/* * MMX/SSE/SSE2/PNI support * * Copyright (c) 2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #if SHIFT == 0 #define Reg MMXReg #define XMM_ONLY(x...) #define B(n) MMX_B(n) #define W(n) MMX_W(n) #define L(n) MMX_L(n) #define Q(n) q #define SUFFIX _mmx #else #define Reg XMMReg #define XMM_ONLY(x...) x #define B(n) XMM_B(n) #define W(n) XMM_W(n) #define L(n) XMM_L(n) #define Q(n) XMM_Q(n) #define SUFFIX _xmm #endif void OPPROTO glue(op_psrlw, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 15) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->W(0) >>= shift; d->W(1) >>= shift; d->W(2) >>= shift; d->W(3) >>= shift; #if SHIFT == 1 d->W(4) >>= shift; d->W(5) >>= shift; d->W(6) >>= shift; d->W(7) >>= shift; #endif } FORCE_RET(); } void OPPROTO glue(op_psraw, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 15) { shift = 15; } else { shift = s->B(0); } d->W(0) = (int16_t)d->W(0) >> shift; d->W(1) = (int16_t)d->W(1) >> shift; d->W(2) = (int16_t)d->W(2) >> shift; d->W(3) = (int16_t)d->W(3) >> shift; #if SHIFT == 1 d->W(4) = (int16_t)d->W(4) >> shift; d->W(5) = (int16_t)d->W(5) >> shift; d->W(6) = (int16_t)d->W(6) >> shift; d->W(7) = (int16_t)d->W(7) >> shift; #endif } void OPPROTO glue(op_psllw, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 15) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->W(0) <<= shift; d->W(1) <<= shift; d->W(2) <<= shift; d->W(3) <<= shift; #if SHIFT == 1 d->W(4) <<= shift; d->W(5) <<= shift; d->W(6) <<= shift; d->W(7) <<= shift; #endif } FORCE_RET(); } void OPPROTO glue(op_psrld, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 31) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->L(0) >>= shift; d->L(1) >>= shift; #if SHIFT == 1 d->L(2) >>= shift; d->L(3) >>= shift; #endif } FORCE_RET(); } void OPPROTO glue(op_psrad, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 31) { shift = 31; } else { shift = s->B(0); } d->L(0) = (int32_t)d->L(0) >> shift; d->L(1) = (int32_t)d->L(1) >> shift; #if SHIFT == 1 d->L(2) = (int32_t)d->L(2) >> shift; d->L(3) = (int32_t)d->L(3) >> shift; #endif } void OPPROTO glue(op_pslld, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 31) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->L(0) <<= shift; d->L(1) <<= shift; #if SHIFT == 1 d->L(2) <<= shift; d->L(3) <<= shift; #endif } FORCE_RET(); } void OPPROTO glue(op_psrlq, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 63) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->Q(0) >>= shift; #if SHIFT == 1 d->Q(1) >>= shift; #endif } FORCE_RET(); } void OPPROTO glue(op_psllq, SUFFIX)(void) { Reg *d, *s; int shift; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); if (s->Q(0) > 63) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->Q(0) <<= shift; #if SHIFT == 1 d->Q(1) <<= shift; #endif } FORCE_RET(); } #if SHIFT == 1 void OPPROTO glue(op_psrldq, SUFFIX)(void) { Reg *d, *s; int shift, i; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); shift = s->L(0); if (shift > 16) shift = 16; for(i = 0; i < 16 - shift; i++) d->B(i) = d->B(i + shift); for(i = 16 - shift; i < 16; i++) d->B(i) = 0; FORCE_RET(); } void OPPROTO glue(op_pslldq, SUFFIX)(void) { Reg *d, *s; int shift, i; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); shift = s->L(0); if (shift > 16) shift = 16; for(i = 15; i >= shift; i--) d->B(i) = d->B(i - shift); for(i = 0; i < shift; i++) d->B(i) = 0; FORCE_RET(); } #endif #define SSE_OP_B(name, F)\ void OPPROTO glue(name, SUFFIX) (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->B(0) = F(d->B(0), s->B(0));\ d->B(1) = F(d->B(1), s->B(1));\ d->B(2) = F(d->B(2), s->B(2));\ d->B(3) = F(d->B(3), s->B(3));\ d->B(4) = F(d->B(4), s->B(4));\ d->B(5) = F(d->B(5), s->B(5));\ d->B(6) = F(d->B(6), s->B(6));\ d->B(7) = F(d->B(7), s->B(7));\ XMM_ONLY(\ d->B(8) = F(d->B(8), s->B(8));\ d->B(9) = F(d->B(9), s->B(9));\ d->B(10) = F(d->B(10), s->B(10));\ d->B(11) = F(d->B(11), s->B(11));\ d->B(12) = F(d->B(12), s->B(12));\ d->B(13) = F(d->B(13), s->B(13));\ d->B(14) = F(d->B(14), s->B(14));\ d->B(15) = F(d->B(15), s->B(15));\ )\ } #define SSE_OP_W(name, F)\ void OPPROTO glue(name, SUFFIX) (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->W(0) = F(d->W(0), s->W(0));\ d->W(1) = F(d->W(1), s->W(1));\ d->W(2) = F(d->W(2), s->W(2));\ d->W(3) = F(d->W(3), s->W(3));\ XMM_ONLY(\ d->W(4) = F(d->W(4), s->W(4));\ d->W(5) = F(d->W(5), s->W(5));\ d->W(6) = F(d->W(6), s->W(6));\ d->W(7) = F(d->W(7), s->W(7));\ )\ } #define SSE_OP_L(name, F)\ void OPPROTO glue(name, SUFFIX) (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->L(0) = F(d->L(0), s->L(0));\ d->L(1) = F(d->L(1), s->L(1));\ XMM_ONLY(\ d->L(2) = F(d->L(2), s->L(2));\ d->L(3) = F(d->L(3), s->L(3));\ )\ } #define SSE_OP_Q(name, F)\ void OPPROTO glue(name, SUFFIX) (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->Q(0) = F(d->Q(0), s->Q(0));\ XMM_ONLY(\ d->Q(1) = F(d->Q(1), s->Q(1));\ )\ } #if SHIFT == 0 static inline int satub(int x) { if (x < 0) return 0; else if (x > 255) return 255; else return x; } static inline int satuw(int x) { if (x < 0) return 0; else if (x > 65535) return 65535; else return x; } static inline int satsb(int x) { if (x < -128) return -128; else if (x > 127) return 127; else return x; } static inline int satsw(int x) { if (x < -32768) return -32768; else if (x > 32767) return 32767; else return x; } #define FADD(a, b) ((a) + (b)) #define FADDUB(a, b) satub((a) + (b)) #define FADDUW(a, b) satuw((a) + (b)) #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) #define FSUB(a, b) ((a) - (b)) #define FSUBUB(a, b) satub((a) - (b)) #define FSUBUW(a, b) satuw((a) - (b)) #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) #define FAND(a, b) (a) & (b) #define FANDN(a, b) ((~(a)) & (b)) #define FOR(a, b) (a) | (b) #define FXOR(a, b) (a) ^ (b) #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0 #define FMULLW(a, b) (a) * (b) #define FMULHUW(a, b) (a) * (b) >> 16 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16 #define FAVG(a, b) ((a) + (b) + 1) >> 1 #endif SSE_OP_B(op_paddb, FADD) SSE_OP_W(op_paddw, FADD) SSE_OP_L(op_paddl, FADD) SSE_OP_Q(op_paddq, FADD) SSE_OP_B(op_psubb, FSUB) SSE_OP_W(op_psubw, FSUB) SSE_OP_L(op_psubl, FSUB) SSE_OP_Q(op_psubq, FSUB) SSE_OP_B(op_paddusb, FADDUB) SSE_OP_B(op_paddsb, FADDSB) SSE_OP_B(op_psubusb, FSUBUB) SSE_OP_B(op_psubsb, FSUBSB) SSE_OP_W(op_paddusw, FADDUW) SSE_OP_W(op_paddsw, FADDSW) SSE_OP_W(op_psubusw, FSUBUW) SSE_OP_W(op_psubsw, FSUBSW) SSE_OP_B(op_pminub, FMINUB) SSE_OP_B(op_pmaxub, FMAXUB) SSE_OP_W(op_pminsw, FMINSW) SSE_OP_W(op_pmaxsw, FMAXSW) SSE_OP_Q(op_pand, FAND) SSE_OP_Q(op_pandn, FANDN) SSE_OP_Q(op_por, FOR) SSE_OP_Q(op_pxor, FXOR) SSE_OP_B(op_pcmpgtb, FCMPGTB) SSE_OP_W(op_pcmpgtw, FCMPGTW) SSE_OP_L(op_pcmpgtl, FCMPGTL) SSE_OP_B(op_pcmpeqb, FCMPEQ) SSE_OP_W(op_pcmpeqw, FCMPEQ) SSE_OP_L(op_pcmpeql, FCMPEQ) SSE_OP_W(op_pmullw, FMULLW) SSE_OP_W(op_pmulhuw, FMULHUW) SSE_OP_W(op_pmulhw, FMULHW) SSE_OP_B(op_pavgb, FAVG) SSE_OP_W(op_pavgw, FAVG) void OPPROTO glue(op_pmuludq, SUFFIX) (void) { Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); #if SHIFT == 1 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); #endif } void OPPROTO glue(op_pmaddwd, SUFFIX) (void) { int i; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); for(i = 0; i < (2 << SHIFT); i++) { d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) + (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1); } FORCE_RET(); } #if SHIFT == 0 static inline int abs1(int a) { if (a < 0) return -a; else return a; } #endif void OPPROTO glue(op_psadbw, SUFFIX) (void) { unsigned int val; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); val = 0; val += abs1(d->B(0) - s->B(0)); val += abs1(d->B(1) - s->B(1)); val += abs1(d->B(2) - s->B(2)); val += abs1(d->B(3) - s->B(3)); val += abs1(d->B(4) - s->B(4)); val += abs1(d->B(5) - s->B(5)); val += abs1(d->B(6) - s->B(6)); val += abs1(d->B(7) - s->B(7)); d->Q(0) = val; #if SHIFT == 1 val = 0; val += abs1(d->B(8) - s->B(8)); val += abs1(d->B(9) - s->B(9)); val += abs1(d->B(10) - s->B(10)); val += abs1(d->B(11) - s->B(11)); val += abs1(d->B(12) - s->B(12)); val += abs1(d->B(13) - s->B(13)); val += abs1(d->B(14) - s->B(14)); val += abs1(d->B(15) - s->B(15)); d->Q(1) = val; #endif } void OPPROTO glue(op_maskmov, SUFFIX) (void) { int i; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); for(i = 0; i < (8 << SHIFT); i++) { if (s->B(i) & 0x80) stb(A0 + i, d->B(i)); } FORCE_RET(); } void OPPROTO glue(op_movl_mm_T0, SUFFIX) (void) { Reg *d; d = (Reg *)((char *)env + PARAM1); d->L(0) = T0; d->L(1) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } void OPPROTO glue(op_movl_T0_mm, SUFFIX) (void) { Reg *s; s = (Reg *)((char *)env + PARAM1); T0 = s->L(0); } #if SHIFT == 0 void OPPROTO glue(op_pshufw, SUFFIX) (void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.W(0) = s->W(order & 3); r.W(1) = s->W((order >> 2) & 3); r.W(2) = s->W((order >> 4) & 3); r.W(3) = s->W((order >> 6) & 3); *d = r; } #else void OPPROTO op_shufps(void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.L(0) = d->L(order & 3); r.L(1) = d->L((order >> 2) & 3); r.L(2) = s->L((order >> 4) & 3); r.L(3) = s->L((order >> 6) & 3); *d = r; } void OPPROTO op_shufpd(void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.Q(0) = d->Q(order & 1); r.Q(1) = s->Q((order >> 1) & 1); *d = r; } void OPPROTO glue(op_pshufd, SUFFIX) (void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.L(0) = s->L(order & 3); r.L(1) = s->L((order >> 2) & 3); r.L(2) = s->L((order >> 4) & 3); r.L(3) = s->L((order >> 6) & 3); *d = r; } void OPPROTO glue(op_pshuflw, SUFFIX) (void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.W(0) = s->W(order & 3); r.W(1) = s->W((order >> 2) & 3); r.W(2) = s->W((order >> 4) & 3); r.W(3) = s->W((order >> 6) & 3); r.Q(1) = s->Q(1); *d = r; } void OPPROTO glue(op_pshufhw, SUFFIX) (void) { Reg r, *d, *s; int order; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); order = PARAM3; r.Q(0) = s->Q(0); r.W(4) = s->W(4 + (order & 3)); r.W(5) = s->W(4 + ((order >> 2) & 3)); r.W(6) = s->W(4 + ((order >> 4) & 3)); r.W(7) = s->W(4 + ((order >> 6) & 3)); *d = r; } #endif #if SHIFT == 1 /* FPU ops */ /* XXX: not accurate */ #define SSE_OP_S(name, F)\ void OPPROTO op_ ## name ## ps (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ }\ \ void OPPROTO op_ ## name ## ss (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ }\ void OPPROTO op_ ## name ## pd (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ }\ \ void OPPROTO op_ ## name ## sd (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ } #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b) #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b) #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) SSE_OP_S(add, FPU_ADD) SSE_OP_S(sub, FPU_SUB) SSE_OP_S(mul, FPU_MUL) SSE_OP_S(div, FPU_DIV) SSE_OP_S(min, FPU_MIN) SSE_OP_S(max, FPU_MAX) SSE_OP_S(sqrt, FPU_SQRT) /* float to float conversions */ void OPPROTO op_cvtps2pd(void) { float32 s0, s1; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); s0 = s->XMM_S(0); s1 = s->XMM_S(1); d->XMM_D(0) = float32_to_float64(s0, &env->sse_status); d->XMM_D(1) = float32_to_float64(s1, &env->sse_status); } void OPPROTO op_cvtpd2ps(void) { Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status); d->Q(1) = 0; } void OPPROTO op_cvtss2sd(void) { Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status); } void OPPROTO op_cvtsd2ss(void) { Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status); } /* integer to float */ void OPPROTO op_cvtdq2ps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status); d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status); d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status); d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status); } void OPPROTO op_cvtdq2pd(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); int32_t l0, l1; l0 = (int32_t)s->XMM_L(0); l1 = (int32_t)s->XMM_L(1); d->XMM_D(0) = int32_to_float64(l0, &env->sse_status); d->XMM_D(1) = int32_to_float64(l1, &env->sse_status); } void OPPROTO op_cvtpi2ps(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); MMXReg *s = (MMXReg *)((char *)env + PARAM2); d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); } void OPPROTO op_cvtpi2pd(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); MMXReg *s = (MMXReg *)((char *)env + PARAM2); d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); } void OPPROTO op_cvtsi2ss(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); d->XMM_S(0) = int32_to_float32(T0, &env->sse_status); } void OPPROTO op_cvtsi2sd(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); d->XMM_D(0) = int32_to_float64(T0, &env->sse_status); } #ifdef TARGET_X86_64 void OPPROTO op_cvtsq2ss(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); d->XMM_S(0) = int64_to_float32(T0, &env->sse_status); } void OPPROTO op_cvtsq2sd(void) { XMMReg *d = (Reg *)((char *)env + PARAM1); d->XMM_D(0) = int64_to_float64(T0, &env->sse_status); } #endif /* float to integer */ void OPPROTO op_cvtps2dq(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status); d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status); } void OPPROTO op_cvtpd2dq(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); d->XMM_Q(1) = 0; } void OPPROTO op_cvtps2pi(void) { MMXReg *d = (MMXReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status); d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status); } void OPPROTO op_cvtpd2pi(void) { MMXReg *d = (MMXReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status); d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status); } void OPPROTO op_cvtss2si(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float32_to_int32(s->XMM_S(0), &env->sse_status); } void OPPROTO op_cvtsd2si(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float64_to_int32(s->XMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 void OPPROTO op_cvtss2sq(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float32_to_int64(s->XMM_S(0), &env->sse_status); } void OPPROTO op_cvtsd2sq(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float64_to_int64(s->XMM_D(0), &env->sse_status); } #endif /* float to integer truncated */ void OPPROTO op_cvttps2dq(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status); d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status); } void OPPROTO op_cvttpd2dq(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); d->XMM_Q(1) = 0; } void OPPROTO op_cvttps2pi(void) { MMXReg *d = (MMXReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status); } void OPPROTO op_cvttpd2pi(void) { MMXReg *d = (MMXReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status); } void OPPROTO op_cvttss2si(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status); } void OPPROTO op_cvttsd2si(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 void OPPROTO op_cvttss2sq(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status); } void OPPROTO op_cvttsd2sq(void) { XMMReg *s = (XMMReg *)((char *)env + PARAM1); T0 = float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status); } #endif void OPPROTO op_rsqrtps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); d->XMM_S(1) = approx_rsqrt(s->XMM_S(1)); d->XMM_S(2) = approx_rsqrt(s->XMM_S(2)); d->XMM_S(3) = approx_rsqrt(s->XMM_S(3)); } void OPPROTO op_rsqrtss(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = approx_rsqrt(s->XMM_S(0)); } void OPPROTO op_rcpps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = approx_rcp(s->XMM_S(0)); d->XMM_S(1) = approx_rcp(s->XMM_S(1)); d->XMM_S(2) = approx_rcp(s->XMM_S(2)); d->XMM_S(3) = approx_rcp(s->XMM_S(3)); } void OPPROTO op_rcpss(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = approx_rcp(s->XMM_S(0)); } void OPPROTO op_haddps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); XMMReg r; r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1); r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3); r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1); r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3); *d = r; } void OPPROTO op_haddpd(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); XMMReg r; r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1); r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1); *d = r; } void OPPROTO op_hsubps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); XMMReg r; r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1); r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3); r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1); r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3); *d = r; } void OPPROTO op_hsubpd(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); XMMReg r; r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1); r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1); *d = r; } void OPPROTO op_addsubps(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0); d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1); d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2); d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3); } void OPPROTO op_addsubpd(void) { XMMReg *d = (XMMReg *)((char *)env + PARAM1); XMMReg *s = (XMMReg *)((char *)env + PARAM2); d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0); d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1); } /* XXX: unordered */ #define SSE_OP_CMP(name, F)\ void OPPROTO op_ ## name ## ps (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\ d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\ d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\ }\ \ void OPPROTO op_ ## name ## ss (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\ }\ void OPPROTO op_ ## name ## pd (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\ }\ \ void OPPROTO op_ ## name ## sd (void)\ {\ Reg *d, *s;\ d = (Reg *)((char *)env + PARAM1);\ s = (Reg *)((char *)env + PARAM2);\ d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\ } #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1 #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1 SSE_OP_CMP(cmpeq, FPU_CMPEQ) SSE_OP_CMP(cmplt, FPU_CMPLT) SSE_OP_CMP(cmple, FPU_CMPLE) SSE_OP_CMP(cmpunord, FPU_CMPUNORD) SSE_OP_CMP(cmpneq, FPU_CMPNEQ) SSE_OP_CMP(cmpnlt, FPU_CMPNLT) SSE_OP_CMP(cmpnle, FPU_CMPNLE) SSE_OP_CMP(cmpord, FPU_CMPORD) void OPPROTO op_ucomiss(void) { int eflags; float32 s0, s1; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); s0 = d->XMM_S(0); s1 = s->XMM_S(0); switch(float32_compare_quiet(s0, s1, &env->sse_status)) { case -1: eflags = CC_C; break; case 0: eflags = CC_Z; break; case 1: eflags = 0; break; case 2: default: eflags = CC_Z | CC_P | CC_C; break; } CC_SRC = eflags; FORCE_RET(); } void OPPROTO op_comiss(void) { int eflags; float32 s0, s1; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); s0 = d->XMM_S(0); s1 = s->XMM_S(0); switch(float32_compare(s0, s1, &env->sse_status)) { case -1: eflags = CC_C; break; case 0: eflags = CC_Z; break; case 1: eflags = 0; break; case 2: default: eflags = CC_Z | CC_P | CC_C; break; } CC_SRC = eflags; FORCE_RET(); } void OPPROTO op_ucomisd(void) { int eflags; float64 d0, d1; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d0 = d->XMM_D(0); d1 = s->XMM_D(0); switch(float64_compare_quiet(d0, d1, &env->sse_status)) { case -1: eflags = CC_C; break; case 0: eflags = CC_Z; break; case 1: eflags = 0; break; case 2: default: eflags = CC_Z | CC_P | CC_C; break; } CC_SRC = eflags; FORCE_RET(); } void OPPROTO op_comisd(void) { int eflags; float64 d0, d1; Reg *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); d0 = d->XMM_D(0); d1 = s->XMM_D(0); switch(float64_compare(d0, d1, &env->sse_status)) { case -1: eflags = CC_C; break; case 0: eflags = CC_Z; break; case 1: eflags = 0; break; case 2: default: eflags = CC_Z | CC_P | CC_C; break; } CC_SRC = eflags; FORCE_RET(); } void OPPROTO op_movmskps(void) { int b0, b1, b2, b3; Reg *s; s = (Reg *)((char *)env + PARAM1); b0 = s->XMM_L(0) >> 31; b1 = s->XMM_L(1) >> 31; b2 = s->XMM_L(2) >> 31; b3 = s->XMM_L(3) >> 31; T0 = b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); } void OPPROTO op_movmskpd(void) { int b0, b1; Reg *s; s = (Reg *)((char *)env + PARAM1); b0 = s->XMM_L(1) >> 31; b1 = s->XMM_L(3) >> 31; T0 = b0 | (b1 << 1); } #endif void OPPROTO glue(op_pmovmskb, SUFFIX)(void) { Reg *s; s = (Reg *)((char *)env + PARAM1); T0 = 0; T0 |= (s->XMM_B(0) >> 7); T0 |= (s->XMM_B(1) >> 6) & 0x02; T0 |= (s->XMM_B(2) >> 5) & 0x04; T0 |= (s->XMM_B(3) >> 4) & 0x08; T0 |= (s->XMM_B(4) >> 3) & 0x10; T0 |= (s->XMM_B(5) >> 2) & 0x20; T0 |= (s->XMM_B(6) >> 1) & 0x40; T0 |= (s->XMM_B(7)) & 0x80; #if SHIFT == 1 T0 |= (s->XMM_B(8) << 1) & 0x0100; T0 |= (s->XMM_B(9) << 2) & 0x0200; T0 |= (s->XMM_B(10) << 3) & 0x0400; T0 |= (s->XMM_B(11) << 4) & 0x0800; T0 |= (s->XMM_B(12) << 5) & 0x1000; T0 |= (s->XMM_B(13) << 6) & 0x2000; T0 |= (s->XMM_B(14) << 7) & 0x4000; T0 |= (s->XMM_B(15) << 8) & 0x8000; #endif } void OPPROTO glue(op_pinsrw, SUFFIX) (void) { Reg *d = (Reg *)((char *)env + PARAM1); int pos = PARAM2; d->W(pos) = T0; } void OPPROTO glue(op_pextrw, SUFFIX) (void) { Reg *s = (Reg *)((char *)env + PARAM1); int pos = PARAM2; T0 = s->W(pos); } void OPPROTO glue(op_packsswb, SUFFIX) (void) { Reg r, *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); r.B(0) = satsb((int16_t)d->W(0)); r.B(1) = satsb((int16_t)d->W(1)); r.B(2) = satsb((int16_t)d->W(2)); r.B(3) = satsb((int16_t)d->W(3)); #if SHIFT == 1 r.B(4) = satsb((int16_t)d->W(4)); r.B(5) = satsb((int16_t)d->W(5)); r.B(6) = satsb((int16_t)d->W(6)); r.B(7) = satsb((int16_t)d->W(7)); #endif r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); #if SHIFT == 1 r.B(12) = satsb((int16_t)s->W(4)); r.B(13) = satsb((int16_t)s->W(5)); r.B(14) = satsb((int16_t)s->W(6)); r.B(15) = satsb((int16_t)s->W(7)); #endif *d = r; } void OPPROTO glue(op_packuswb, SUFFIX) (void) { Reg r, *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); r.B(0) = satub((int16_t)d->W(0)); r.B(1) = satub((int16_t)d->W(1)); r.B(2) = satub((int16_t)d->W(2)); r.B(3) = satub((int16_t)d->W(3)); #if SHIFT == 1 r.B(4) = satub((int16_t)d->W(4)); r.B(5) = satub((int16_t)d->W(5)); r.B(6) = satub((int16_t)d->W(6)); r.B(7) = satub((int16_t)d->W(7)); #endif r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); #if SHIFT == 1 r.B(12) = satub((int16_t)s->W(4)); r.B(13) = satub((int16_t)s->W(5)); r.B(14) = satub((int16_t)s->W(6)); r.B(15) = satub((int16_t)s->W(7)); #endif *d = r; } void OPPROTO glue(op_packssdw, SUFFIX) (void) { Reg r, *d, *s; d = (Reg *)((char *)env + PARAM1); s = (Reg *)((char *)env + PARAM2); r.W(0) = satsw(d->L(0)); r.W(1) = satsw(d->L(1)); #if SHIFT == 1 r.W(2) = satsw(d->L(2)); r.W(3) = satsw(d->L(3)); #endif r.W((2 << SHIFT) + 0) = satsw(s->L(0)); r.W((2 << SHIFT) + 1) = satsw(s->L(1)); #if SHIFT == 1 r.W(6) = satsw(s->L(2)); r.W(7) = satsw(s->L(3)); #endif *d = r; } #define UNPCK_OP(base_name, base) \ \ void OPPROTO glue(op_punpck ## base_name ## bw, SUFFIX) (void) \ { \ Reg r, *d, *s; \ d = (Reg *)((char *)env + PARAM1); \ s = (Reg *)((char *)env + PARAM2); \ \ r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ XMM_ONLY( \ r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ ) \ *d = r; \ } \ \ void OPPROTO glue(op_punpck ## base_name ## wd, SUFFIX) (void) \ { \ Reg r, *d, *s; \ d = (Reg *)((char *)env + PARAM1); \ s = (Reg *)((char *)env + PARAM2); \ \ r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ XMM_ONLY( \ r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ ) \ *d = r; \ } \ \ void OPPROTO glue(op_punpck ## base_name ## dq, SUFFIX) (void) \ { \ Reg r, *d, *s; \ d = (Reg *)((char *)env + PARAM1); \ s = (Reg *)((char *)env + PARAM2); \ \ r.L(0) = d->L((base << SHIFT) + 0); \ r.L(1) = s->L((base << SHIFT) + 0); \ XMM_ONLY( \ r.L(2) = d->L((base << SHIFT) + 1); \ r.L(3) = s->L((base << SHIFT) + 1); \ ) \ *d = r; \ } \ \ XMM_ONLY( \ void OPPROTO glue(op_punpck ## base_name ## qdq, SUFFIX) (void) \ { \ Reg r, *d, *s; \ d = (Reg *)((char *)env + PARAM1); \ s = (Reg *)((char *)env + PARAM2); \ \ r.Q(0) = d->Q(base); \ r.Q(1) = s->Q(base); \ *d = r; \ } \ ) UNPCK_OP(l, 0) UNPCK_OP(h, 1) #undef SHIFT #undef XMM_ONLY #undef Reg #undef B #undef W #undef L #undef Q #undef SUFFIX