/* * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support * * Copyright (c) 2005 Fabrice Bellard * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include "crypto/aes.h" #if SHIFT == 0 #define Reg MMXReg #define XMM_ONLY(...) #define B(n) MMX_B(n) #define W(n) MMX_W(n) #define L(n) MMX_L(n) #define Q(n) MMX_Q(n) #define SUFFIX _mmx #else #define Reg ZMMReg #define XMM_ONLY(...) __VA_ARGS__ #define B(n) ZMM_B(n) #define W(n) ZMM_W(n) #define L(n) ZMM_L(n) #define Q(n) ZMM_Q(n) #define SUFFIX _xmm #endif void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 15) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->W(0) >>= shift; d->W(1) >>= shift; d->W(2) >>= shift; d->W(3) >>= shift; #if SHIFT == 1 d->W(4) >>= shift; d->W(5) >>= shift; d->W(6) >>= shift; d->W(7) >>= shift; #endif } } void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 15) { shift = 15; } else { shift = s->B(0); } d->W(0) = (int16_t)d->W(0) >> shift; d->W(1) = (int16_t)d->W(1) >> shift; d->W(2) = (int16_t)d->W(2) >> shift; d->W(3) = (int16_t)d->W(3) >> shift; #if SHIFT == 1 d->W(4) = (int16_t)d->W(4) >> shift; d->W(5) = (int16_t)d->W(5) >> shift; d->W(6) = (int16_t)d->W(6) >> shift; d->W(7) = (int16_t)d->W(7) >> shift; #endif } void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 15) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->W(0) <<= shift; d->W(1) <<= shift; d->W(2) <<= shift; d->W(3) <<= shift; #if SHIFT == 1 d->W(4) <<= shift; d->W(5) <<= shift; d->W(6) <<= shift; d->W(7) <<= shift; #endif } } void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 31) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->L(0) >>= shift; d->L(1) >>= shift; #if SHIFT == 1 d->L(2) >>= shift; d->L(3) >>= shift; #endif } } void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 31) { shift = 31; } else { shift = s->B(0); } d->L(0) = (int32_t)d->L(0) >> shift; d->L(1) = (int32_t)d->L(1) >> shift; #if SHIFT == 1 d->L(2) = (int32_t)d->L(2) >> shift; d->L(3) = (int32_t)d->L(3) >> shift; #endif } void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 31) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->L(0) <<= shift; d->L(1) <<= shift; #if SHIFT == 1 d->L(2) <<= shift; d->L(3) <<= shift; #endif } } void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 63) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->Q(0) >>= shift; #if SHIFT == 1 d->Q(1) >>= shift; #endif } } void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift; if (s->Q(0) > 63) { d->Q(0) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } else { shift = s->B(0); d->Q(0) <<= shift; #if SHIFT == 1 d->Q(1) <<= shift; #endif } } #if SHIFT == 1 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift, i; shift = s->L(0); if (shift > 16) { shift = 16; } for (i = 0; i < 16 - shift; i++) { d->B(i) = d->B(i + shift); } for (i = 16 - shift; i < 16; i++) { d->B(i) = 0; } } void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int shift, i; shift = s->L(0); if (shift > 16) { shift = 16; } for (i = 15; i >= shift; i--) { d->B(i) = d->B(i - shift); } for (i = 0; i < shift; i++) { d->B(i) = 0; } } #endif #define SSE_HELPER_B(name, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->B(0) = F(d->B(0), s->B(0)); \ d->B(1) = F(d->B(1), s->B(1)); \ d->B(2) = F(d->B(2), s->B(2)); \ d->B(3) = F(d->B(3), s->B(3)); \ d->B(4) = F(d->B(4), s->B(4)); \ d->B(5) = F(d->B(5), s->B(5)); \ d->B(6) = F(d->B(6), s->B(6)); \ d->B(7) = F(d->B(7), s->B(7)); \ XMM_ONLY( \ d->B(8) = F(d->B(8), s->B(8)); \ d->B(9) = F(d->B(9), s->B(9)); \ d->B(10) = F(d->B(10), s->B(10)); \ d->B(11) = F(d->B(11), s->B(11)); \ d->B(12) = F(d->B(12), s->B(12)); \ d->B(13) = F(d->B(13), s->B(13)); \ d->B(14) = F(d->B(14), s->B(14)); \ d->B(15) = F(d->B(15), s->B(15)); \ ) \ } #define SSE_HELPER_W(name, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->W(0) = F(d->W(0), s->W(0)); \ d->W(1) = F(d->W(1), s->W(1)); \ d->W(2) = F(d->W(2), s->W(2)); \ d->W(3) = F(d->W(3), s->W(3)); \ XMM_ONLY( \ d->W(4) = F(d->W(4), s->W(4)); \ d->W(5) = F(d->W(5), s->W(5)); \ d->W(6) = F(d->W(6), s->W(6)); \ d->W(7) = F(d->W(7), s->W(7)); \ ) \ } #define SSE_HELPER_L(name, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->L(0) = F(d->L(0), s->L(0)); \ d->L(1) = F(d->L(1), s->L(1)); \ XMM_ONLY( \ d->L(2) = F(d->L(2), s->L(2)); \ d->L(3) = F(d->L(3), s->L(3)); \ ) \ } #define SSE_HELPER_Q(name, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->Q(0) = F(d->Q(0), s->Q(0)); \ XMM_ONLY( \ d->Q(1) = F(d->Q(1), s->Q(1)); \ ) \ } #if SHIFT == 0 static inline int satub(int x) { if (x < 0) { return 0; } else if (x > 255) { return 255; } else { return x; } } static inline int satuw(int x) { if (x < 0) { return 0; } else if (x > 65535) { return 65535; } else { return x; } } static inline int satsb(int x) { if (x < -128) { return -128; } else if (x > 127) { return 127; } else { return x; } } static inline int satsw(int x) { if (x < -32768) { return -32768; } else if (x > 32767) { return 32767; } else { return x; } } #define FADD(a, b) ((a) + (b)) #define FADDUB(a, b) satub((a) + (b)) #define FADDUW(a, b) satuw((a) + (b)) #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) #define FSUB(a, b) ((a) - (b)) #define FSUBUB(a, b) satub((a) - (b)) #define FSUBUW(a, b) satuw((a) - (b)) #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) #define FAND(a, b) ((a) & (b)) #define FANDN(a, b) ((~(a)) & (b)) #define FOR(a, b) ((a) | (b)) #define FXOR(a, b) ((a) ^ (b)) #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) #define FMULLW(a, b) ((a) * (b)) #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) #define FMULHUW(a, b) ((a) * (b) >> 16) #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) #define FAVG(a, b) (((a) + (b) + 1) >> 1) #endif SSE_HELPER_B(helper_paddb, FADD) SSE_HELPER_W(helper_paddw, FADD) SSE_HELPER_L(helper_paddl, FADD) SSE_HELPER_Q(helper_paddq, FADD) SSE_HELPER_B(helper_psubb, FSUB) SSE_HELPER_W(helper_psubw, FSUB) SSE_HELPER_L(helper_psubl, FSUB) SSE_HELPER_Q(helper_psubq, FSUB) SSE_HELPER_B(helper_paddusb, FADDUB) SSE_HELPER_B(helper_paddsb, FADDSB) SSE_HELPER_B(helper_psubusb, FSUBUB) SSE_HELPER_B(helper_psubsb, FSUBSB) SSE_HELPER_W(helper_paddusw, FADDUW) SSE_HELPER_W(helper_paddsw, FADDSW) SSE_HELPER_W(helper_psubusw, FSUBUW) SSE_HELPER_W(helper_psubsw, FSUBSW) SSE_HELPER_B(helper_pminub, FMINUB) SSE_HELPER_B(helper_pmaxub, FMAXUB) SSE_HELPER_W(helper_pminsw, FMINSW) SSE_HELPER_W(helper_pmaxsw, FMAXSW) SSE_HELPER_Q(helper_pand, FAND) SSE_HELPER_Q(helper_pandn, FANDN) SSE_HELPER_Q(helper_por, FOR) SSE_HELPER_Q(helper_pxor, FXOR) SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) SSE_HELPER_L(helper_pcmpeql, FCMPEQ) SSE_HELPER_W(helper_pmullw, FMULLW) #if SHIFT == 0 SSE_HELPER_W(helper_pmulhrw, FMULHRW) #endif SSE_HELPER_W(helper_pmulhuw, FMULHUW) SSE_HELPER_W(helper_pmulhw, FMULHW) SSE_HELPER_B(helper_pavgb, FAVG) SSE_HELPER_W(helper_pavgw, FAVG) void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); #if SHIFT == 1 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); #endif } void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; for (i = 0; i < (2 << SHIFT); i++) { d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) + (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1); } } #if SHIFT == 0 static inline int abs1(int a) { if (a < 0) { return -a; } else { return a; } } #endif void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { unsigned int val; val = 0; val += abs1(d->B(0) - s->B(0)); val += abs1(d->B(1) - s->B(1)); val += abs1(d->B(2) - s->B(2)); val += abs1(d->B(3) - s->B(3)); val += abs1(d->B(4) - s->B(4)); val += abs1(d->B(5) - s->B(5)); val += abs1(d->B(6) - s->B(6)); val += abs1(d->B(7) - s->B(7)); d->Q(0) = val; #if SHIFT == 1 val = 0; val += abs1(d->B(8) - s->B(8)); val += abs1(d->B(9) - s->B(9)); val += abs1(d->B(10) - s->B(10)); val += abs1(d->B(11) - s->B(11)); val += abs1(d->B(12) - s->B(12)); val += abs1(d->B(13) - s->B(13)); val += abs1(d->B(14) - s->B(14)); val += abs1(d->B(15) - s->B(15)); d->Q(1) = val; #endif } void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, target_ulong a0) { int i; for (i = 0; i < (8 << SHIFT); i++) { if (s->B(i) & 0x80) { cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); } } } void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) { d->L(0) = val; d->L(1) = 0; #if SHIFT == 1 d->Q(1) = 0; #endif } #ifdef TARGET_X86_64 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) { d->Q(0) = val; #if SHIFT == 1 d->Q(1) = 0; #endif } #endif #if SHIFT == 0 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) { Reg r; r.W(0) = s->W(order & 3); r.W(1) = s->W((order >> 2) & 3); r.W(2) = s->W((order >> 4) & 3); r.W(3) = s->W((order >> 6) & 3); *d = r; } #else void helper_shufps(Reg *d, Reg *s, int order) { Reg r; r.L(0) = d->L(order & 3); r.L(1) = d->L((order >> 2) & 3); r.L(2) = s->L((order >> 4) & 3); r.L(3) = s->L((order >> 6) & 3); *d = r; } void helper_shufpd(Reg *d, Reg *s, int order) { Reg r; r.Q(0) = d->Q(order & 1); r.Q(1) = s->Q((order >> 1) & 1); *d = r; } void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) { Reg r; r.L(0) = s->L(order & 3); r.L(1) = s->L((order >> 2) & 3); r.L(2) = s->L((order >> 4) & 3); r.L(3) = s->L((order >> 6) & 3); *d = r; } void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) { Reg r; r.W(0) = s->W(order & 3); r.W(1) = s->W((order >> 2) & 3); r.W(2) = s->W((order >> 4) & 3); r.W(3) = s->W((order >> 6) & 3); r.Q(1) = s->Q(1); *d = r; } void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) { Reg r; r.Q(0) = s->Q(0); r.W(4) = s->W(4 + (order & 3)); r.W(5) = s->W(4 + ((order >> 2) & 3)); r.W(6) = s->W(4 + ((order >> 4) & 3)); r.W(7) = s->W(4 + ((order >> 6) & 3)); *d = r; } #endif #if SHIFT == 1 /* FPU ops */ /* XXX: not accurate */ #define SSE_HELPER_S(name, F) \ void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ } \ \ void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ } \ \ void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ } \ \ void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ } #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) /* Note that the choice of comparison op here is important to get the * special cases right: for min and max Intel specifies that (-0,0), * (NaN, anything) and (anything, NaN) return the second argument. */ #define FPU_MIN(size, a, b) \ (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) #define FPU_MAX(size, a, b) \ (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) SSE_HELPER_S(add, FPU_ADD) SSE_HELPER_S(sub, FPU_SUB) SSE_HELPER_S(mul, FPU_MUL) SSE_HELPER_S(div, FPU_DIV) SSE_HELPER_S(min, FPU_MIN) SSE_HELPER_S(max, FPU_MAX) SSE_HELPER_S(sqrt, FPU_SQRT) /* float to float conversions */ void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s) { float32 s0, s1; s0 = s->ZMM_S(0); s1 = s->ZMM_S(1); d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status); d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status); } void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status); d->Q(1) = 0; } void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); } void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); } /* integer to float */ void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s) { d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status); d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status); d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status); d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status); } void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s) { int32_t l0, l1; l0 = (int32_t)s->ZMM_L(0); l1 = (int32_t)s->ZMM_L(1); d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status); d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status); } void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) { d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); } void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) { d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); } void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) { d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); } void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) { d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); } #ifdef TARGET_X86_64 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) { d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); } void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) { d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); } #endif /* float to integer */ void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_L(0) = float32_to_int32(s->ZMM_S(0), &env->sse_status); d->ZMM_L(1) = float32_to_int32(s->ZMM_S(1), &env->sse_status); d->ZMM_L(2) = float32_to_int32(s->ZMM_S(2), &env->sse_status); d->ZMM_L(3) = float32_to_int32(s->ZMM_S(3), &env->sse_status); } void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_L(0) = float64_to_int32(s->ZMM_D(0), &env->sse_status); d->ZMM_L(1) = float64_to_int32(s->ZMM_D(1), &env->sse_status); d->ZMM_Q(1) = 0; } void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = float32_to_int32(s->ZMM_S(0), &env->sse_status); d->MMX_L(1) = float32_to_int32(s->ZMM_S(1), &env->sse_status); } void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = float64_to_int32(s->ZMM_D(0), &env->sse_status); d->MMX_L(1) = float64_to_int32(s->ZMM_D(1), &env->sse_status); } int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) { return float32_to_int32(s->ZMM_S(0), &env->sse_status); } int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) { return float64_to_int32(s->ZMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) { return float32_to_int64(s->ZMM_S(0), &env->sse_status); } int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) { return float64_to_int64(s->ZMM_D(0), &env->sse_status); } #endif /* float to integer truncated */ void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_L(0) = float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); d->ZMM_L(1) = float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); d->ZMM_L(2) = float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status); d->ZMM_L(3) = float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status); } void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_L(0) = float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); d->ZMM_L(1) = float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); d->ZMM_Q(1) = 0; } void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); d->MMX_L(1) = float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); } void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) { d->MMX_L(0) = float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); d->MMX_L(1) = float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); } int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) { return float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); } int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) { return float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); } #ifdef TARGET_X86_64 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) { return float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); } int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) { return float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); } #endif void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_S(0) = float32_div(float32_one, float32_sqrt(s->ZMM_S(0), &env->sse_status), &env->sse_status); d->ZMM_S(1) = float32_div(float32_one, float32_sqrt(s->ZMM_S(1), &env->sse_status), &env->sse_status); d->ZMM_S(2) = float32_div(float32_one, float32_sqrt(s->ZMM_S(2), &env->sse_status), &env->sse_status); d->ZMM_S(3) = float32_div(float32_one, float32_sqrt(s->ZMM_S(3), &env->sse_status), &env->sse_status); } void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_S(0) = float32_div(float32_one, float32_sqrt(s->ZMM_S(0), &env->sse_status), &env->sse_status); } void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status); d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status); d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status); } void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); } static inline uint64_t helper_extrq(uint64_t src, int shift, int len) { uint64_t mask; if (len == 0) { mask = ~0LL; } else { mask = (1ULL << len) - 1; } return (src >> shift) & mask; } void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); } void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) { d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); } static inline uint64_t helper_insertq(uint64_t src, int shift, int len) { uint64_t mask; if (len == 0) { mask = ~0ULL; } else { mask = (1ULL << len) - 1; } return (src & ~(mask << shift)) | ((src & mask) << shift); } void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); } void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) { d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); } void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s) { ZMMReg r; r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); *d = r; } void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) { ZMMReg r; r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); *d = r; } void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) { ZMMReg r; r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); *d = r; } void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) { ZMMReg r; r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); *d = r; } void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status); d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status); d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status); d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status); } void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) { d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status); d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status); } /* XXX: unordered */ #define SSE_HELPER_CMP(name, F) \ void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ } \ \ void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ } \ \ void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ } \ \ void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ { \ d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ } #define FPU_CMPEQ(size, a, b) \ (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0) #define FPU_CMPLT(size, a, b) \ (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0) #define FPU_CMPLE(size, a, b) \ (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0) #define FPU_CMPUNORD(size, a, b) \ (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0) #define FPU_CMPNEQ(size, a, b) \ (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1) #define FPU_CMPNLT(size, a, b) \ (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1) #define FPU_CMPNLE(size, a, b) \ (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1) #define FPU_CMPORD(size, a, b) \ (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1) SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) SSE_HELPER_CMP(cmplt, FPU_CMPLT) SSE_HELPER_CMP(cmple, FPU_CMPLE) SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) SSE_HELPER_CMP(cmpord, FPU_CMPORD) static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) { int ret; float32 s0, s1; s0 = d->ZMM_S(0); s1 = s->ZMM_S(0); ret = float32_compare_quiet(s0, s1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_comiss(CPUX86State *env, Reg *d, Reg *s) { int ret; float32 s0, s1; s0 = d->ZMM_S(0); s1 = s->ZMM_S(0); ret = float32_compare(s0, s1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) { int ret; float64 d0, d1; d0 = d->ZMM_D(0); d1 = s->ZMM_D(0); ret = float64_compare_quiet(d0, d1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } void helper_comisd(CPUX86State *env, Reg *d, Reg *s) { int ret; float64 d0, d1; d0 = d->ZMM_D(0); d1 = s->ZMM_D(0); ret = float64_compare(d0, d1, &env->sse_status); CC_SRC = comis_eflags[ret + 1]; } uint32_t helper_movmskps(CPUX86State *env, Reg *s) { int b0, b1, b2, b3; b0 = s->ZMM_L(0) >> 31; b1 = s->ZMM_L(1) >> 31; b2 = s->ZMM_L(2) >> 31; b3 = s->ZMM_L(3) >> 31; return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); } uint32_t helper_movmskpd(CPUX86State *env, Reg *s) { int b0, b1; b0 = s->ZMM_L(1) >> 31; b1 = s->ZMM_L(3) >> 31; return b0 | (b1 << 1); } #endif uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) { uint32_t val; val = 0; val |= (s->B(0) >> 7); val |= (s->B(1) >> 6) & 0x02; val |= (s->B(2) >> 5) & 0x04; val |= (s->B(3) >> 4) & 0x08; val |= (s->B(4) >> 3) & 0x10; val |= (s->B(5) >> 2) & 0x20; val |= (s->B(6) >> 1) & 0x40; val |= (s->B(7)) & 0x80; #if SHIFT == 1 val |= (s->B(8) << 1) & 0x0100; val |= (s->B(9) << 2) & 0x0200; val |= (s->B(10) << 3) & 0x0400; val |= (s->B(11) << 4) & 0x0800; val |= (s->B(12) << 5) & 0x1000; val |= (s->B(13) << 6) & 0x2000; val |= (s->B(14) << 7) & 0x4000; val |= (s->B(15) << 8) & 0x8000; #endif return val; } void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg r; r.B(0) = satsb((int16_t)d->W(0)); r.B(1) = satsb((int16_t)d->W(1)); r.B(2) = satsb((int16_t)d->W(2)); r.B(3) = satsb((int16_t)d->W(3)); #if SHIFT == 1 r.B(4) = satsb((int16_t)d->W(4)); r.B(5) = satsb((int16_t)d->W(5)); r.B(6) = satsb((int16_t)d->W(6)); r.B(7) = satsb((int16_t)d->W(7)); #endif r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); #if SHIFT == 1 r.B(12) = satsb((int16_t)s->W(4)); r.B(13) = satsb((int16_t)s->W(5)); r.B(14) = satsb((int16_t)s->W(6)); r.B(15) = satsb((int16_t)s->W(7)); #endif *d = r; } void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg r; r.B(0) = satub((int16_t)d->W(0)); r.B(1) = satub((int16_t)d->W(1)); r.B(2) = satub((int16_t)d->W(2)); r.B(3) = satub((int16_t)d->W(3)); #if SHIFT == 1 r.B(4) = satub((int16_t)d->W(4)); r.B(5) = satub((int16_t)d->W(5)); r.B(6) = satub((int16_t)d->W(6)); r.B(7) = satub((int16_t)d->W(7)); #endif r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); #if SHIFT == 1 r.B(12) = satub((int16_t)s->W(4)); r.B(13) = satub((int16_t)s->W(5)); r.B(14) = satub((int16_t)s->W(6)); r.B(15) = satub((int16_t)s->W(7)); #endif *d = r; } void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { Reg r; r.W(0) = satsw(d->L(0)); r.W(1) = satsw(d->L(1)); #if SHIFT == 1 r.W(2) = satsw(d->L(2)); r.W(3) = satsw(d->L(3)); #endif r.W((2 << SHIFT) + 0) = satsw(s->L(0)); r.W((2 << SHIFT) + 1) = satsw(s->L(1)); #if SHIFT == 1 r.W(6) = satsw(s->L(2)); r.W(7) = satsw(s->L(3)); #endif *d = r; } #define UNPCK_OP(base_name, base) \ \ void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg r; \ \ r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ XMM_ONLY( \ r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ ) \ *d = r; \ } \ \ void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg r; \ \ r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ XMM_ONLY( \ r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ ) \ *d = r; \ } \ \ void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ Reg *d, Reg *s) \ { \ Reg r; \ \ r.L(0) = d->L((base << SHIFT) + 0); \ r.L(1) = s->L((base << SHIFT) + 0); \ XMM_ONLY( \ r.L(2) = d->L((base << SHIFT) + 1); \ r.L(3) = s->L((base << SHIFT) + 1); \ ) \ *d = r; \ } \ \ XMM_ONLY( \ void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \ *env, \ Reg *d, \ Reg *s) \ { \ Reg r; \ \ r.Q(0) = d->Q(base); \ r.Q(1) = s->Q(base); \ *d = r; \ } \ ) UNPCK_OP(l, 0) UNPCK_OP(h, 1) /* 3DNow! float ops */ #if SHIFT == 0 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); } void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); } void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); } void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status)); d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status)); } void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) { MMXReg r; r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); *d = r; } void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0; d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0; } void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) { if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { d->MMX_S(0) = s->MMX_S(0); } if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { d->MMX_S(1) = s->MMX_S(1); } } void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) { if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { d->MMX_S(0) = s->MMX_S(0); } if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { d->MMX_S(1) = s->MMX_S(1); } } void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) { MMXReg r; r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); *d = r; } void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) { MMXReg r; r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); *d = r; } void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = d->MMX_S(0); } void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; d->MMX_S(1) = float32_div(float32_one, float32_sqrt(d->MMX_S(1), &env->mmx_status), &env->mmx_status); d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; d->MMX_L(0) = d->MMX_L(1); } void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); } void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) { d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); } void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) { MMXReg r; r.MMX_L(0) = s->MMX_L(1); r.MMX_L(1) = s->MMX_L(0); *d = r; } #endif /* SSSE3 op helpers */ void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg r; for (i = 0; i < (8 << SHIFT); i++) { r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); } *d = r; } void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); } void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); } void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); } void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) + (int8_t)s->B(1) * (uint8_t)d->B(1)); d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) + (int8_t)s->B(3) * (uint8_t)d->B(3)); d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) + (int8_t)s->B(5) * (uint8_t)d->B(5)); d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) + (int8_t)s->B(7) * (uint8_t)d->B(7)); #if SHIFT == 1 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) + (int8_t)s->B(9) * (uint8_t)d->B(9)); d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + (int8_t)s->B(11) * (uint8_t)d->B(11)); d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + (int8_t)s->B(13) * (uint8_t)d->B(13)); d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + (int8_t)s->B(15) * (uint8_t)d->B(15)); #endif } void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); } void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); } void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); } #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x) #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x) #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x) SSE_HELPER_B(helper_pabsb, FABSB) SSE_HELPER_W(helper_pabsw, FABSW) SSE_HELPER_L(helper_pabsd, FABSL) #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) SSE_HELPER_B(helper_psignb, FSIGNB) SSE_HELPER_W(helper_psignw, FSIGNW) SSE_HELPER_L(helper_psignd, FSIGNL) void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int32_t shift) { Reg r; /* XXX could be checked during translation */ if (shift >= (16 << SHIFT)) { r.Q(0) = 0; XMM_ONLY(r.Q(1) = 0); } else { shift <<= 3; #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) #if SHIFT == 0 r.Q(0) = SHR(s->Q(0), shift - 0) | SHR(d->Q(0), shift - 64); #else r.Q(0) = SHR(s->Q(0), shift - 0) | SHR(s->Q(1), shift - 64) | SHR(d->Q(0), shift - 128) | SHR(d->Q(1), shift - 192); r.Q(1) = SHR(s->Q(0), shift + 64) | SHR(s->Q(1), shift - 0) | SHR(d->Q(0), shift - 64) | SHR(d->Q(1), shift - 128); #endif #undef SHR } *d = r; } #define XMM0 (env->xmm_regs[0]) #if SHIFT == 1 #define SSE_HELPER_V(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ if (num > 2) { \ d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ if (num > 4) { \ d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ if (num > 8) { \ d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ } \ } \ } \ } #define SSE_HELPER_I(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ { \ d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ if (num > 2) { \ d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ if (num > 4) { \ d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ if (num > 8) { \ d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ d->elem(10) = F(d->elem(10), s->elem(10), \ ((imm >> 10) & 1)); \ d->elem(11) = F(d->elem(11), s->elem(11), \ ((imm >> 11) & 1)); \ d->elem(12) = F(d->elem(12), s->elem(12), \ ((imm >> 12) & 1)); \ d->elem(13) = F(d->elem(13), s->elem(13), \ ((imm >> 13) & 1)); \ d->elem(14) = F(d->elem(14), s->elem(14), \ ((imm >> 14) & 1)); \ d->elem(15) = F(d->elem(15), s->elem(15), \ ((imm >> 15) & 1)); \ } \ } \ } \ } /* SSE4.1 op helpers */ #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); } #define SSE_HELPER_F(name, elem, num, F) \ void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ { \ d->elem(0) = F(0); \ d->elem(1) = F(1); \ if (num > 2) { \ d->elem(2) = F(2); \ d->elem(3) = F(3); \ if (num > 4) { \ d->elem(4) = F(4); \ d->elem(5) = F(5); \ d->elem(6) = F(6); \ d->elem(7) = F(7); \ } \ } \ } SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0); d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2); } #define FCMPEQQ(d, s) (d == s ? -1 : 0) SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { d->W(0) = satuw((int32_t) d->L(0)); d->W(1) = satuw((int32_t) d->L(1)); d->W(2) = satuw((int32_t) d->L(2)); d->W(3) = satuw((int32_t) d->L(3)); d->W(4) = satuw((int32_t) s->L(0)); d->W(5) = satuw((int32_t) s->L(1)); d->W(6) = satuw((int32_t) s->L(2)); d->W(7) = satuw((int32_t) s->L(3)); } #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) SSE_HELPER_B(helper_pminsb, FMINSB) SSE_HELPER_L(helper_pminsd, FMINSD) SSE_HELPER_W(helper_pminuw, MIN) SSE_HELPER_L(helper_pminud, MIN) SSE_HELPER_B(helper_pmaxsb, FMAXSB) SSE_HELPER_L(helper_pmaxsd, FMAXSD) SSE_HELPER_W(helper_pmaxuw, MAX) SSE_HELPER_L(helper_pmaxud, MAX) #define FMULLD(d, s) ((int32_t)d * (int32_t)s) SSE_HELPER_L(helper_pmulld, FMULLD) void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int idx = 0; if (s->W(1) < s->W(idx)) { idx = 1; } if (s->W(2) < s->W(idx)) { idx = 2; } if (s->W(3) < s->W(idx)) { idx = 3; } if (s->W(4) < s->W(idx)) { idx = 4; } if (s->W(5) < s->W(idx)) { idx = 5; } if (s->W(6) < s->W(idx)) { idx = 6; } if (s->W(7) < s->W(idx)) { idx = 7; } d->Q(1) = 0; d->L(1) = 0; d->W(1) = idx; d->W(0) = s->W(idx); } void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status); d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status); d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status); #if 0 /* TODO */ if (mode & (1 << 3)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } #endif env->sse_status.float_rounding_mode = prev_rounding_mode; } void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status); #if 0 /* TODO */ if (mode & (1 << 3)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } #endif env->sse_status.float_rounding_mode = prev_rounding_mode; } void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); #if 0 /* TODO */ if (mode & (1 << 3)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } #endif env->sse_status.float_rounding_mode = prev_rounding_mode; } void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mode) { signed char prev_rounding_mode; prev_rounding_mode = env->sse_status.float_rounding_mode; if (!(mode & (1 << 2))) { switch (mode & 3) { case 0: set_float_rounding_mode(float_round_nearest_even, &env->sse_status); break; case 1: set_float_rounding_mode(float_round_down, &env->sse_status); break; case 2: set_float_rounding_mode(float_round_up, &env->sse_status); break; case 3: set_float_rounding_mode(float_round_to_zero, &env->sse_status); break; } } d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); #if 0 /* TODO */ if (mode & (1 << 3)) { set_float_exception_flags(get_float_exception_flags(&env->sse_status) & ~float_flag_inexact, &env->sse_status); } #endif env->sse_status.float_rounding_mode = prev_rounding_mode; } #define FBLENDP(d, s, m) (m ? s : d) SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) { float32 iresult = float32_zero; if (mask & (1 << 4)) { iresult = float32_add(iresult, float32_mul(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status), &env->sse_status); } if (mask & (1 << 5)) { iresult = float32_add(iresult, float32_mul(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status), &env->sse_status); } if (mask & (1 << 6)) { iresult = float32_add(iresult, float32_mul(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status), &env->sse_status); } if (mask & (1 << 7)) { iresult = float32_add(iresult, float32_mul(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status), &env->sse_status); } d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero; d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero; d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero; d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero; } void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) { float64 iresult = float64_zero; if (mask & (1 << 4)) { iresult = float64_add(iresult, float64_mul(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status), &env->sse_status); } if (mask & (1 << 5)) { iresult = float64_add(iresult, float64_mul(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status), &env->sse_status); } d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero; d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero; } void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t offset) { int s0 = (offset & 3) << 2; int d0 = (offset & 4) << 0; int i; Reg r; for (i = 0; i < 8; i++, d0++) { r.W(i) = 0; r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); } *d = r; } /* SSE4.2 op helpers */ #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) { int val; /* Presence of REX.W is indicated by a bit higher than 7 set */ if (ctrl >> 8) { val = abs1((int64_t)env->regs[reg]); } else { val = abs1((int32_t)env->regs[reg]); } if (ctrl & 1) { if (val > 8) { return 8; } } else { if (val > 16) { return 16; } } return val; } static inline int pcmp_ilen(Reg *r, uint8_t ctrl) { int val = 0; if (ctrl & 1) { while (val < 8 && r->W(val)) { val++; } } else { while (val < 16 && r->B(val)) { val++; } } return val; } static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) { switch ((ctrl >> 0) & 3) { case 0: return r->B(i); case 1: return r->W(i); case 2: return (int8_t)r->B(i); case 3: default: return (int16_t)r->W(i); } } static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, int8_t ctrl, int valids, int validd) { unsigned int res = 0; int v; int j, i; int upper = (ctrl & 1) ? 7 : 15; valids--; validd--; CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); switch ((ctrl >> 2) & 3) { case 0: for (j = valids; j >= 0; j--) { res <<= 1; v = pcmp_val(s, ctrl, j); for (i = validd; i >= 0; i--) { res |= (v == pcmp_val(d, ctrl, i)); } } break; case 1: for (j = valids; j >= 0; j--) { res <<= 1; v = pcmp_val(s, ctrl, j); for (i = ((validd - 1) | 1); i >= 0; i -= 2) { res |= (pcmp_val(d, ctrl, i - 0) >= v && pcmp_val(d, ctrl, i - 1) <= v); } } break; case 2: res = (1 << (upper - MAX(valids, validd))) - 1; res <<= MAX(valids, validd) - MIN(valids, validd); for (i = MIN(valids, validd); i >= 0; i--) { res <<= 1; v = pcmp_val(s, ctrl, i); res |= (v == pcmp_val(d, ctrl, i)); } break; case 3: for (j = valids; j >= 0; j--) { res <<= 1; v = 1; for (i = MIN(valids - j, validd); i >= 0; i--) { v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); } res |= v; } break; } switch ((ctrl >> 4) & 3) { case 1: res ^= (2 << upper) - 1; break; case 3: res ^= (1 << (valids + 1)) - 1; break; } if (res) { CC_SRC |= CC_C; } if (res & 1) { CC_SRC |= CC_O; } return res; } void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_elen(env, R_EDX, ctrl), pcmp_elen(env, R_EAX, ctrl)); if (res) { env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); } else { env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); } } void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_elen(env, R_EDX, ctrl), pcmp_elen(env, R_EAX, ctrl)); if ((ctrl >> 6) & 1) { if (ctrl & 1) { for (i = 0; i < 8; i++, res >>= 1) { env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; } } else { for (i = 0; i < 16; i++, res >>= 1) { env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; } } } else { env->xmm_regs[0].Q(1) = 0; env->xmm_regs[0].Q(0) = res; } } void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_ilen(s, ctrl), pcmp_ilen(d, ctrl)); if (res) { env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); } else { env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); } } void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; unsigned int res = pcmpxstrx(env, d, s, ctrl, pcmp_ilen(s, ctrl), pcmp_ilen(d, ctrl)); if ((ctrl >> 6) & 1) { if (ctrl & 1) { for (i = 0; i < 8; i++, res >>= 1) { env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; } } else { for (i = 0; i < 16; i++, res >>= 1) { env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; } } } else { env->xmm_regs[0].Q(1) = 0; env->xmm_regs[0].Q(0) = res; } } #define CRCPOLY 0x1edc6f41 #define CRCPOLY_BITREV 0x82f63b78 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) { target_ulong crc = (msg & ((target_ulong) -1 >> (TARGET_LONG_BITS - len))) ^ crc1; while (len--) { crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); } return crc; } #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1)) #define POPCOUNT(n, i) ((n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))) target_ulong helper_popcnt(CPUX86State *env, target_ulong n, uint32_t type) { CC_SRC = n ? 0 : CC_Z; n = POPCOUNT(n, 0); n = POPCOUNT(n, 1); n = POPCOUNT(n, 2); n = POPCOUNT(n, 3); if (type == 1) { return n & 0xff; } n = POPCOUNT(n, 4); #ifndef TARGET_X86_64 return n; #else if (type == 2) { return n & 0xff; } return POPCOUNT(n, 5); #endif } void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { uint64_t ah, al, b, resh, resl; ah = 0; al = d->Q((ctrl & 1) != 0); b = s->Q((ctrl & 16) != 0); resh = resl = 0; while (b) { if (b & 1) { resl ^= al; resh ^= ah; } ah = (ah << 1) | (al >> 63); al <<= 1; b >>= 1; } d->Q(0) = resl; d->Q(1) = resh; } void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ AES_Td1[st.B(AES_ishifts[4*i+1])] ^ AES_Td2[st.B(AES_ishifts[4*i+2])] ^ AES_Td3[st.B(AES_ishifts[4*i+3])]); } } void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0; i < 16; i++) { d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); } } void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ AES_Te1[st.B(AES_shifts[4*i+1])] ^ AES_Te2[st.B(AES_shifts[4*i+2])] ^ AES_Te3[st.B(AES_shifts[4*i+3])]); } } void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg st = *d; Reg rk = *s; for (i = 0; i < 16; i++) { d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); } } void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) { int i; Reg tmp = *s; for (i = 0 ; i < 4 ; i++) { d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ AES_imc[tmp.B(4*i+1)][1] ^ AES_imc[tmp.B(4*i+2)][2] ^ AES_imc[tmp.B(4*i+3)][3]); } } void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t ctrl) { int i; Reg tmp = *s; for (i = 0 ; i < 4 ; i++) { d->B(i) = AES_sbox[tmp.B(i + 4)]; d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; } d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; } #endif #undef SHIFT #undef XMM_ONLY #undef Reg #undef B #undef W #undef L #undef Q #undef SUFFIX