/* * LatticeMico32 main translation routines. * * Copyright (c) 2010 Michael Walle <michael@walle.cc> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "cpu.h" #include "disas/disas.h" #include "exec/helper-proto.h" #include "tcg-op.h" #include "exec/cpu_ldst.h" #include "hw/lm32/lm32_pic.h" #include "exec/helper-gen.h" #include "trace-tcg.h" #include "exec/log.h" #define DISAS_LM32 1 #if DISAS_LM32 # define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__) #else # define LOG_DIS(...) do { } while (0) #endif #define EXTRACT_FIELD(src, start, end) \ (((src) >> start) & ((1 << (end - start + 1)) - 1)) #define MEM_INDEX 0 static TCGv_env cpu_env; static TCGv cpu_R[32]; static TCGv cpu_pc; static TCGv cpu_ie; static TCGv cpu_icc; static TCGv cpu_dcc; static TCGv cpu_cc; static TCGv cpu_cfg; static TCGv cpu_eba; static TCGv cpu_dc; static TCGv cpu_deba; static TCGv cpu_bp[4]; static TCGv cpu_wp[4]; #include "exec/gen-icount.h" enum { OP_FMT_RI, OP_FMT_RR, OP_FMT_CR, OP_FMT_I }; /* This is the state at translation time. */ typedef struct DisasContext { target_ulong pc; /* Decoder. */ int format; uint32_t ir; uint8_t opcode; uint8_t r0, r1, r2, csr; uint16_t imm5; uint16_t imm16; uint32_t imm26; unsigned int delayed_branch; unsigned int tb_flags, synced_flags; /* tb dependent flags. */ int is_jmp; struct TranslationBlock *tb; int singlestep_enabled; uint32_t features; uint8_t num_breakpoints; uint8_t num_watchpoints; } DisasContext; static const char *regnames[] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26/gp", "r27/fp", "r28/sp", "r29/ra", "r30/ea", "r31/ba", "bp0", "bp1", "bp2", "bp3", "wp0", "wp1", "wp2", "wp3" }; static inline int zero_extend(unsigned int val, int width) { return val & ((1 << width) - 1); } static inline int sign_extend(unsigned int val, int width) { int sval; /* LSL. */ val <<= 32 - width; sval = val; /* ASR. */ sval >>= 32 - width; return sval; } static inline void t_gen_raise_exception(DisasContext *dc, uint32_t index) { TCGv_i32 tmp = tcg_const_i32(index); gen_helper_raise_exception(cpu_env, tmp); tcg_temp_free_i32(tmp); } static inline void t_gen_illegal_insn(DisasContext *dc) { tcg_gen_movi_tl(cpu_pc, dc->pc); gen_helper_ill(cpu_env); } static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) { TranslationBlock *tb; tb = dc->tb; if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) && likely(!dc->singlestep_enabled)) { tcg_gen_goto_tb(n); tcg_gen_movi_tl(cpu_pc, dest); tcg_gen_exit_tb((uintptr_t)tb + n); } else { tcg_gen_movi_tl(cpu_pc, dest); if (dc->singlestep_enabled) { t_gen_raise_exception(dc, EXCP_DEBUG); } tcg_gen_exit_tb(0); } } static void dec_add(DisasContext *dc) { if (dc->format == OP_FMT_RI) { if (dc->r0 == R_R0) { if (dc->r1 == R_R0 && dc->imm16 == 0) { LOG_DIS("nop\n"); } else { LOG_DIS("mvi r%d, %d\n", dc->r1, sign_extend(dc->imm16, 16)); } } else { LOG_DIS("addi r%d, r%d, %d\n", dc->r1, dc->r0, sign_extend(dc->imm16, 16)); } } else { LOG_DIS("add r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (dc->format == OP_FMT_RI) { tcg_gen_addi_tl(cpu_R[dc->r1], cpu_R[dc->r0], sign_extend(dc->imm16, 16)); } else { tcg_gen_add_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_and(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("andi r%d, r%d, %d\n", dc->r1, dc->r0, zero_extend(dc->imm16, 16)); } else { LOG_DIS("and r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (dc->format == OP_FMT_RI) { tcg_gen_andi_tl(cpu_R[dc->r1], cpu_R[dc->r0], zero_extend(dc->imm16, 16)); } else { if (dc->r0 == 0 && dc->r1 == 0 && dc->r2 == 0) { tcg_gen_movi_tl(cpu_pc, dc->pc + 4); gen_helper_hlt(cpu_env); } else { tcg_gen_and_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } } static void dec_andhi(DisasContext *dc) { LOG_DIS("andhi r%d, r%d, %d\n", dc->r2, dc->r0, dc->imm16); tcg_gen_andi_tl(cpu_R[dc->r1], cpu_R[dc->r0], (dc->imm16 << 16)); } static void dec_b(DisasContext *dc) { if (dc->r0 == R_RA) { LOG_DIS("ret\n"); } else if (dc->r0 == R_EA) { LOG_DIS("eret\n"); } else if (dc->r0 == R_BA) { LOG_DIS("bret\n"); } else { LOG_DIS("b r%d\n", dc->r0); } /* restore IE.IE in case of an eret */ if (dc->r0 == R_EA) { TCGv t0 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); tcg_gen_andi_tl(t0, cpu_ie, IE_EIE); tcg_gen_ori_tl(cpu_ie, cpu_ie, IE_IE); tcg_gen_brcondi_tl(TCG_COND_EQ, t0, IE_EIE, l1); tcg_gen_andi_tl(cpu_ie, cpu_ie, ~IE_IE); gen_set_label(l1); tcg_temp_free(t0); } else if (dc->r0 == R_BA) { TCGv t0 = tcg_temp_new(); TCGLabel *l1 = gen_new_label(); tcg_gen_andi_tl(t0, cpu_ie, IE_BIE); tcg_gen_ori_tl(cpu_ie, cpu_ie, IE_IE); tcg_gen_brcondi_tl(TCG_COND_EQ, t0, IE_BIE, l1); tcg_gen_andi_tl(cpu_ie, cpu_ie, ~IE_IE); gen_set_label(l1); tcg_temp_free(t0); } tcg_gen_mov_tl(cpu_pc, cpu_R[dc->r0]); dc->is_jmp = DISAS_JUMP; } static void dec_bi(DisasContext *dc) { LOG_DIS("bi %d\n", sign_extend(dc->imm26 << 2, 26)); gen_goto_tb(dc, 0, dc->pc + (sign_extend(dc->imm26 << 2, 26))); dc->is_jmp = DISAS_TB_JUMP; } static inline void gen_cond_branch(DisasContext *dc, int cond) { TCGLabel *l1 = gen_new_label(); tcg_gen_brcond_tl(cond, cpu_R[dc->r0], cpu_R[dc->r1], l1); gen_goto_tb(dc, 0, dc->pc + 4); gen_set_label(l1); gen_goto_tb(dc, 1, dc->pc + (sign_extend(dc->imm16 << 2, 16))); dc->is_jmp = DISAS_TB_JUMP; } static void dec_be(DisasContext *dc) { LOG_DIS("be r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16) * 4); gen_cond_branch(dc, TCG_COND_EQ); } static void dec_bg(DisasContext *dc) { LOG_DIS("bg r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16 * 4)); gen_cond_branch(dc, TCG_COND_GT); } static void dec_bge(DisasContext *dc) { LOG_DIS("bge r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16) * 4); gen_cond_branch(dc, TCG_COND_GE); } static void dec_bgeu(DisasContext *dc) { LOG_DIS("bgeu r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16) * 4); gen_cond_branch(dc, TCG_COND_GEU); } static void dec_bgu(DisasContext *dc) { LOG_DIS("bgu r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16) * 4); gen_cond_branch(dc, TCG_COND_GTU); } static void dec_bne(DisasContext *dc) { LOG_DIS("bne r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16) * 4); gen_cond_branch(dc, TCG_COND_NE); } static void dec_call(DisasContext *dc) { LOG_DIS("call r%d\n", dc->r0); tcg_gen_movi_tl(cpu_R[R_RA], dc->pc + 4); tcg_gen_mov_tl(cpu_pc, cpu_R[dc->r0]); dc->is_jmp = DISAS_JUMP; } static void dec_calli(DisasContext *dc) { LOG_DIS("calli %d\n", sign_extend(dc->imm26, 26) * 4); tcg_gen_movi_tl(cpu_R[R_RA], dc->pc + 4); gen_goto_tb(dc, 0, dc->pc + (sign_extend(dc->imm26 << 2, 26))); dc->is_jmp = DISAS_TB_JUMP; } static inline void gen_compare(DisasContext *dc, int cond) { int rX = (dc->format == OP_FMT_RR) ? dc->r2 : dc->r1; int rY = (dc->format == OP_FMT_RR) ? dc->r0 : dc->r0; int rZ = (dc->format == OP_FMT_RR) ? dc->r1 : -1; int i; if (dc->format == OP_FMT_RI) { switch (cond) { case TCG_COND_GEU: case TCG_COND_GTU: i = zero_extend(dc->imm16, 16); break; default: i = sign_extend(dc->imm16, 16); break; } tcg_gen_setcondi_tl(cond, cpu_R[rX], cpu_R[rY], i); } else { tcg_gen_setcond_tl(cond, cpu_R[rX], cpu_R[rY], cpu_R[rZ]); } } static void dec_cmpe(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpei r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16)); } else { LOG_DIS("cmpe r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_EQ); } static void dec_cmpg(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpgi r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16)); } else { LOG_DIS("cmpg r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_GT); } static void dec_cmpge(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpgei r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16)); } else { LOG_DIS("cmpge r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_GE); } static void dec_cmpgeu(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpgeui r%d, r%d, %d\n", dc->r0, dc->r1, zero_extend(dc->imm16, 16)); } else { LOG_DIS("cmpgeu r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_GEU); } static void dec_cmpgu(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpgui r%d, r%d, %d\n", dc->r0, dc->r1, zero_extend(dc->imm16, 16)); } else { LOG_DIS("cmpgu r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_GTU); } static void dec_cmpne(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("cmpnei r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16)); } else { LOG_DIS("cmpne r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } gen_compare(dc, TCG_COND_NE); } static void dec_divu(DisasContext *dc) { TCGLabel *l1; LOG_DIS("divu r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); if (!(dc->features & LM32_FEATURE_DIVIDE)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware divider is not available\n"); t_gen_illegal_insn(dc); return; } l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, cpu_R[dc->r1], 0, l1); tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_DIVIDE_BY_ZERO); gen_set_label(l1); tcg_gen_divu_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } static void dec_lb(DisasContext *dc) { TCGv t0; LOG_DIS("lb r%d, (r%d+%d)\n", dc->r1, dc->r0, dc->imm16); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_ld8s(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_lbu(DisasContext *dc) { TCGv t0; LOG_DIS("lbu r%d, (r%d+%d)\n", dc->r1, dc->r0, dc->imm16); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_ld8u(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_lh(DisasContext *dc) { TCGv t0; LOG_DIS("lh r%d, (r%d+%d)\n", dc->r1, dc->r0, dc->imm16); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_ld16s(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_lhu(DisasContext *dc) { TCGv t0; LOG_DIS("lhu r%d, (r%d+%d)\n", dc->r1, dc->r0, dc->imm16); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_ld16u(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_lw(DisasContext *dc) { TCGv t0; LOG_DIS("lw r%d, (r%d+%d)\n", dc->r1, dc->r0, sign_extend(dc->imm16, 16)); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_ld32s(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_modu(DisasContext *dc) { TCGLabel *l1; LOG_DIS("modu r%d, r%d, %d\n", dc->r2, dc->r0, dc->r1); if (!(dc->features & LM32_FEATURE_DIVIDE)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware divider is not available\n"); t_gen_illegal_insn(dc); return; } l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, cpu_R[dc->r1], 0, l1); tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_DIVIDE_BY_ZERO); gen_set_label(l1); tcg_gen_remu_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } static void dec_mul(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("muli r%d, r%d, %d\n", dc->r0, dc->r1, sign_extend(dc->imm16, 16)); } else { LOG_DIS("mul r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (!(dc->features & LM32_FEATURE_MULTIPLY)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware multiplier is not available\n"); t_gen_illegal_insn(dc); return; } if (dc->format == OP_FMT_RI) { tcg_gen_muli_tl(cpu_R[dc->r1], cpu_R[dc->r0], sign_extend(dc->imm16, 16)); } else { tcg_gen_mul_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_nor(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("nori r%d, r%d, %d\n", dc->r0, dc->r1, zero_extend(dc->imm16, 16)); } else { LOG_DIS("nor r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (dc->format == OP_FMT_RI) { TCGv t0 = tcg_temp_new(); tcg_gen_movi_tl(t0, zero_extend(dc->imm16, 16)); tcg_gen_nor_tl(cpu_R[dc->r1], cpu_R[dc->r0], t0); tcg_temp_free(t0); } else { tcg_gen_nor_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_or(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("ori r%d, r%d, %d\n", dc->r1, dc->r0, zero_extend(dc->imm16, 16)); } else { if (dc->r1 == R_R0) { LOG_DIS("mv r%d, r%d\n", dc->r2, dc->r0); } else { LOG_DIS("or r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } } if (dc->format == OP_FMT_RI) { tcg_gen_ori_tl(cpu_R[dc->r1], cpu_R[dc->r0], zero_extend(dc->imm16, 16)); } else { tcg_gen_or_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_orhi(DisasContext *dc) { if (dc->r0 == R_R0) { LOG_DIS("mvhi r%d, %d\n", dc->r1, dc->imm16); } else { LOG_DIS("orhi r%d, r%d, %d\n", dc->r1, dc->r0, dc->imm16); } tcg_gen_ori_tl(cpu_R[dc->r1], cpu_R[dc->r0], (dc->imm16 << 16)); } static void dec_scall(DisasContext *dc) { switch (dc->imm5) { case 2: LOG_DIS("break\n"); tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_BREAKPOINT); break; case 7: LOG_DIS("scall\n"); tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_SYSTEMCALL); break; default: qemu_log_mask(LOG_GUEST_ERROR, "invalid opcode @0x%x", dc->pc); t_gen_illegal_insn(dc); break; } } static void dec_rcsr(DisasContext *dc) { LOG_DIS("rcsr r%d, %d\n", dc->r2, dc->csr); switch (dc->csr) { case CSR_IE: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_ie); break; case CSR_IM: gen_helper_rcsr_im(cpu_R[dc->r2], cpu_env); break; case CSR_IP: gen_helper_rcsr_ip(cpu_R[dc->r2], cpu_env); break; case CSR_CC: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_cc); break; case CSR_CFG: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_cfg); break; case CSR_EBA: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_eba); break; case CSR_DC: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_dc); break; case CSR_DEBA: tcg_gen_mov_tl(cpu_R[dc->r2], cpu_deba); break; case CSR_JTX: gen_helper_rcsr_jtx(cpu_R[dc->r2], cpu_env); break; case CSR_JRX: gen_helper_rcsr_jrx(cpu_R[dc->r2], cpu_env); break; case CSR_ICC: case CSR_DCC: case CSR_BP0: case CSR_BP1: case CSR_BP2: case CSR_BP3: case CSR_WP0: case CSR_WP1: case CSR_WP2: case CSR_WP3: qemu_log_mask(LOG_GUEST_ERROR, "invalid read access csr=%x\n", dc->csr); break; default: qemu_log_mask(LOG_GUEST_ERROR, "read_csr: unknown csr=%x\n", dc->csr); break; } } static void dec_sb(DisasContext *dc) { TCGv t0; LOG_DIS("sb (r%d+%d), r%d\n", dc->r0, dc->imm16, dc->r1); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_st8(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_sextb(DisasContext *dc) { LOG_DIS("sextb r%d, r%d\n", dc->r2, dc->r0); if (!(dc->features & LM32_FEATURE_SIGN_EXTEND)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware sign extender is not available\n"); t_gen_illegal_insn(dc); return; } tcg_gen_ext8s_tl(cpu_R[dc->r2], cpu_R[dc->r0]); } static void dec_sexth(DisasContext *dc) { LOG_DIS("sexth r%d, r%d\n", dc->r2, dc->r0); if (!(dc->features & LM32_FEATURE_SIGN_EXTEND)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware sign extender is not available\n"); t_gen_illegal_insn(dc); return; } tcg_gen_ext16s_tl(cpu_R[dc->r2], cpu_R[dc->r0]); } static void dec_sh(DisasContext *dc) { TCGv t0; LOG_DIS("sh (r%d+%d), r%d\n", dc->r0, dc->imm16, dc->r1); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_st16(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_sl(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("sli r%d, r%d, %d\n", dc->r1, dc->r0, dc->imm5); } else { LOG_DIS("sl r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (!(dc->features & LM32_FEATURE_SHIFT)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware shifter is not available\n"); t_gen_illegal_insn(dc); return; } if (dc->format == OP_FMT_RI) { tcg_gen_shli_tl(cpu_R[dc->r1], cpu_R[dc->r0], dc->imm5); } else { TCGv t0 = tcg_temp_new(); tcg_gen_andi_tl(t0, cpu_R[dc->r1], 0x1f); tcg_gen_shl_tl(cpu_R[dc->r2], cpu_R[dc->r0], t0); tcg_temp_free(t0); } } static void dec_sr(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("sri r%d, r%d, %d\n", dc->r1, dc->r0, dc->imm5); } else { LOG_DIS("sr r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } /* The real CPU (w/o hardware shifter) only supports right shift by exactly * one bit */ if (dc->format == OP_FMT_RI) { if (!(dc->features & LM32_FEATURE_SHIFT) && (dc->imm5 != 1)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware shifter is not available\n"); t_gen_illegal_insn(dc); return; } tcg_gen_sari_tl(cpu_R[dc->r1], cpu_R[dc->r0], dc->imm5); } else { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGv t0 = tcg_temp_local_new(); tcg_gen_andi_tl(t0, cpu_R[dc->r1], 0x1f); if (!(dc->features & LM32_FEATURE_SHIFT)) { tcg_gen_brcondi_tl(TCG_COND_EQ, t0, 1, l1); t_gen_illegal_insn(dc); tcg_gen_br(l2); } gen_set_label(l1); tcg_gen_sar_tl(cpu_R[dc->r2], cpu_R[dc->r0], t0); gen_set_label(l2); tcg_temp_free(t0); } } static void dec_sru(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("srui r%d, r%d, %d\n", dc->r1, dc->r0, dc->imm5); } else { LOG_DIS("sru r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (dc->format == OP_FMT_RI) { if (!(dc->features & LM32_FEATURE_SHIFT) && (dc->imm5 != 1)) { qemu_log_mask(LOG_GUEST_ERROR, "hardware shifter is not available\n"); t_gen_illegal_insn(dc); return; } tcg_gen_shri_tl(cpu_R[dc->r1], cpu_R[dc->r0], dc->imm5); } else { TCGLabel *l1 = gen_new_label(); TCGLabel *l2 = gen_new_label(); TCGv t0 = tcg_temp_local_new(); tcg_gen_andi_tl(t0, cpu_R[dc->r1], 0x1f); if (!(dc->features & LM32_FEATURE_SHIFT)) { tcg_gen_brcondi_tl(TCG_COND_EQ, t0, 1, l1); t_gen_illegal_insn(dc); tcg_gen_br(l2); } gen_set_label(l1); tcg_gen_shr_tl(cpu_R[dc->r2], cpu_R[dc->r0], t0); gen_set_label(l2); tcg_temp_free(t0); } } static void dec_sub(DisasContext *dc) { LOG_DIS("sub r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); tcg_gen_sub_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } static void dec_sw(DisasContext *dc) { TCGv t0; LOG_DIS("sw (r%d+%d), r%d\n", dc->r0, sign_extend(dc->imm16, 16), dc->r1); t0 = tcg_temp_new(); tcg_gen_addi_tl(t0, cpu_R[dc->r0], sign_extend(dc->imm16, 16)); tcg_gen_qemu_st32(cpu_R[dc->r1], t0, MEM_INDEX); tcg_temp_free(t0); } static void dec_user(DisasContext *dc) { LOG_DIS("user"); qemu_log_mask(LOG_GUEST_ERROR, "user instruction undefined\n"); t_gen_illegal_insn(dc); } static void dec_wcsr(DisasContext *dc) { int no; LOG_DIS("wcsr r%d, %d\n", dc->r1, dc->csr); switch (dc->csr) { case CSR_IE: tcg_gen_mov_tl(cpu_ie, cpu_R[dc->r1]); tcg_gen_movi_tl(cpu_pc, dc->pc + 4); dc->is_jmp = DISAS_UPDATE; break; case CSR_IM: /* mark as an io operation because it could cause an interrupt */ if (dc->tb->cflags & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_wcsr_im(cpu_env, cpu_R[dc->r1]); tcg_gen_movi_tl(cpu_pc, dc->pc + 4); if (dc->tb->cflags & CF_USE_ICOUNT) { gen_io_end(); } dc->is_jmp = DISAS_UPDATE; break; case CSR_IP: /* mark as an io operation because it could cause an interrupt */ if (dc->tb->cflags & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_wcsr_ip(cpu_env, cpu_R[dc->r1]); tcg_gen_movi_tl(cpu_pc, dc->pc + 4); if (dc->tb->cflags & CF_USE_ICOUNT) { gen_io_end(); } dc->is_jmp = DISAS_UPDATE; break; case CSR_ICC: /* TODO */ break; case CSR_DCC: /* TODO */ break; case CSR_EBA: tcg_gen_mov_tl(cpu_eba, cpu_R[dc->r1]); break; case CSR_DEBA: tcg_gen_mov_tl(cpu_deba, cpu_R[dc->r1]); break; case CSR_JTX: gen_helper_wcsr_jtx(cpu_env, cpu_R[dc->r1]); break; case CSR_JRX: gen_helper_wcsr_jrx(cpu_env, cpu_R[dc->r1]); break; case CSR_DC: gen_helper_wcsr_dc(cpu_env, cpu_R[dc->r1]); break; case CSR_BP0: case CSR_BP1: case CSR_BP2: case CSR_BP3: no = dc->csr - CSR_BP0; if (dc->num_breakpoints <= no) { qemu_log_mask(LOG_GUEST_ERROR, "breakpoint #%i is not available\n", no); t_gen_illegal_insn(dc); break; } gen_helper_wcsr_bp(cpu_env, cpu_R[dc->r1], tcg_const_i32(no)); break; case CSR_WP0: case CSR_WP1: case CSR_WP2: case CSR_WP3: no = dc->csr - CSR_WP0; if (dc->num_watchpoints <= no) { qemu_log_mask(LOG_GUEST_ERROR, "watchpoint #%i is not available\n", no); t_gen_illegal_insn(dc); break; } gen_helper_wcsr_wp(cpu_env, cpu_R[dc->r1], tcg_const_i32(no)); break; case CSR_CC: case CSR_CFG: qemu_log_mask(LOG_GUEST_ERROR, "invalid write access csr=%x\n", dc->csr); break; default: qemu_log_mask(LOG_GUEST_ERROR, "write_csr: unknown csr=%x\n", dc->csr); break; } } static void dec_xnor(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("xnori r%d, r%d, %d\n", dc->r0, dc->r1, zero_extend(dc->imm16, 16)); } else { if (dc->r1 == R_R0) { LOG_DIS("not r%d, r%d\n", dc->r2, dc->r0); } else { LOG_DIS("xnor r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } } if (dc->format == OP_FMT_RI) { tcg_gen_xori_tl(cpu_R[dc->r1], cpu_R[dc->r0], zero_extend(dc->imm16, 16)); tcg_gen_not_tl(cpu_R[dc->r1], cpu_R[dc->r1]); } else { tcg_gen_eqv_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_xor(DisasContext *dc) { if (dc->format == OP_FMT_RI) { LOG_DIS("xori r%d, r%d, %d\n", dc->r0, dc->r1, zero_extend(dc->imm16, 16)); } else { LOG_DIS("xor r%d, r%d, r%d\n", dc->r2, dc->r0, dc->r1); } if (dc->format == OP_FMT_RI) { tcg_gen_xori_tl(cpu_R[dc->r1], cpu_R[dc->r0], zero_extend(dc->imm16, 16)); } else { tcg_gen_xor_tl(cpu_R[dc->r2], cpu_R[dc->r0], cpu_R[dc->r1]); } } static void dec_ill(DisasContext *dc) { qemu_log_mask(LOG_GUEST_ERROR, "invalid opcode 0x%02x\n", dc->opcode); t_gen_illegal_insn(dc); } typedef void (*DecoderInfo)(DisasContext *dc); static const DecoderInfo decinfo[] = { dec_sru, dec_nor, dec_mul, dec_sh, dec_lb, dec_sr, dec_xor, dec_lh, dec_and, dec_xnor, dec_lw, dec_lhu, dec_sb, dec_add, dec_or, dec_sl, dec_lbu, dec_be, dec_bg, dec_bge, dec_bgeu, dec_bgu, dec_sw, dec_bne, dec_andhi, dec_cmpe, dec_cmpg, dec_cmpge, dec_cmpgeu, dec_cmpgu, dec_orhi, dec_cmpne, dec_sru, dec_nor, dec_mul, dec_divu, dec_rcsr, dec_sr, dec_xor, dec_ill, dec_and, dec_xnor, dec_ill, dec_scall, dec_sextb, dec_add, dec_or, dec_sl, dec_b, dec_modu, dec_sub, dec_user, dec_wcsr, dec_ill, dec_call, dec_sexth, dec_bi, dec_cmpe, dec_cmpg, dec_cmpge, dec_cmpgeu, dec_cmpgu, dec_calli, dec_cmpne }; static inline void decode(DisasContext *dc, uint32_t ir) { dc->ir = ir; LOG_DIS("%8.8x\t", dc->ir); dc->opcode = EXTRACT_FIELD(ir, 26, 31); dc->imm5 = EXTRACT_FIELD(ir, 0, 4); dc->imm16 = EXTRACT_FIELD(ir, 0, 15); dc->imm26 = EXTRACT_FIELD(ir, 0, 25); dc->csr = EXTRACT_FIELD(ir, 21, 25); dc->r0 = EXTRACT_FIELD(ir, 21, 25); dc->r1 = EXTRACT_FIELD(ir, 16, 20); dc->r2 = EXTRACT_FIELD(ir, 11, 15); /* bit 31 seems to indicate insn type. */ if (ir & (1 << 31)) { dc->format = OP_FMT_RR; } else { dc->format = OP_FMT_RI; } assert(ARRAY_SIZE(decinfo) == 64); assert(dc->opcode < 64); decinfo[dc->opcode](dc); } /* generate intermediate code for basic block 'tb'. */ void gen_intermediate_code(CPULM32State *env, struct TranslationBlock *tb) { LM32CPU *cpu = lm32_env_get_cpu(env); CPUState *cs = CPU(cpu); struct DisasContext ctx, *dc = &ctx; uint32_t pc_start; uint32_t next_page_start; int num_insns; int max_insns; pc_start = tb->pc; dc->features = cpu->features; dc->num_breakpoints = cpu->num_breakpoints; dc->num_watchpoints = cpu->num_watchpoints; dc->tb = tb; dc->is_jmp = DISAS_NEXT; dc->pc = pc_start; dc->singlestep_enabled = cs->singlestep_enabled; if (pc_start & 3) { qemu_log_mask(LOG_GUEST_ERROR, "unaligned PC=%x. Ignoring lowest bits.\n", pc_start); pc_start &= ~3; } next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; num_insns = 0; max_insns = tb->cflags & CF_COUNT_MASK; if (max_insns == 0) { max_insns = CF_COUNT_MASK; } if (max_insns > TCG_MAX_INSNS) { max_insns = TCG_MAX_INSNS; } gen_tb_start(tb); do { tcg_gen_insn_start(dc->pc); num_insns++; if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) { tcg_gen_movi_tl(cpu_pc, dc->pc); t_gen_raise_exception(dc, EXCP_DEBUG); dc->is_jmp = DISAS_UPDATE; /* The address covered by the breakpoint must be included in [tb->pc, tb->pc + tb->size) in order to for it to be properly cleared -- thus we increment the PC here so that the logic setting tb->size below does the right thing. */ dc->pc += 4; break; } /* Pretty disas. */ LOG_DIS("%8.8x:\t", dc->pc); if (num_insns == max_insns && (tb->cflags & CF_LAST_IO)) { gen_io_start(); } decode(dc, cpu_ldl_code(env, dc->pc)); dc->pc += 4; } while (!dc->is_jmp && !tcg_op_buf_full() && !cs->singlestep_enabled && !singlestep && (dc->pc < next_page_start) && num_insns < max_insns); if (tb->cflags & CF_LAST_IO) { gen_io_end(); } if (unlikely(cs->singlestep_enabled)) { if (dc->is_jmp == DISAS_NEXT) { tcg_gen_movi_tl(cpu_pc, dc->pc); } t_gen_raise_exception(dc, EXCP_DEBUG); } else { switch (dc->is_jmp) { case DISAS_NEXT: gen_goto_tb(dc, 1, dc->pc); break; default: case DISAS_JUMP: case DISAS_UPDATE: /* indicate that the hash table must be used to find the next TB */ tcg_gen_exit_tb(0); break; case DISAS_TB_JUMP: /* nothing more to generate */ break; } } gen_tb_end(tb, num_insns); tb->size = dc->pc - pc_start; tb->icount = num_insns; #ifdef DEBUG_DISAS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { qemu_log("\n"); log_target_disas(cs, pc_start, dc->pc - pc_start, 0); qemu_log("\nisize=%d osize=%d\n", dc->pc - pc_start, tcg_op_buf_count()); } #endif } void lm32_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { LM32CPU *cpu = LM32_CPU(cs); CPULM32State *env = &cpu->env; int i; if (!env || !f) { return; } cpu_fprintf(f, "IN: PC=%x %s\n", env->pc, lookup_symbol(env->pc)); cpu_fprintf(f, "ie=%8.8x (IE=%x EIE=%x BIE=%x) im=%8.8x ip=%8.8x\n", env->ie, (env->ie & IE_IE) ? 1 : 0, (env->ie & IE_EIE) ? 1 : 0, (env->ie & IE_BIE) ? 1 : 0, lm32_pic_get_im(env->pic_state), lm32_pic_get_ip(env->pic_state)); cpu_fprintf(f, "eba=%8.8x deba=%8.8x\n", env->eba, env->deba); for (i = 0; i < 32; i++) { cpu_fprintf(f, "r%2.2d=%8.8x ", i, env->regs[i]); if ((i + 1) % 4 == 0) { cpu_fprintf(f, "\n"); } } cpu_fprintf(f, "\n\n"); } void restore_state_to_opc(CPULM32State *env, TranslationBlock *tb, target_ulong *data) { env->pc = data[0]; } void lm32_translate_init(void) { int i; cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env"); for (i = 0; i < ARRAY_SIZE(cpu_R); i++) { cpu_R[i] = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, regs[i]), regnames[i]); } for (i = 0; i < ARRAY_SIZE(cpu_bp); i++) { cpu_bp[i] = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, bp[i]), regnames[32+i]); } for (i = 0; i < ARRAY_SIZE(cpu_wp); i++) { cpu_wp[i] = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, wp[i]), regnames[36+i]); } cpu_pc = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, pc), "pc"); cpu_ie = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, ie), "ie"); cpu_icc = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, icc), "icc"); cpu_dcc = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, dcc), "dcc"); cpu_cc = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, cc), "cc"); cpu_cfg = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, cfg), "cfg"); cpu_eba = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, eba), "eba"); cpu_dc = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, dc), "dc"); cpu_deba = tcg_global_mem_new(cpu_env, offsetof(CPULM32State, deba), "deba"); }