS_INSN(tst) { int opsize; int tmp; switch ((insn >> 6) & 3) { case 0: /* tst.b */ opsize = OS_BYTE; break; case 1: /* tst.w */ opsize = OS_WORD; break; case 2: /* tst.l */ opsize = OS_LONG; break; default: abort(); } SRC_EA(tmp, opsize, -1, NULL); gen_logic_cc(s, tmp); } DISAS_INSN(pulse) { /* Implemented as a NOP. */ } DISAS_INSN(illegal) { gen_exception(s, s->pc - 2, EXCP_ILLEGAL); } /* ??? This should be atomic. */ DISAS_INSN(tas) { int dest; int src1; int addr; dest = gen_new_qreg(QMODE_I32); SRC_EA(src1, OS_BYTE, -1, &addr); gen_logic_cc(s, src1); gen_op_or32(dest, src1, gen_im32(0x80)); DEST_EA(insn, OS_BYTE, dest, &addr); } DISAS_INSN(mull) { uint16_t ext; int reg; int src1; int dest; /* The upper 32 bits of the product are discarded, so muls.l and mulu.l are functionally equivalent. */ ext = lduw_code(s->pc); s->pc += 2; if (ext & 0x87ff) { gen_exception(s, s->pc - 4, EXCP_UNSUPPORTED); return; } reg = DREG(ext, 12); SRC_EA(src1, OS_LONG, 0, NULL); dest = gen_new_qreg(QMODE_I32); gen_op_mul32(dest, src1, reg); gen_op_mov32(reg, dest); /* Unlike m68k, coldfire always clears the overflow bit. */ gen_logic_cc(s, dest); } DISAS_INSN(link) { int16_t offset; int reg; int tmp; offset = ldsw_code(s->pc); s->pc += 2; reg = AREG(insn, 0); tmp = gen_new_qreg(QMODE_I32); gen_op_sub32(tmp, QREG_SP, gen_im32(4)); gen_store(s, OS_LONG, tmp, reg); if (reg != QREG_SP) gen_op_mov32(reg, tmp); gen_op_add32(QREG_SP, tmp, gen_im32(offset)); } DISAS_INSN(unlk) { int src; int reg; int tmp; src = gen_new_qreg(QMODE_I32); reg = AREG(insn, 0); gen_op_mov32(src, reg); tmp = gen_load(s, OS_LONG, src, 0); gen_op_mov32(reg, tmp); gen_op_add32(QREG_SP, src, gen_im32(4)); } DISAS_INSN(nop) { } DISAS_INSN(rts) { int tmp; tmp = gen_load(s, OS_LONG, QREG_SP, 0); gen_op_add32(QREG_SP, QREG_SP, gen_im32(4)); gen_jmp(s, tmp); } DISAS_INSN(jump) { int tmp; /* Load the target address first to ensure correct exception behavior. */ tmp = gen_lea(s, insn, OS_LONG); if (tmp == -1) { gen_addr_fault(s); return; } if ((insn & 0x40) == 0) { /* jsr */ gen_push(s, gen_im32(s->pc)); } gen_jmp(s, tmp); } DISAS_INSN(addsubq) { int src1; int src2; int dest; int val; int addr; SRC_EA(src1, OS_LONG, 0, &addr); val = (insn >> 9) & 7; if (val == 0) val = 8; src2 = gen_im32(val); dest = gen_new_qreg(QMODE_I32); gen_op_mov32(dest, src1); if ((insn & 0x38) == 0x08) { /* Don't update condition codes if the destination is an address register. */ if (insn & 0x0100) { gen_op_sub32(dest, dest, src2); } else { gen_op_add32(dest, dest, src2); } } else { if (insn & 0x0100) { gen_op_update_xflag_lt(dest, src2); gen_op_sub32(dest, dest, src2); s->cc_op = CC_OP_SUB; } else { gen_op_add32(dest, dest, src2); gen_op_update_xflag_lt(dest, src2); s->cc_op = CC_OP_ADD; } gen_op_update_cc_add(dest, src2); } DEST_EA(insn, OS_LONG, dest, &addr); } DISAS_INSN(tpf) { switch (insn & 7) { case 2: /* One extension word. */ s->pc += 2; break; case 3: /* Two extension words. */ s->pc += 4; break; case 4: /* No extension words. */ break; default: disas_undef(s, insn); } } DISAS_INSN(branch) { int32_t offset; uint32_t base; int op; int l1; base = s->pc; op = (insn >> 8) & 0xf; offset = (int8_t)insn; if (offset == 0) { offset = ldsw_code(s->pc); s->pc += 2; } else if (offset == -1) { offset = read_im32(s); } if (op == 1) { /* bsr */ gen_push(s, gen_im32(s->pc)); } gen_flush_cc_op(s); if (op > 1) { /* Bcc */ l1 = gen_new_label(); gen_jmpcc(s, ((insn >> 8) & 0xf) ^ 1, l1); gen_jmp_tb(s, 1, base + offset); gen_set_label(l1); gen_jmp_tb(s, 0, s->pc); } else { /* Unconditional branch. */ gen_jmp_tb(s, 0, base + offset); } } DISAS_INSN(moveq) { int tmp; tmp = gen_im32((int8_t)insn); gen_op_mov32(DREG(insn, 9), tmp); gen_logic_cc(s, tmp); } DISAS_INSN(mvzs) { int opsize; int src; int reg; if (insn & 0x40) opsize = OS_WORD; else opsize = OS_BYTE; SRC_EA(src, opsize, (insn & 0x80) ? 0 : -1, NULL); reg = DREG(insn, 9); gen_op_mov32(reg, src); gen_logic_cc(s, src); } DISAS_INSN(or) { int reg; int dest; int src; int addr; reg = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); if (insn & 0x100) { SRC_EA(src, OS_LONG, 0, &addr); gen_op_or32(dest, src, reg); DEST_EA(insn, OS_LONG, dest, &addr); } else { SRC_EA(src, OS_LONG, 0, NULL); gen_op_or32(dest, src, reg); gen_op_mov32(reg, dest); } gen_logic_cc(s, dest); } DISAS_INSN(suba) { int src; int reg; SRC_EA(src, OS_LONG, 0, NULL); reg = AREG(insn, 9); gen_op_sub32(reg, reg, src); } DISAS_INSN(subx) { int reg; int src; int dest; int tmp; gen_flush_flags(s); reg = DREG(insn, 9); src = DREG(insn, 0); dest = gen_new_qreg(QMODE_I32); gen_op_mov32 (dest, reg); gen_op_subx_cc(dest, src); /* !Z is sticky. */ tmp = gen_new_qreg(QMODE_I32); gen_op_mov32 (tmp, QREG_CC_DEST); gen_op_update_cc_add(dest, src); gen_op_mov32(reg, dest); s->cc_op = CC_OP_DYNAMIC; gen_flush_flags(s); gen_op_or32(tmp, tmp, gen_im32(~CCF_Z)); gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(mov3q) { int src; int val; val = (insn >> 9) & 7; if (val == 0) val = -1; src = gen_im32(val); gen_logic_cc(s, src); DEST_EA(insn, OS_LONG, src, NULL); } DISAS_INSN(cmp) { int op; int src; int reg; int dest; int opsize; op = (insn >> 6) & 3; switch (op) { case 0: /* cmp.b */ opsize = OS_BYTE; s->cc_op = CC_OP_CMPB; break; case 1: /* cmp.w */ opsize = OS_WORD; s->cc_op = CC_OP_CMPW; break; case 2: /* cmp.l */ opsize = OS_LONG; s->cc_op = CC_OP_SUB; break; default: abort(); } SRC_EA(src, opsize, -1, NULL); reg = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); gen_op_sub32(dest, reg, src); gen_op_update_cc_add(dest, src); } DISAS_INSN(cmpa) { int opsize; int src; int reg; int dest; if (insn & 0x100) { opsize = OS_LONG; } else { opsize = OS_WORD; } SRC_EA(src, opsize, -1, NULL); reg = AREG(insn, 9); dest = gen_new_qreg(QMODE_I32); gen_op_sub32(dest, reg, src); gen_op_update_cc_add(dest, src); s->cc_op = CC_OP_SUB; } DISAS_INSN(eor) { int src; int reg; int dest; int addr; SRC_EA(src, OS_LONG, 0, &addr); reg = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); gen_op_xor32(dest, src, reg); gen_logic_cc(s, dest); DEST_EA(insn, OS_LONG, dest, &addr); } DISAS_INSN(and) { int src; int reg; int dest; int addr; reg = DREG(insn, 9); dest = gen_new_qreg(QMODE_I32); if (insn & 0x100) { SRC_EA(src, OS_LONG, 0, &addr); gen_op_and32(dest, src, reg); DEST_EA(insn, OS_LONG, dest, &addr); } else { SRC_EA(src, OS_LONG, 0, NULL); gen_op_and32(dest, src, reg); gen_op_mov32(reg, dest); } gen_logic_cc(s, dest); } DISAS_INSN(adda) { int src; int reg; SRC_EA(src, OS_LONG, 0, NULL); reg = AREG(insn, 9); gen_op_add32(reg, reg, src); } DISAS_INSN(addx) { int reg; int src; int dest; int tmp; gen_flush_flags(s); reg = DREG(insn, 9); src = DREG(insn, 0); dest = gen_new_qreg(QMODE_I32); gen_op_mov32 (dest, reg); gen_op_addx_cc(dest, src); /* !Z is sticky. */ tmp = gen_new_qreg(QMODE_I32); gen_op_mov32 (tmp, QREG_CC_DEST); gen_op_update_cc_add(dest, src); gen_op_mov32(reg, dest); s->cc_op = CC_OP_DYNAMIC; gen_flush_flags(s); gen_op_or32(tmp, tmp, gen_im32(~CCF_Z)); gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(shift_im) { int reg; int tmp; reg = DREG(insn, 0); tmp = (insn >> 9) & 7; if (tmp == 0) tmp = 8; if (insn & 0x100) { gen_op_shl_im_cc(reg, tmp); s->cc_op = CC_OP_SHL; } else { if (insn & 8) { gen_op_shr_im_cc(reg, tmp); s->cc_op = CC_OP_SHR; } else { gen_op_sar_im_cc(reg, tmp); s->cc_op = CC_OP_SAR; } } } DISAS_INSN(shift_reg) { int reg; int src; int tmp; reg = DREG(insn, 0); src = DREG(insn, 9); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, src, gen_im32(63)); if (insn & 0x100) { gen_op_shl_cc(reg, tmp); s->cc_op = CC_OP_SHL; } else { if (insn & 8) { gen_op_shr_cc(reg, tmp); s->cc_op = CC_OP_SHR; } else { gen_op_sar_cc(reg, tmp); s->cc_op = CC_OP_SAR; } } } DISAS_INSN(ff1) { int reg; reg = DREG(insn, 0); gen_logic_cc(s, reg); gen_op_ff1(reg, reg); } static int gen_get_sr(DisasContext *s) { int ccr; int sr; ccr = gen_get_ccr(s); sr = gen_new_qreg(QMODE_I32); gen_op_and32(sr, QREG_SR, gen_im32(0xffe0)); gen_op_or32(sr, sr, ccr); return sr; } DISAS_INSN(strldsr) { uint16_t ext; uint32_t addr; addr = s->pc - 2; ext = lduw_code(s->pc); s->pc += 2; if (ext != 0x46FC) { gen_exception(s, addr, EXCP_UNSUPPORTED); return; } ext = lduw_code(s->pc); s->pc += 2; if (IS_USER(s) || (ext & SR_S) == 0) { gen_exception(s, addr, EXCP_PRIVILEGE); return; } gen_push(s, gen_get_sr(s)); gen_set_sr_im(s, ext, 0); } DISAS_INSN(move_from_sr) { int reg; int sr; if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } sr = gen_get_sr(s); reg = DREG(insn, 0); gen_partset_reg(OS_WORD, reg, sr); } DISAS_INSN(move_to_sr) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } gen_set_sr(s, insn, 0); gen_lookup_tb(s); } DISAS_INSN(move_from_usp) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } /* TODO: Implement USP. */ gen_exception(s, s->pc - 2, EXCP_ILLEGAL); } DISAS_INSN(move_to_usp) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } /* TODO: Implement USP. */ gen_exception(s, s->pc - 2, EXCP_ILLEGAL); } DISAS_INSN(halt) { gen_jmp(s, gen_im32(s->pc)); gen_op_halt(); } DISAS_INSN(stop) { uint16_t ext; if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } ext = lduw_code(s->pc); s->pc += 2; gen_set_sr_im(s, ext, 0); gen_jmp(s, gen_im32(s->pc)); gen_op_stop(); } DISAS_INSN(rte) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } gen_exception(s, s->pc - 2, EXCP_RTE); } DISAS_INSN(movec) { uint16_t ext; int reg; if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } ext = lduw_code(s->pc); s->pc += 2; if (ext & 0x8000) { reg = AREG(ext, 12); } else { reg = DREG(ext, 12); } gen_op_movec(gen_im32(ext & 0xfff), reg); gen_lookup_tb(s); } DISAS_INSN(intouch) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } /* ICache fetch. Implement as no-op. */ } DISAS_INSN(cpushl) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } /* Cache push/invalidate. Implement as no-op. */ } DISAS_INSN(wddata) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); } DISAS_INSN(wdebug) { if (IS_USER(s)) { gen_exception(s, s->pc - 2, EXCP_PRIVILEGE); return; } /* TODO: Implement wdebug. */ qemu_assert(0, "WDEBUG not implemented"); } DISAS_INSN(trap) { gen_exception(s, s->pc - 2, EXCP_TRAP0 + (insn & 0xf)); } /* ??? FP exceptions are not implemented. Most exceptions are deferred until immediately before the next FP instruction is executed. */ DISAS_INSN(fpu) { uint16_t ext; int opmode; int src; int dest; int res; int round; int opsize; ext = lduw_code(s->pc); s->pc += 2; opmode = ext & 0x7f; switch ((ext >> 13) & 7) { case 0: case 2: break; case 1: goto undef; case 3: /* fmove out */ src = FREG(ext, 7); /* fmove */ /* ??? TODO: Proper behavior on overflow. */ switch ((ext >> 10) & 7) { case 0: opsize = OS_LONG; res = gen_new_qreg(QMODE_I32); gen_op_f64_to_i32(res, src); break; case 1: opsize = OS_SINGLE; res = gen_new_qreg(QMODE_F32); gen_op_f64_to_f32(res, src); break; case 4: opsize = OS_WORD; res = gen_new_qreg(QMODE_I32); gen_op_f64_to_i32(res, src); break; case 5: opsize = OS_DOUBLE; res = src; break; case 6: opsize = OS_BYTE; res = gen_new_qreg(QMODE_I32); gen_op_f64_to_i32(res, src); break; default: goto undef; } DEST_EA(insn, opsize, res, NULL); return; case 4: /* fmove to control register. */ switch ((ext >> 10) & 7) { case 4: /* FPCR */ /* Not implemented. Ignore writes. */ break; case 1: /* FPIAR */ case 2: /* FPSR */ default: cpu_abort(NULL, "Unimplemented: fmove to control %d", (ext >> 10) & 7); } break; case 5: /* fmove from control register. */ switch ((ext >> 10) & 7) { case 4: /* FPCR */ /* Not implemented. Always return zero. */ res = gen_im32(0); break; case 1: /* FPIAR */ case 2: /* FPSR */ default: cpu_abort(NULL, "Unimplemented: fmove from control %d", (ext >> 10) & 7); goto undef; } DEST_EA(insn, OS_LONG, res, NULL); break; case 6: /* fmovem */ case 7: { int addr; uint16_t mask; if ((ext & 0x1f00) != 0x1000 || (ext & 0xff) == 0) goto undef; src = gen_lea(s, insn, OS_LONG); if (src == -1) { gen_addr_fault(s); return; } addr = gen_new_qreg(QMODE_I32); gen_op_mov32(addr, src); mask = 0x80; dest = QREG_F0; while (mask) { if (ext & mask) { if (ext & (1 << 13)) { /* store */ gen_st(s, f64, addr, dest); } else { /* load */ gen_ld(s, f64, dest, addr); } if (ext & (mask - 1)) gen_op_add32(addr, addr, gen_im32(8)); } mask >>= 1; dest++; } } return; } if (ext & (1 << 14)) { int tmp; /* Source effective address. */ switch ((ext >> 10) & 7) { case 0: opsize = OS_LONG; break; case 1: opsize = OS_SINGLE; break; case 4: opsize = OS_WORD; break; case 5: opsize = OS_DOUBLE; break; case 6: opsize = OS_BYTE; break; default: goto undef; } SRC_EA(tmp, opsize, -1, NULL); if (opsize == OS_DOUBLE) { src = tmp; } else { src = gen_new_qreg(QMODE_F64); switch (opsize) { case OS_LONG: case OS_WORD: case OS_BYTE: gen_op_i32_to_f64(src, tmp); break; case OS_SINGLE: gen_op_f32_to_f64(src, tmp); break; } } } else { /* Source register. */ src = FREG(ext, 10); } dest = FREG(ext, 7); res = gen_new_qreg(QMODE_F64); if (opmode != 0x3a) gen_op_movf64(res, dest); round = 1; switch (opmode) { case 0: case 0x40: case 0x44: /* fmove */ gen_op_movf64(res, src); break; case 1: /* fint */ gen_op_iround_f64(res, src); round = 0; break; case 3: /* fintrz */ gen_op_itrunc_f64(res, src); round = 0; break; case 4: case 0x41: case 0x45: /* fsqrt */ gen_op_sqrtf64(res, src); break; case 0x18: case 0x58: case 0x5c: /* fabs */ gen_op_absf64(res, src); break; case 0x1a: case 0x5a: case 0x5e: /* fneg */ gen_op_chsf64(res, src); break; case 0x20: case 0x60: case 0x64: /* fdiv */ gen_op_divf64(res, res, src); break; case 0x22: case 0x62: case 0x66: /* fadd */ gen_op_addf64(res, res, src); break; case 0x23: case 0x63: case 0x67: /* fmul */ gen_op_mulf64(res, res, src); break; case 0x28: case 0x68: case 0x6c: /* fsub */ gen_op_subf64(res, res, src); break; case 0x38: /* fcmp */ gen_op_sub_cmpf64(res, res, src); dest = 0; round = 0; break; case 0x3a: /* ftst */ gen_op_movf64(res, src); dest = 0; round = 0; break; default: goto undef; } if (round) { if (opmode & 0x40) { if ((opmode & 0x4) != 0) round = 0; } else if ((s->fpcr & M68K_FPCR_PREC) == 0) { round = 0; } } if (round) { int tmp; tmp = gen_new_qreg(QMODE_F32); gen_op_f64_to_f32(tmp, res); gen_op_f32_to_f64(res, tmp); } gen_op_fp_result(res); if (dest) { gen_op_movf64(dest, res); } return; undef: s->pc -= 2; disas_undef_fpu(s, insn); } DISAS_INSN(fbcc) { uint32_t offset; uint32_t addr; int flag; int zero; int l1; addr = s->pc; offset = ldsw_code(s->pc); s->pc += 2; if (insn & (1 << 6)) { offset = (offset << 16) | lduw_code(s->pc); s->pc += 2; } l1 = gen_new_label(); /* TODO: Raise BSUN exception. */ flag = gen_new_qreg(QMODE_I32); zero = gen_new_qreg(QMODE_F64); gen_op_zerof64(zero); gen_op_compare_quietf64(flag, QREG_FP_RESULT, zero); /* Jump to l1 if condition is true. */ switch (insn & 0xf) { case 0: /* f */ break; case 1: /* eq (=0) */ gen_op_jmp_z32(flag, l1); break; case 2: /* ogt (=1) */ gen_op_sub32(flag, flag, gen_im32(1)); gen_op_jmp_z32(flag, l1); break; case 3: /* oge (=0 or =1) */ gen_op_jmp_z32(flag, l1); gen_op_sub32(flag, flag, gen_im32(1)); gen_op_jmp_z32(flag, l1); break; case 4: /* olt (=-1) */ gen_op_jmp_s32(flag, l1); break; case 5: /* ole (=-1 or =0) */ gen_op_jmp_s32(flag, l1); gen_op_jmp_z32(flag, l1); break; case 6: /* ogl (=-1 or =1) */ gen_op_jmp_s32(flag, l1); gen_op_sub32(flag, flag, gen_im32(1)); gen_op_jmp_z32(flag, l1); break; case 7: /* or (=2) */ gen_op_sub32(flag, flag, gen_im32(2)); gen_op_jmp_z32(flag, l1); break; case 8: /* un (<2) */ gen_op_sub32(flag, flag, gen_im32(2)); gen_op_jmp_s32(flag, l1); break; case 9: /* ueq (=0 or =2) */ gen_op_jmp_z32(flag, l1); gen_op_sub32(flag, flag, gen_im32(2)); gen_op_jmp_z32(flag, l1); break; case 10: /* ugt (>0) */ /* ??? Add jmp_gtu. */ gen_op_sub32(flag, flag, gen_im32(1)); gen_op_jmp_ns32(flag, l1); break; case 11: /* uge (>=0) */ gen_op_jmp_ns32(flag, l1); break; case 12: /* ult (=-1 or =2) */ gen_op_jmp_s32(flag, l1); gen_op_sub32(flag, flag, gen_im32(2)); gen_op_jmp_z32(flag, l1); break; case 13: /* ule (!=1) */ gen_op_sub32(flag, flag, gen_im32(1)); gen_op_jmp_nz32(flag, l1); break; case 14: /* ne (!=0) */ gen_op_jmp_nz32(flag, l1); break; case 15: /* t */ gen_op_mov32(flag, gen_im32(1)); break; } gen_jmp_tb(s, 0, s->pc); gen_set_label(l1); gen_jmp_tb(s, 1, addr + offset); } DISAS_INSN(frestore) { /* TODO: Implement frestore. */ qemu_assert(0, "FRESTORE not implemented"); } DISAS_INSN(fsave) { /* TODO: Implement fsave. */ qemu_assert(0, "FSAVE not implemented"); } static inline int gen_mac_extract_word(DisasContext *s, int val, int upper) { int tmp = gen_new_qreg(QMODE_I32); if (s->env->macsr & MACSR_FI) { if (upper) gen_op_and32(tmp, val, gen_im32(0xffff0000)); else gen_op_shl32(tmp, val, gen_im32(16)); } else if (s->env->macsr & MACSR_SU) { if (upper) gen_op_sar32(tmp, val, gen_im32(16)); else gen_op_ext16s32(tmp, val); } else { if (upper) gen_op_shr32(tmp, val, gen_im32(16)); else gen_op_ext16u32(tmp, val); } return tmp; } DISAS_INSN(mac) { int rx; int ry; uint16_t ext; int acc; int l1; int tmp; int addr; int loadval; int dual; int saved_flags = -1; ext = lduw_code(s->pc); s->pc += 2; acc = ((insn >> 7) & 1) | ((ext >> 3) & 2); dual = ((insn & 0x30) != 0 && (ext & 3) != 0); if (insn & 0x30) { /* MAC with load. */ tmp = gen_lea(s, insn, OS_LONG); addr = gen_new_qreg(QMODE_I32); gen_op_and32(addr, tmp, QREG_MAC_MASK); /* Load the value now to ensure correct exception behavior. Perform writeback after reading the MAC inputs. */ loadval = gen_load(s, OS_LONG, addr, 0); acc ^= 1; rx = (ext & 0x8000) ? AREG(ext, 12) : DREG(insn, 12); ry = (ext & 8) ? AREG(ext, 0) : DREG(ext, 0); } else { loadval = addr = -1; rx = (insn & 0x40) ? AREG(insn, 9) : DREG(insn, 9); ry = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0); } gen_op_mac_clear_flags(); l1 = -1; if ((s->env->macsr & MACSR_OMC) != 0 && !dual) { /* Skip the multiply if we know we will ignore it. */ l1 = gen_new_label(); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_MACSR, gen_im32(1 << (acc + 8))); gen_op_jmp_nz32(tmp, l1); } if ((ext & 0x0800) == 0) { /* Word. */ rx = gen_mac_extract_word(s, rx, (ext & 0x80) != 0); ry = gen_mac_extract_word(s, ry, (ext & 0x40) != 0); } if (s->env->macsr & MACSR_FI) { gen_op_macmulf(rx, ry); } else { if (s->env->macsr & MACSR_SU) gen_op_macmuls(rx, ry); else gen_op_macmulu(rx, ry); switch ((ext >> 9) & 3) { case 1: gen_op_macshl(); break; case 3: gen_op_macshr(); break; } } if (dual) { /* Save the overflow flag from the multiply. */ saved_flags = gen_new_qreg(QMODE_I32); gen_op_mov32(saved_flags, QREG_MACSR); } if ((s->env->macsr & MACSR_OMC) != 0 && dual) { /* Skip the accumulate if the value is already saturated. */ l1 = gen_new_label(); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_MACSR, gen_im32(MACSR_PAV0 << acc)); gen_op_jmp_nz32(tmp, l1); } if (insn & 0x100) gen_op_macsub(acc); else gen_op_macadd(acc); if (s->env->macsr & MACSR_FI) gen_op_macsatf(acc); else if (s->env->macsr & MACSR_SU) gen_op_macsats(acc); else gen_op_macsatu(acc); if (l1 != -1) gen_set_label(l1); if (dual) { /* Dual accumulate variant. */ acc = (ext >> 2) & 3; /* Restore the overflow flag from the multiplier. */ gen_op_mov32(QREG_MACSR, saved_flags); if ((s->env->macsr & MACSR_OMC) != 0) { /* Skip the accumulate if the value is already saturated. */ l1 = gen_new_label(); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, QREG_MACSR, gen_im32(MACSR_PAV0 << acc)); gen_op_jmp_nz32(tmp, l1); } if (ext & 2) gen_op_macsub(acc); else gen_op_macadd(acc); if (s->env->macsr & MACSR_FI) gen_op_macsatf(acc); else if (s->env->macsr & MACSR_SU) gen_op_macsats(acc); else gen_op_macsatu(acc); if (l1 != -1) gen_set_label(l1); } gen_op_mac_set_flags(acc); if (insn & 0x30) { int rw; rw = (insn & 0x40) ? AREG(insn, 9) : DREG(insn, 9); gen_op_mov32(rw, loadval); /* FIXME: Should address writeback happen with the masked or unmasked value? */ switch ((insn >> 3) & 7) { case 3: /* Post-increment. */ gen_op_add32(AREG(insn, 0), addr, gen_im32(4)); break; case 4: /* Pre-decrement. */ gen_op_mov32(AREG(insn, 0), addr); } } } DISAS_INSN(from_mac) { int rx; int acc; rx = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0); acc = (insn >> 9) & 3; if (s->env->macsr & MACSR_FI) { gen_op_get_macf(rx, acc); } else if ((s->env->macsr & MACSR_OMC) == 0) { gen_op_get_maci(rx, acc); } else if (s->env->macsr & MACSR_SU) { gen_op_get_macs(rx, acc); } else { gen_op_get_macu(rx, acc); } if (insn & 0x40) gen_op_clear_mac(acc); } DISAS_INSN(move_mac) { int src; int dest; src = insn & 3; dest = (insn >> 9) & 3; gen_op_move_mac(dest, src); gen_op_mac_clear_flags(); gen_op_mac_set_flags(dest); } DISAS_INSN(from_macsr) { int reg; reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0); gen_op_mov32(reg, QREG_MACSR); } DISAS_INSN(from_mask) { int reg; reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0); gen_op_mov32(reg, QREG_MAC_MASK); } DISAS_INSN(from_mext) { int reg; int acc; reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0); acc = (insn & 0x400) ? 2 : 0; if (s->env->macsr & MACSR_FI) gen_op_get_mac_extf(reg, acc); else gen_op_get_mac_exti(reg, acc); } DISAS_INSN(macsr_to_ccr) { gen_op_mov32(QREG_CC_X, gen_im32(0)); gen_op_and32(QREG_CC_DEST, QREG_MACSR, gen_im32(0xf)); s->cc_op = CC_OP_FLAGS; } DISAS_INSN(to_mac) { int acc; int val; acc = (insn >>9) & 3; SRC_EA(val, OS_LONG, 0, NULL); if (s->env->macsr & MACSR_FI) { gen_op_set_macf(val, acc); } else if (s->env->macsr & MACSR_SU) { gen_op_set_macs(val, acc); } else { gen_op_set_macu(val, acc); } gen_op_mac_clear_flags(); gen_op_mac_set_flags(acc); } DISAS_INSN(to_macsr) { int val; SRC_EA(val, OS_LONG, 0, NULL); gen_op_set_macsr(val); gen_lookup_tb(s); } DISAS_INSN(to_mask) { int val; SRC_EA(val, OS_LONG, 0, NULL); gen_op_or32(QREG_MAC_MASK, val, gen_im32(0xffff0000)); } DISAS_INSN(to_mext) { int val; int acc; SRC_EA(val, OS_LONG, 0, NULL); acc = (insn & 0x400) ? 2 : 0; if (s->env->macsr & MACSR_FI) gen_op_set_mac_extf(val, acc); else if (s->env->macsr & MACSR_SU) gen_op_set_mac_exts(val, acc); else gen_op_set_mac_extu(val, acc); } static disas_proc opcode_table[65536]; static void register_opcode (disas_proc proc, uint16_t opcode, uint16_t mask) { int i; int from; int to; /* Sanity check. All set bits must be included in the mask. */ if (opcode & ~mask) { fprintf(stderr, "qemu internal error: bogus opcode definition %04x/%04x\n", opcode, mask); abort(); } /* This could probably be cleverer. For now just optimize the case where the top bits are known. */ /* Find the first zero bit in the mask. */ i = 0x8000; while ((i & mask) != 0) i >>= 1; /* Iterate over all combinations of this and lower bits. */ if (i == 0) i = 1; else i <<= 1; from = opcode & ~(i - 1); to = from + i; for (i = from; i < to; i++) { if ((i & mask) == opcode) opcode_table[i] = proc; } } /* Register m68k opcode handlers. Order is important. Later insn override earlier ones. */ void register_m68k_insns (CPUM68KState *env) { #define INSN(name, opcode, mask, feature) \ if (m68k_feature(env, M68K_FEATURE_##feature)) \ register_opcode(disas_##name, 0x##opcode, 0x##mask) INSN(undef, 0000, 0000, CF_ISA_A); INSN(arith_im, 0080, fff8, CF_ISA_A); INSN(bitrev, 00c0, fff8, CF_ISA_C); INSN(bitop_reg, 0100, f1c0, CF_ISA_A); INSN(bitop_reg, 0140, f1c0, CF_ISA_A); INSN(bitop_reg, 0180, f1c0, CF_ISA_A); INSN(bitop_reg, 01c0, f1c0, CF_ISA_A); INSN(arith_im, 0280, fff8, CF_ISA_A); INSN(byterev, 02c0, fff8, CF_ISA_A); INSN(arith_im, 0480, fff8, CF_ISA_A); INSN(ff1, 04c0, fff8, CF_ISA_C); INSN(arith_im, 0680, fff8, CF_ISA_A); INSN(bitop_im, 0800, ffc0, CF_ISA_A); INSN(bitop_im, 0840, ffc0, CF_ISA_A); INSN(bitop_im, 0880, ffc0, CF_ISA_A); INSN(bitop_im, 08c0, ffc0, CF_ISA_A); INSN(arith_im, 0a80, fff8, CF_ISA_A); INSN(arith_im, 0c00, ff38, CF_ISA_A); INSN(move, 1000, f000, CF_ISA_A); INSN(move, 2000, f000, CF_ISA_A); INSN(move, 3000, f000, CF_ISA_A); INSN(strldsr, 40e7, ffff, CF_ISA_A); INSN(negx, 4080, fff8, CF_ISA_A); INSN(move_from_sr, 40c0, fff8, CF_ISA_A); INSN(lea, 41c0, f1c0, CF_ISA_A); INSN(clr, 4200, ff00, CF_ISA_A); INSN(undef, 42c0, ffc0, CF_ISA_A); INSN(move_from_ccr, 42c0, fff8, CF_ISA_A); INSN(neg, 4480, fff8, CF_ISA_A); INSN(move_to_ccr, 44c0, ffc0, CF_ISA_A); INSN(not, 4680, fff8, CF_ISA_A); INSN(move_to_sr, 46c0, ffc0, CF_ISA_A); INSN(pea, 4840, ffc0, CF_ISA_A); INSN(swap, 4840, fff8, CF_ISA_A); INSN(movem, 48c0, fbc0, CF_ISA_A); INSN(ext, 4880, fff8, CF_ISA_A); INSN(ext, 48c0, fff8, CF_ISA_A); INSN(ext, 49c0, fff8, CF_ISA_A); INSN(tst, 4a00, ff00, CF_ISA_A); INSN(tas, 4ac0, ffc0, CF_ISA_B); INSN(halt, 4ac8, ffff, CF_ISA_A); INSN(pulse, 4acc, ffff, CF_ISA_A); INSN(illegal, 4afc, ffff, CF_ISA_A); INSN(mull, 4c00, ffc0, CF_ISA_A); INSN(divl, 4c40, ffc0, CF_ISA_A); INSN(sats, 4c80, fff8, CF_ISA_B); INSN(trap, 4e40, fff0, CF_ISA_A); INSN(link, 4e50, fff8, CF_ISA_A); INSN(unlk, 4e58, fff8, CF_ISA_A); INSN(move_to_usp, 4e60, fff8, CF_ISA_B); INSN(move_from_usp, 4e68, fff8, CF_ISA_B); INSN(nop, 4e71, ffff, CF_ISA_A); INSN(stop, 4e72, ffff, CF_ISA_A); INSN(rte, 4e73, ffff, CF_ISA_A); INSN(rts, 4e75, ffff, CF_ISA_A); INSN(movec, 4e7b, ffff, CF_ISA_A); INSN(jump, 4e80, ffc0, CF_ISA_A); INSN(jump, 4ec0, ffc0, CF_ISA_A); INSN(addsubq, 5180, f1c0, CF_ISA_A); INSN(scc, 50c0, f0f8, CF_ISA_A); INSN(addsubq, 5080, f1c0, CF_ISA_A); INSN(tpf, 51f8, fff8, CF_ISA_A); INSN(branch, 6000, f000, CF_ISA_A); INSN(moveq, 7000, f100, CF_ISA_A); INSN(mvzs, 7100, f100, CF_ISA_B); INSN(or, 8000, f000, CF_ISA_A); INSN(divw, 80c0, f0c0, CF_ISA_A); INSN(addsub, 9000, f000, CF_ISA_A); INSN(subx, 9180, f1f8, CF_ISA_A); INSN(suba, 91c0, f1c0, CF_ISA_A); INSN(undef_mac, a000, f000, CF_ISA_A); INSN(mac, a000, f100, CF_EMAC); INSN(from_mac, a180, f9b0, CF_EMAC); INSN(move_mac, a110, f9fc, CF_EMAC); INSN(from_macsr,a980, f9f0, CF_EMAC); INSN(from_mask, ad80, fff0, CF_EMAC); INSN(from_mext, ab80, fbf0, CF_EMAC); INSN(macsr_to_ccr, a9c0, ffff, CF_EMAC); INSN(to_mac, a100, f9c0, CF_EMAC); INSN(to_macsr, a900, ffc0, CF_EMAC); INSN(to_mext, ab00, fbc0, CF_EMAC); INSN(to_mask, ad00, ffc0, CF_EMAC); INSN(mov3q, a140, f1c0, CF_ISA_B); INSN(cmp, b000, f1c0, CF_ISA_B); /* cmp.b */ INSN(cmp, b040, f1c0, CF_ISA_B); /* cmp.w */ INSN(cmpa, b0c0, f1c0, CF_ISA_B); /* cmpa.w */ INSN(cmp, b080, f1c0, CF_ISA_A); INSN(cmpa, b1c0, f1c0, CF_ISA_A); INSN(eor, b180, f1c0, CF_ISA_A); INSN(and, c000, f000, CF_ISA_A); INSN(mulw, c0c0, f0c0, CF_ISA_A); INSN(addsub, d000, f000, CF_ISA_A); INSN(addx, d180, f1f8, CF_ISA_A); INSN(adda, d1c0, f1c0, CF_ISA_A); INSN(shift_im, e080, f0f0, CF_ISA_A); INSN(shift_reg, e0a0, f0f0, CF_ISA_A); INSN(undef_fpu, f000, f000, CF_ISA_A); INSN(fpu, f200, ffc0, CF_FPU); INSN(fbcc, f280, ffc0, CF_FPU); INSN(frestore, f340, ffc0, CF_FPU); INSN(fsave, f340, ffc0, CF_FPU); INSN(intouch, f340, ffc0, CF_ISA_A); INSN(cpushl, f428, ff38, CF_ISA_A); INSN(wddata, fb00, ff00, CF_ISA_A); INSN(wdebug, fbc0, ffc0, CF_ISA_A); #undef INSN } /* ??? Some of this implementation is not exception safe. We should always write back the result to memory before setting the condition codes. */ static void disas_m68k_insn(CPUState * env, DisasContext *s) { uint16_t insn; insn = lduw_code(s->pc); s->pc += 2; opcode_table[insn](s, insn); } #if 0 /* Save the result of a floating point operation. */ static void expand_op_fp_result(qOP *qop) { gen_op_movf64(QREG_FP_RESULT, qop->args[0]); } /* Dummy op to indicate that the flags have been set. */ static void expand_op_flags_set(qOP *qop) { } /* Convert the confition codes into CC_OP_FLAGS format. */ static void expand_op_flush_flags(qOP *qop) { int cc_opreg; if (qop->args[0] == CC_OP_DYNAMIC) cc_opreg = QREG_CC_OP; else cc_opreg = gen_im32(qop->args[0]); gen_op_helper32(QREG_NULL, cc_opreg, HELPER_flush_flags); } /* Set CC_DEST after a logical or direct flag setting operation. */ static void expand_op_logic_cc(qOP *qop) { gen_op_mov32(QREG_CC_DEST, qop->args[0]); } /* Set CC_SRC and CC_DEST after an arithmetic operation. */ static void expand_op_update_cc_add(qOP *qop) { gen_op_mov32(QREG_CC_DEST, qop->args[0]); gen_op_mov32(QREG_CC_SRC, qop->args[1]); } /* Update the X flag. */ static void expand_op_update_xflag(qOP *qop) { int arg0; int arg1; arg0 = qop->args[0]; arg1 = qop->args[1]; if (arg1 == QREG_NULL) { /* CC_X = arg0. */ gen_op_mov32(QREG_CC_X, arg0); } else { /* CC_X = arg0 < (unsigned)arg1. */ gen_op_set_ltu32(QREG_CC_X, arg0, arg1); } } /* Set arg0 to the contents of the X flag. */ static void expand_op_get_xflag(qOP *qop) { gen_op_mov32(qop->args[0], QREG_CC_X); } /* Expand a shift by immediate. The ISA only allows shifts by 1-8, so we already know the shift is within range. */ static inline void expand_shift_im(qOP *qop, int right, int arith) { int val; int reg; int tmp; int im; reg = qop->args[0]; im = qop->args[1]; tmp = gen_im32(im); val = gen_new_qreg(QMODE_I32); gen_op_mov32(val, reg); gen_op_mov32(QREG_CC_DEST, val); gen_op_mov32(QREG_CC_SRC, tmp); if (right) { if (arith) { gen_op_sar32(reg, val, tmp); } else { gen_op_shr32(reg, val, tmp); } if (im == 1) tmp = QREG_NULL; else tmp = gen_im32(im - 1); } else { gen_op_shl32(reg, val, tmp); tmp = gen_im32(32 - im); } if (tmp != QREG_NULL) gen_op_shr32(val, val, tmp); gen_op_and32(QREG_CC_X, val, gen_im32(1)); } static void expand_op_shl_im_cc(qOP *qop) { expand_shift_im(qop, 0, 0); } static void expand_op_shr_im_cc(qOP *qop) { expand_shift_im(qop, 1, 0); } static void expand_op_sar_im_cc(qOP *qop) { expand_shift_im(qop, 1, 1); } /* Expand a shift by register. */ /* ??? This gives incorrect answers for shifts by 0 or >= 32 */ static inline void expand_shift_reg(qOP *qop, int right, int arith) { int val; int reg; int shift; int tmp; reg = qop->args[0]; shift = qop->args[1]; val = gen_new_qreg(QMODE_I32); gen_op_mov32(val, reg); gen_op_mov32(QREG_CC_DEST, val); gen_op_mov32(QREG_CC_SRC, shift); tmp = gen_new_qreg(QMODE_I32); if (right) { if (arith) { gen_op_sar32(reg, val, shift); } else { gen_op_shr32(reg, val, shift); } gen_op_sub32(tmp, shift, gen_im32(1)); } else { gen_op_shl32(reg, val, shift); gen_op_sub32(tmp, gen_im32(31), shift); } gen_op_shl32(val, val, tmp); gen_op_and32(QREG_CC_X, val, gen_im32(1)); } static void expand_op_shl_cc(qOP *qop) { expand_shift_reg(qop, 0, 0); } static void expand_op_shr_cc(qOP *qop) { expand_shift_reg(qop, 1, 0); } static void expand_op_sar_cc(qOP *qop) { expand_shift_reg(qop, 1, 1); } /* Set the Z flag to (arg0 & arg1) == 0. */ static void expand_op_btest(qOP *qop) { int tmp; int l1; l1 = gen_new_label(); tmp = gen_new_qreg(QMODE_I32); gen_op_and32(tmp, qop->args[0], qop->args[1]); gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, gen_im32(~(uint32_t)CCF_Z)); gen_op_jmp_nz32(tmp, l1); gen_op_or32(QREG_CC_DEST, QREG_CC_DEST, gen_im32(CCF_Z)); gen_op_label(l1); } /* arg0 += arg1 + CC_X */ static void expand_op_addx_cc(qOP *qop) { int arg0 = qop->args[0]; int arg1 = qop->args[1]; int l1, l2; gen_op_add32 (arg0, arg0, arg1); l1 = gen_new_label(); l2 = gen_new_label(); gen_op_jmp_z32(QREG_CC_X, l1); gen_op_add32(arg0, arg0, gen_im32(1)); gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_ADDX)); gen_op_set_leu32(QREG_CC_X, arg0, arg1); gen_op_jmp(l2); gen_set_label(l1); gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_ADD)); gen_op_set_ltu32(QREG_CC_X, arg0, arg1); gen_set_label(l2); } /* arg0 -= arg1 + CC_X */ static void expand_op_subx_cc(qOP *qop) { int arg0 = qop->args[0]; int arg1 = qop->args[1]; int l1, l2; l1 = gen_new_label(); l2 = gen_new_label(); gen_op_jmp_z32(QREG_CC_X, l1); gen_op_set_leu32(QREG_CC_X, arg0, arg1); gen_op_sub32(arg0, arg0, gen_im32(1)); gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_SUBX)); gen_op_jmp(l2); gen_set_label(l1); gen_op_set_ltu32(QREG_CC_X, arg0, arg1); gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_SUB)); gen_set_label(l2); gen_op_sub32 (arg0, arg0, arg1); } /* Expand target specific ops to generic qops. */ static void expand_target_qops(void) { qOP *qop; qOP *next; int c; /* Copy the list of qops, expanding target specific ops as we go. */ qop = gen_first_qop; gen_first_qop = NULL; gen_last_qop = NULL; for (; qop; qop = next) { c = qop->opcode; next = qop->next; if (c < FIRST_TARGET_OP) { qop->prev = gen_last_qop; qop->next = NULL; if (gen_last_qop) gen_last_qop->next = qop; else gen_first_qop = qop; gen_last_qop = qop; continue; } switch (c) { #define DEF(name, nargs, barrier) \ case INDEX_op_##name: \ expand_op_##name(qop); \ break; #include "qop-target.def" #undef DEF default: cpu_abort(NULL, "Unexpanded target qop"); } } } /* ??? Implement this. */ static void optimize_flags(void) { } #endif /* generate intermediate code for basic block 'tb'. */ static inline int gen_intermediate_code_internal(CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext dc1, *dc = &dc1; uint16_t *gen_opc_end; int j, lj; target_ulong pc_start; int pc_offset; int last_cc_op; /* generate intermediate code */ pc_start = tb->pc; dc->tb = tb; gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; dc->env = env; dc->is_jmp = DISAS_NEXT; dc->pc = pc_start; dc->cc_op = CC_OP_DYNAMIC; dc->singlestep_enabled = env->singlestep_enabled; dc->fpcr = env->fpcr; dc->user = (env->sr & SR_S) == 0; nb_gen_labels = 0; lj = -1; do { free_qreg = 0; pc_offset = dc->pc - pc_start; gen_throws_exception = NULL; if (env->nb_breakpoints > 0) { for(j = 0; j < env->nb_breakpoints; j++) { if (env->breakpoints[j] == dc->pc) { gen_exception(dc, dc->pc, EXCP_DEBUG); dc->is_jmp = DISAS_JUMP; break; } } if (dc->is_jmp) break; } if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; } gen_opc_pc[lj] = dc->pc; gen_opc_instr_start[lj] = 1; } last_cc_op = dc->cc_op; dc->insn_pc = dc->pc; disas_m68k_insn(env, dc); } while (!dc->is_jmp && gen_opc_ptr < gen_opc_end && !env->singlestep_enabled && (pc_offset) < (TARGET_PAGE_SIZE - 32)); if (__builtin_expect(env->singlestep_enabled, 0)) { /* Make sure the pc is updated, and raise a debug exception. */ if (!dc->is_jmp) { gen_flush_cc_op(dc); gen_op_mov32(QREG_PC, gen_im32((long)dc->pc)); } gen_op_raise_exception(EXCP_DEBUG); } else { switch(dc->is_jmp) { case DISAS_NEXT: gen_flush_cc_op(dc); gen_jmp_tb(dc, 0, dc->pc); break; default: case DISAS_JUMP: case DISAS_UPDATE: gen_flush_cc_op(dc); /* indicate that the hash table must be used to find the next TB */ gen_op_mov32(QREG_T0, gen_im32(0)); gen_op_exit_tb(); break; case DISAS_TB_JUMP: /* nothing more to generate */ break; } } *gen_opc_ptr = INDEX_op_end; #ifdef DEBUG_DISAS if (loglevel & CPU_LOG_TB_IN_ASM) { fprintf(logfile, "----------------\n"); fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start)); target_disas(logfile, pc_start, dc->pc - pc_start, 0); fprintf(logfile, "\n"); if (loglevel & (CPU_LOG_TB_OP)) { fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } } #endif if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; tb->size = 0; } else { tb->size = dc->pc - pc_start; } //optimize_flags(); //expand_target_qops(); return 0; } int gen_intermediate_code(CPUState *env, TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 0); } int gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb) { return gen_intermediate_code_internal(env, tb, 1); } void cpu_reset(CPUM68KState *env) { memset(env, 0, offsetof(CPUM68KState, breakpoints)); #if !defined (CONFIG_USER_ONLY) env->sr = 0x2700; #endif /* ??? FP regs should be initialized to NaN. */ env->cc_op = CC_OP_FLAGS; /* TODO: We should set PC from the interrupt vector. */ env->pc = 0; tlb_flush(env, 1); } CPUM68KState *cpu_m68k_init(void) { CPUM68KState *env; env = malloc(sizeof(CPUM68KState)); if (!env) return NULL; cpu_exec_init(env); cpu_reset(env); return env; } void cpu_m68k_close(CPUM68KState *env) { free(env); } void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags) { int i; uint16_t sr; CPU_DoubleU u; for (i = 0; i < 8; i++) { u.d = env->fregs[i]; cpu_fprintf (f, "D%d = %08x A%d = %08x F%d = %08x%08x (%12g)\n", i, env->dregs[i], i, env->aregs[i], i, u.l.upper, u.l.lower, u.d); } cpu_fprintf (f, "PC = %08x ", env->pc); sr = env->sr; cpu_fprintf (f, "SR = %04x %c%c%c%c%c ", sr, (sr & 0x10) ? 'X' : '-', (sr & CCF_N) ? 'N' : '-', (sr & CCF_Z) ? 'Z' : '-', (sr & CCF_V) ? 'V' : '-', (sr & CCF_C) ? 'C' : '-'); cpu_fprintf (f, "FPRESULT = %12g\n", env->fp_result); }