/* * i386 helpers * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "exec.h" #include "exec-all.h" #include "host-utils.h" #include "ioport.h" //#define DEBUG_PCALL #ifdef DEBUG_PCALL # define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__) # define LOG_PCALL_STATE(env) \ log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP) #else # define LOG_PCALL(...) do { } while (0) # define LOG_PCALL_STATE(env) do { } while (0) #endif #if 0 #define raise_exception_err(a, b)\ do {\ qemu_log("raise_exception line=%d\n", __LINE__);\ (raise_exception_err)(a, b);\ } while (0) #endif static const uint8_t parity_table[256] = { CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0, 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P, }; /* modulo 17 table */ static const uint8_t rclw_table[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, }; /* modulo 9 table */ static const uint8_t rclb_table[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, 2, 3, 4, }; static const CPU86_LDouble f15rk[7] = { 0.00000000000000000000L, 1.00000000000000000000L, 3.14159265358979323851L, /*pi*/ 0.30102999566398119523L, /*lg2*/ 0.69314718055994530943L, /*ln2*/ 1.44269504088896340739L, /*l2e*/ 3.32192809488736234781L, /*l2t*/ }; /* broken thread support */ static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED; void helper_lock(void) { spin_lock(&global_cpu_lock); } void helper_unlock(void) { spin_unlock(&global_cpu_lock); } void helper_write_eflags(target_ulong t0, uint32_t update_mask) { load_eflags(t0, update_mask); } target_ulong helper_read_eflags(void) { uint32_t eflags; eflags = helper_cc_compute_all(CC_OP); eflags |= (DF & DF_MASK); eflags |= env->eflags & ~(VM_MASK | RF_MASK); return eflags; } /* return non zero if error */ static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr, int selector) { SegmentCache *dt; int index; target_ulong ptr; if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; if ((index + 7) > dt->limit) return -1; ptr = dt->base + index; *e1_ptr = ldl_kernel(ptr); *e2_ptr = ldl_kernel(ptr + 4); return 0; } static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2) { unsigned int limit; limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) limit = (limit << 12) | 0xfff; return limit; } static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2) { return ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); } static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2) { sc->base = get_seg_base(e1, e2); sc->limit = get_seg_limit(e1, e2); sc->flags = e2; } /* init the segment cache in vm86 mode. */ static inline void load_seg_vm(int seg, int selector) { selector &= 0xffff; cpu_x86_load_seg_cache(env, seg, selector, (selector << 4), 0xffff, 0); } static inline void get_ss_esp_from_tss(uint32_t *ss_ptr, uint32_t *esp_ptr, int dpl) { int type, index, shift; #if 0 { int i; printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit); for(i=0;itr.limit;i++) { printf("%02x ", env->tr.base[i]); if ((i & 7) == 7) printf("\n"); } printf("\n"); } #endif if (!(env->tr.flags & DESC_P_MASK)) cpu_abort(env, "invalid tss"); type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf; if ((type & 7) != 1) cpu_abort(env, "invalid tss type"); shift = type >> 3; index = (dpl * 4 + 2) << shift; if (index + (4 << shift) - 1 > env->tr.limit) raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc); if (shift == 0) { *esp_ptr = lduw_kernel(env->tr.base + index); *ss_ptr = lduw_kernel(env->tr.base + index + 2); } else { *esp_ptr = ldl_kernel(env->tr.base + index); *ss_ptr = lduw_kernel(env->tr.base + index + 4); } } /* XXX: merge with load_seg() */ static void tss_load_seg(int seg_reg, int selector) { uint32_t e1, e2; int rpl, dpl, cpl; if ((selector & 0xfffc) != 0) { if (load_segment(&e1, &e2, selector) != 0) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); if (!(e2 & DESC_S_MASK)) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (seg_reg == R_CS) { if (!(e2 & DESC_CS_MASK)) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); /* XXX: is it correct ? */ if (dpl != rpl) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); if ((e2 & DESC_C_MASK) && dpl > rpl) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); } else if (seg_reg == R_SS) { /* SS must be writable data */ if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); if (dpl != cpl || dpl != rpl) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); } else { /* not readable code */ if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK)) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); /* if data or non conforming code, checks the rights */ if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) { if (dpl < cpl || dpl < rpl) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); } } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); cpu_x86_load_seg_cache(env, seg_reg, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); } else { if (seg_reg == R_SS || seg_reg == R_CS) raise_exception_err(EXCP0A_TSS, selector & 0xfffc); } } #define SWITCH_TSS_JMP 0 #define SWITCH_TSS_IRET 1 #define SWITCH_TSS_CALL 2 /* XXX: restore CPU state in registers (PowerPC case) */ static void switch_tss(int tss_selector, uint32_t e1, uint32_t e2, int source, uint32_t next_eip) { int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i; target_ulong tss_base; uint32_t new_regs[8], new_segs[6]; uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap; uint32_t old_eflags, eflags_mask; SegmentCache *dt; int index; target_ulong ptr; type = (e2 >> DESC_TYPE_SHIFT) & 0xf; LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source); /* if task gate, we read the TSS segment and we load it */ if (type == 5) { if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc); tss_selector = e1 >> 16; if (tss_selector & 4) raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc); if (load_segment(&e1, &e2, tss_selector) != 0) raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc); if (e2 & DESC_S_MASK) raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc); type = (e2 >> DESC_TYPE_SHIFT) & 0xf; if ((type & 7) != 1) raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc); } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc); if (type & 8) tss_limit_max = 103; else tss_limit_max = 43; tss_limit = get_seg_limit(e1, e2); tss_base = get_seg_base(e1, e2); if ((tss_selector & 4) != 0 || tss_limit < tss_limit_max) raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc); old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf; if (old_type & 8) old_tss_limit_max = 103; else old_tss_limit_max = 43; /* read all the registers from the new TSS */ if (type & 8) { /* 32 bit */ new_cr3 = ldl_kernel(tss_base + 0x1c); new_eip = ldl_kernel(tss_base + 0x20); new_eflags = ldl_kernel(tss_base + 0x24); for(i = 0; i < 8; i++) new_regs[i] = ldl_kernel(tss_base + (0x28 + i * 4)); for(i = 0; i < 6; i++) new_segs[i] = lduw_kernel(tss_base + (0x48 + i * 4)); new_ldt = lduw_kernel(tss_base + 0x60); new_trap = ldl_kernel(tss_base + 0x64); } else { /* 16 bit */ new_cr3 = 0; new_eip = lduw_kernel(tss_base + 0x0e); new_eflags = lduw_kernel(tss_base + 0x10); for(i = 0; i < 8; i++) new_regs[i] = lduw_kernel(tss_base + (0x12 + i * 2)) | 0xffff0000; for(i = 0; i < 4; i++) new_segs[i] = lduw_kernel(tss_base + (0x22 + i * 4)); new_ldt = lduw_kernel(tss_base + 0x2a); new_segs[R_FS] = 0; new_segs[R_GS] = 0; new_trap = 0; } /* XXX: avoid a compiler warning, see http://support.amd.com/us/Processor_TechDocs/24593.pdf chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */ (void)new_trap; /* NOTE: we must avoid memory exceptions during the task switch, so we make dummy accesses before */ /* XXX: it can still fail in some cases, so a bigger hack is necessary to valid the TLB after having done the accesses */ v1 = ldub_kernel(env->tr.base); v2 = ldub_kernel(env->tr.base + old_tss_limit_max); stb_kernel(env->tr.base, v1); stb_kernel(env->tr.base + old_tss_limit_max, v2); /* clear busy bit (it is restartable) */ if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) { target_ulong ptr; uint32_t e2; ptr = env->gdt.base + (env->tr.selector & ~7); e2 = ldl_kernel(ptr + 4); e2 &= ~DESC_TSS_BUSY_MASK; stl_kernel(ptr + 4, e2); } old_eflags = compute_eflags(); if (source == SWITCH_TSS_IRET) old_eflags &= ~NT_MASK; /* save the current state in the old TSS */ if (type & 8) { /* 32 bit */ stl_kernel(env->tr.base + 0x20, next_eip); stl_kernel(env->tr.base + 0x24, old_eflags); stl_kernel(env->tr.base + (0x28 + 0 * 4), EAX); stl_kernel(env->tr.base + (0x28 + 1 * 4), ECX); stl_kernel(env->tr.base + (0x28 + 2 * 4), EDX); stl_kernel(env->tr.base + (0x28 + 3 * 4), EBX); stl_kernel(env->tr.base + (0x28 + 4 * 4), ESP); stl_kernel(env->tr.base + (0x28 + 5 * 4), EBP); stl_kernel(env->tr.base + (0x28 + 6 * 4), ESI); stl_kernel(env->tr.base + (0x28 + 7 * 4), EDI); for(i = 0; i < 6; i++) stw_kernel(env->tr.base + (0x48 + i * 4), env->segs[i].selector); } else { /* 16 bit */ stw_kernel(env->tr.base + 0x0e, next_eip); stw_kernel(env->tr.base + 0x10, old_eflags); stw_kernel(env->tr.base + (0x12 + 0 * 2), EAX); stw_kernel(env->tr.base + (0x12 + 1 * 2), ECX); stw_kernel(env->tr.base + (0x12 + 2 * 2), EDX); stw_kernel(env->tr.base + (0x12 + 3 * 2), EBX); stw_kernel(env->tr.base + (0x12 + 4 * 2), ESP); stw_kernel(env->tr.base + (0x12 + 5 * 2), EBP); stw_kernel(env->tr.base + (0x12 + 6 * 2), ESI); stw_kernel(env->tr.base + (0x12 + 7 * 2), EDI); for(i = 0; i < 4; i++) stw_kernel(env->tr.base + (0x22 + i * 4), env->segs[i].selector); } /* now if an exception occurs, it will occurs in the next task context */ if (source == SWITCH_TSS_CALL) { stw_kernel(tss_base, env->tr.selector); new_eflags |= NT_MASK; } /* set busy bit */ if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) { target_ulong ptr; uint32_t e2; ptr = env->gdt.base + (tss_selector & ~7); e2 = ldl_kernel(ptr + 4); e2 |= DESC_TSS_BUSY_MASK; stl_kernel(ptr + 4, e2); } /* set the new CPU state */ /* from this point, any exception which occurs can give problems */ env->cr[0] |= CR0_TS_MASK; env->hflags |= HF_TS_MASK; env->tr.selector = tss_selector; env->tr.base = tss_base; env->tr.limit = tss_limit; env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK; if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) { cpu_x86_update_cr3(env, new_cr3); } /* load all registers without an exception, then reload them with possible exception */ env->eip = new_eip; eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK; if (!(type & 8)) eflags_mask &= 0xffff; load_eflags(new_eflags, eflags_mask); /* XXX: what to do in 16 bit case ? */ EAX = new_regs[0]; ECX = new_regs[1]; EDX = new_regs[2]; EBX = new_regs[3]; ESP = new_regs[4]; EBP = new_regs[5]; ESI = new_regs[6]; EDI = new_regs[7]; if (new_eflags & VM_MASK) { for(i = 0; i < 6; i++) load_seg_vm(i, new_segs[i]); /* in vm86, CPL is always 3 */ cpu_x86_set_cpl(env, 3); } else { /* CPL is set the RPL of CS */ cpu_x86_set_cpl(env, new_segs[R_CS] & 3); /* first just selectors as the rest may trigger exceptions */ for(i = 0; i < 6; i++) cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0); } env->ldt.selector = new_ldt & ~4; env->ldt.base = 0; env->ldt.limit = 0; env->ldt.flags = 0; /* load the LDT */ if (new_ldt & 4) raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc); if ((new_ldt & 0xfffc) != 0) { dt = &env->gdt; index = new_ldt & ~7; if ((index + 7) > dt->limit) raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc); ptr = dt->base + index; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc); load_seg_cache_raw_dt(&env->ldt, e1, e2); } /* load the segments */ if (!(new_eflags & VM_MASK)) { tss_load_seg(R_CS, new_segs[R_CS]); tss_load_seg(R_SS, new_segs[R_SS]); tss_load_seg(R_ES, new_segs[R_ES]); tss_load_seg(R_DS, new_segs[R_DS]); tss_load_seg(R_FS, new_segs[R_FS]); tss_load_seg(R_GS, new_segs[R_GS]); } /* check that EIP is in the CS segment limits */ if (new_eip > env->segs[R_CS].limit) { /* XXX: different exception if CALL ? */ raise_exception_err(EXCP0D_GPF, 0); } #ifndef CONFIG_USER_ONLY /* reset local breakpoints */ if (env->dr[7] & 0x55) { for (i = 0; i < 4; i++) { if (hw_breakpoint_enabled(env->dr[7], i) == 0x1) hw_breakpoint_remove(env, i); } env->dr[7] &= ~0x55; } #endif } /* check if Port I/O is allowed in TSS */ static inline void check_io(int addr, int size) { int io_offset, val, mask; /* TSS must be a valid 32 bit one */ if (!(env->tr.flags & DESC_P_MASK) || ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 || env->tr.limit < 103) goto fail; io_offset = lduw_kernel(env->tr.base + 0x66); io_offset += (addr >> 3); /* Note: the check needs two bytes */ if ((io_offset + 1) > env->tr.limit) goto fail; val = lduw_kernel(env->tr.base + io_offset); val >>= (addr & 7); mask = (1 << size) - 1; /* all bits must be zero to allow the I/O */ if ((val & mask) != 0) { fail: raise_exception_err(EXCP0D_GPF, 0); } } void helper_check_iob(uint32_t t0) { check_io(t0, 1); } void helper_check_iow(uint32_t t0) { check_io(t0, 2); } void helper_check_iol(uint32_t t0) { check_io(t0, 4); } void helper_outb(uint32_t port, uint32_t data) { cpu_outb(port, data & 0xff); } target_ulong helper_inb(uint32_t port) { return cpu_inb(port); } void helper_outw(uint32_t port, uint32_t data) { cpu_outw(port, data & 0xffff); } target_ulong helper_inw(uint32_t port) { return cpu_inw(port); } void helper_outl(uint32_t port, uint32_t data) { cpu_outl(port, data); } target_ulong helper_inl(uint32_t port) { return cpu_inl(port); } static inline unsigned int get_sp_mask(unsigned int e2) { if (e2 & DESC_B_MASK) return 0xffffffff; else return 0xffff; } static int exeption_has_error_code(int intno) { switch(intno) { case 8: case 10: case 11: case 12: case 13: case 14: case 17: return 1; } return 0; } #ifdef TARGET_X86_64 #define SET_ESP(val, sp_mask)\ do {\ if ((sp_mask) == 0xffff)\ ESP = (ESP & ~0xffff) | ((val) & 0xffff);\ else if ((sp_mask) == 0xffffffffLL)\ ESP = (uint32_t)(val);\ else\ ESP = (val);\ } while (0) #else #define SET_ESP(val, sp_mask) ESP = (ESP & ~(sp_mask)) | ((val) & (sp_mask)) #endif /* in 64-bit machines, this can overflow. So this segment addition macro * can be used to trim the value to 32-bit whenever needed */ #define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask)))) /* XXX: add a is_user flag to have proper security support */ #define PUSHW(ssp, sp, sp_mask, val)\ {\ sp -= 2;\ stw_kernel((ssp) + (sp & (sp_mask)), (val));\ } #define PUSHL(ssp, sp, sp_mask, val)\ {\ sp -= 4;\ stl_kernel(SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val));\ } #define POPW(ssp, sp, sp_mask, val)\ {\ val = lduw_kernel((ssp) + (sp & (sp_mask)));\ sp += 2;\ } #define POPL(ssp, sp, sp_mask, val)\ {\ val = (uint32_t)ldl_kernel(SEG_ADDL(ssp, sp, sp_mask));\ sp += 4;\ } /* protected mode interrupt */ static void do_interrupt_protected(int intno, int is_int, int error_code, unsigned int next_eip, int is_hw) { SegmentCache *dt; target_ulong ptr, ssp; int type, dpl, selector, ss_dpl, cpl; int has_error_code, new_stack, shift; uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0; uint32_t old_eip, sp_mask; has_error_code = 0; if (!is_int && !is_hw) has_error_code = exeption_has_error_code(intno); if (is_int) old_eip = next_eip; else old_eip = env->eip; dt = &env->idt; if (intno * 8 + 7 > dt->limit) raise_exception_err(EXCP0D_GPF, intno * 8 + 2); ptr = dt->base + intno * 8; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; switch(type) { case 5: /* task gate */ /* must do that check here to return the correct error code */ if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2); switch_tss(intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip); if (has_error_code) { int type; uint32_t mask; /* push the error code */ type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf; shift = type >> 3; if (env->segs[R_SS].flags & DESC_B_MASK) mask = 0xffffffff; else mask = 0xffff; esp = (ESP - (2 << shift)) & mask; ssp = env->segs[R_SS].base + esp; if (shift) stl_kernel(ssp, error_code); else stw_kernel(ssp, error_code); SET_ESP(esp, mask); } return; case 6: /* 286 interrupt gate */ case 7: /* 286 trap gate */ case 14: /* 386 interrupt gate */ case 15: /* 386 trap gate */ break; default: raise_exception_err(EXCP0D_GPF, intno * 8 + 2); break; } dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; /* check privilege if software int */ if (is_int && dpl < cpl) raise_exception_err(EXCP0D_GPF, intno * 8 + 2); /* check valid bit */ if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2); selector = e1 >> 16; offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff); if ((selector & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, 0); if (load_segment(&e1, &e2, selector) != 0) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); if (!(e2 & DESC_C_MASK) && dpl < cpl) { /* to inner privilege */ get_ss_esp_from_tss(&ss, &esp, dpl); if ((ss & 0xfffc) == 0) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if ((ss & 3) != dpl) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (load_segment(&ss_e1, &ss_e2, ss) != 0) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (ss_dpl != dpl) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (!(ss_e2 & DESC_P_MASK)) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); new_stack = 1; sp_mask = get_sp_mask(ss_e2); ssp = get_seg_base(ss_e1, ss_e2); } else if ((e2 & DESC_C_MASK) || dpl == cpl) { /* to same privilege */ if (env->eflags & VM_MASK) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); new_stack = 0; sp_mask = get_sp_mask(env->segs[R_SS].flags); ssp = env->segs[R_SS].base; esp = ESP; dpl = cpl; } else { raise_exception_err(EXCP0D_GPF, selector & 0xfffc); new_stack = 0; /* avoid warning */ sp_mask = 0; /* avoid warning */ ssp = 0; /* avoid warning */ esp = 0; /* avoid warning */ } shift = type >> 3; #if 0 /* XXX: check that enough room is available */ push_size = 6 + (new_stack << 2) + (has_error_code << 1); if (env->eflags & VM_MASK) push_size += 8; push_size <<= shift; #endif if (shift == 1) { if (new_stack) { if (env->eflags & VM_MASK) { PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector); PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector); PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector); PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector); } PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector); PUSHL(ssp, esp, sp_mask, ESP); } PUSHL(ssp, esp, sp_mask, compute_eflags()); PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector); PUSHL(ssp, esp, sp_mask, old_eip); if (has_error_code) { PUSHL(ssp, esp, sp_mask, error_code); } } else { if (new_stack) { if (env->eflags & VM_MASK) { PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector); PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector); PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector); PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector); } PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector); PUSHW(ssp, esp, sp_mask, ESP); } PUSHW(ssp, esp, sp_mask, compute_eflags()); PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector); PUSHW(ssp, esp, sp_mask, old_eip); if (has_error_code) { PUSHW(ssp, esp, sp_mask, error_code); } } if (new_stack) { if (env->eflags & VM_MASK) { cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0); } ss = (ss & ~3) | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, ssp, get_seg_limit(ss_e1, ss_e2), ss_e2); } SET_ESP(esp, sp_mask); selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); cpu_x86_set_cpl(env, dpl); env->eip = offset; /* interrupt gate clear IF mask */ if ((type & 1) == 0) { env->eflags &= ~IF_MASK; } env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK); } #ifdef TARGET_X86_64 #define PUSHQ(sp, val)\ {\ sp -= 8;\ stq_kernel(sp, (val));\ } #define POPQ(sp, val)\ {\ val = ldq_kernel(sp);\ sp += 8;\ } static inline target_ulong get_rsp_from_tss(int level) { int index; #if 0 printf("TR: base=" TARGET_FMT_lx " limit=%x\n", env->tr.base, env->tr.limit); #endif if (!(env->tr.flags & DESC_P_MASK)) cpu_abort(env, "invalid tss"); index = 8 * level + 4; if ((index + 7) > env->tr.limit) raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc); return ldq_kernel(env->tr.base + index); } /* 64 bit interrupt */ static void do_interrupt64(int intno, int is_int, int error_code, target_ulong next_eip, int is_hw) { SegmentCache *dt; target_ulong ptr; int type, dpl, selector, cpl, ist; int has_error_code, new_stack; uint32_t e1, e2, e3, ss; target_ulong old_eip, esp, offset; has_error_code = 0; if (!is_int && !is_hw) has_error_code = exeption_has_error_code(intno); if (is_int) old_eip = next_eip; else old_eip = env->eip; dt = &env->idt; if (intno * 16 + 15 > dt->limit) raise_exception_err(EXCP0D_GPF, intno * 16 + 2); ptr = dt->base + intno * 16; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); e3 = ldl_kernel(ptr + 8); /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; switch(type) { case 14: /* 386 interrupt gate */ case 15: /* 386 trap gate */ break; default: raise_exception_err(EXCP0D_GPF, intno * 16 + 2); break; } dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; /* check privilege if software int */ if (is_int && dpl < cpl) raise_exception_err(EXCP0D_GPF, intno * 16 + 2); /* check valid bit */ if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, intno * 16 + 2); selector = e1 >> 16; offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff); ist = e2 & 7; if ((selector & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, 0); if (load_segment(&e1, &e2, selector) != 0) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK)) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if ((!(e2 & DESC_C_MASK) && dpl < cpl) || ist != 0) { /* to inner privilege */ if (ist != 0) esp = get_rsp_from_tss(ist + 3); else esp = get_rsp_from_tss(dpl); esp &= ~0xfLL; /* align stack */ ss = 0; new_stack = 1; } else if ((e2 & DESC_C_MASK) || dpl == cpl) { /* to same privilege */ if (env->eflags & VM_MASK) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); new_stack = 0; if (ist != 0) esp = get_rsp_from_tss(ist + 3); else esp = ESP; esp &= ~0xfLL; /* align stack */ dpl = cpl; } else { raise_exception_err(EXCP0D_GPF, selector & 0xfffc); new_stack = 0; /* avoid warning */ esp = 0; /* avoid warning */ } PUSHQ(esp, env->segs[R_SS].selector); PUSHQ(esp, ESP); PUSHQ(esp, compute_eflags()); PUSHQ(esp, env->segs[R_CS].selector); PUSHQ(esp, old_eip); if (has_error_code) { PUSHQ(esp, error_code); } if (new_stack) { ss = 0 | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0); } ESP = esp; selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); cpu_x86_set_cpl(env, dpl); env->eip = offset; /* interrupt gate clear IF mask */ if ((type & 1) == 0) { env->eflags &= ~IF_MASK; } env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK); } #endif #ifdef TARGET_X86_64 #if defined(CONFIG_USER_ONLY) void helper_syscall(int next_eip_addend) { env->exception_index = EXCP_SYSCALL; env->exception_next_eip = env->eip + next_eip_addend; cpu_loop_exit(); } #else void helper_syscall(int next_eip_addend) { int selector; if (!(env->efer & MSR_EFER_SCE)) { raise_exception_err(EXCP06_ILLOP, 0); } selector = (env->star >> 32) & 0xffff; if (env->hflags & HF_LMA_MASK) { int code64; ECX = env->eip + next_eip_addend; env->regs[11] = compute_eflags(); code64 = env->hflags & HF_CS64_MASK; cpu_x86_set_cpl(env, 0); cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eflags &= ~env->fmask; load_eflags(env->eflags, 0); if (code64) env->eip = env->lstar; else env->eip = env->cstar; } else { ECX = (uint32_t)(env->eip + next_eip_addend); cpu_x86_set_cpl(env, 0); cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK); env->eip = (uint32_t)env->star; } } #endif #endif #ifdef TARGET_X86_64 void helper_sysret(int dflag) { int cpl, selector; if (!(env->efer & MSR_EFER_SCE)) { raise_exception_err(EXCP06_ILLOP, 0); } cpl = env->hflags & HF_CPL_MASK; if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) { raise_exception_err(EXCP0D_GPF, 0); } selector = (env->star >> 48) & 0xffff; if (env->hflags & HF_LMA_MASK) { if (dflag == 2) { cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); env->eip = ECX; } else { cpu_x86_load_seg_cache(env, R_CS, selector | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); env->eip = (uint32_t)ECX; } cpu_x86_load_seg_cache(env, R_SS, selector + 8, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK); cpu_x86_set_cpl(env, 3); } else { cpu_x86_load_seg_cache(env, R_CS, selector | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); env->eip = (uint32_t)ECX; cpu_x86_load_seg_cache(env, R_SS, selector + 8, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); env->eflags |= IF_MASK; cpu_x86_set_cpl(env, 3); } } #endif /* real mode interrupt */ static void do_interrupt_real(int intno, int is_int, int error_code, unsigned int next_eip) { SegmentCache *dt; target_ulong ptr, ssp; int selector; uint32_t offset, esp; uint32_t old_cs, old_eip; /* real mode (simpler !) */ dt = &env->idt; if (intno * 4 + 3 > dt->limit) raise_exception_err(EXCP0D_GPF, intno * 8 + 2); ptr = dt->base + intno * 4; offset = lduw_kernel(ptr); selector = lduw_kernel(ptr + 2); esp = ESP; ssp = env->segs[R_SS].base; if (is_int) old_eip = next_eip; else old_eip = env->eip; old_cs = env->segs[R_CS].selector; /* XXX: use SS segment size ? */ PUSHW(ssp, esp, 0xffff, compute_eflags()); PUSHW(ssp, esp, 0xffff, old_cs); PUSHW(ssp, esp, 0xffff, old_eip); /* update processor state */ ESP = (ESP & ~0xffff) | (esp & 0xffff); env->eip = offset; env->segs[R_CS].selector = selector; env->segs[R_CS].base = (selector << 4); env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK); } /* fake user mode interrupt */ void do_interrupt_user(int intno, int is_int, int error_code, target_ulong next_eip) { SegmentCache *dt; target_ulong ptr; int dpl, cpl, shift; uint32_t e2; dt = &env->idt; if (env->hflags & HF_LMA_MASK) { shift = 4; } else { shift = 3; } ptr = dt->base + (intno << shift); e2 = ldl_kernel(ptr + 4); dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; /* check privilege if software int */ if (is_int && dpl < cpl) raise_exception_err(EXCP0D_GPF, (intno << shift) + 2); /* Since we emulate only user space, we cannot do more than exiting the emulation with the suitable exception and error code */ if (is_int) EIP = next_eip; } #if !defined(CONFIG_USER_ONLY) static void handle_even_inj(int intno, int is_int, int error_code, int is_hw, int rm) { uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); if (!(event_inj & SVM_EVTINJ_VALID)) { int type; if (is_int) type = SVM_EVTINJ_TYPE_SOFT; else type = SVM_EVTINJ_TYPE_EXEPT; event_inj = intno | type | SVM_EVTINJ_VALID; if (!rm && exeption_has_error_code(intno)) { event_inj |= SVM_EVTINJ_VALID_ERR; stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code); } stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj); } } #endif /* * Begin execution of an interruption. is_int is TRUE if coming from * the int instruction. next_eip is the EIP value AFTER the interrupt * instruction. It is only relevant if is_int is TRUE. */ void do_interrupt(int intno, int is_int, int error_code, target_ulong next_eip, int is_hw) { if (qemu_loglevel_mask(CPU_LOG_INT)) { if ((env->cr[0] & CR0_PE_MASK)) { static int count; qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx, count, intno, error_code, is_int, env->hflags & HF_CPL_MASK, env->segs[R_CS].selector, EIP, (int)env->segs[R_CS].base + EIP, env->segs[R_SS].selector, ESP); if (intno == 0x0e) { qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]); } else { qemu_log(" EAX=" TARGET_FMT_lx, EAX); } qemu_log("\n"); log_cpu_state(env, X86_DUMP_CCOP); #if 0 { int i; target_ulong ptr; qemu_log(" code="); ptr = env->segs[R_CS].base + env->eip; for(i = 0; i < 16; i++) { qemu_log(" %02x", ldub(ptr + i)); } qemu_log("\n"); } #endif count++; } } if (env->cr[0] & CR0_PE_MASK) { #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_SVMI_MASK) handle_even_inj(intno, is_int, error_code, is_hw, 0); #endif #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { do_interrupt64(intno, is_int, error_code, next_eip, is_hw); } else #endif { do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw); } } else { #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_SVMI_MASK) handle_even_inj(intno, is_int, error_code, is_hw, 1); #endif do_interrupt_real(intno, is_int, error_code, next_eip); } #if !defined(CONFIG_USER_ONLY) if (env->hflags & HF_SVMI_MASK) { uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID); } #endif } /* This should come from sysemu.h - if we could include it here... */ void qemu_system_reset_request(void); /* * Check nested exceptions and change to double or triple fault if * needed. It should only be called, if this is not an interrupt. * Returns the new exception number. */ static int check_exception(int intno, int *error_code) { int first_contributory = env->old_exception == 0 || (env->old_exception >= 10 && env->old_exception <= 13); int second_contributory = intno == 0 || (intno >= 10 && intno <= 13); qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n", env->old_exception, intno); #if !defined(CONFIG_USER_ONLY) if (env->old_exception == EXCP08_DBLE) { if (env->hflags & HF_SVMI_MASK) helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */ qemu_log_mask(CPU_LOG_RESET, "Triple fault\n"); qemu_system_reset_request(); return EXCP_HLT; } #endif if ((first_contributory && second_contributory) || (env->old_exception == EXCP0E_PAGE && (second_contributory || (intno == EXCP0E_PAGE)))) { intno = EXCP08_DBLE; *error_code = 0; } if (second_contributory || (intno == EXCP0E_PAGE) || (intno == EXCP08_DBLE)) env->old_exception = intno; return intno; } /* * Signal an interruption. It is executed in the main CPU loop. * is_int is TRUE if coming from the int instruction. next_eip is the * EIP value AFTER the interrupt instruction. It is only relevant if * is_int is TRUE. */ static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code, int next_eip_addend) { if (!is_int) { helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code); intno = check_exception(intno, &error_code); } else { helper_svm_check_intercept_param(SVM_EXIT_SWINT, 0); } env->exception_index = intno; env->error_code = error_code; env->exception_is_int = is_int; env->exception_next_eip = env->eip + next_eip_addend; cpu_loop_exit(); } /* shortcuts to generate exceptions */ void raise_exception_err(int exception_index, int error_code) { raise_interrupt(exception_index, 0, error_code, 0); } void raise_exception(int exception_index) { raise_interrupt(exception_index, 0, 0, 0); } void raise_exception_env(int exception_index, CPUState *nenv) { env = nenv; raise_exception(exception_index); } /* SMM support */ #if defined(CONFIG_USER_ONLY) void do_smm_enter(void) { } void helper_rsm(void) { } #else #ifdef TARGET_X86_64 #define SMM_REVISION_ID 0x00020064 #else #define SMM_REVISION_ID 0x00020000 #endif void do_smm_enter(void) { target_ulong sm_state; SegmentCache *dt; int i, offset; qemu_log_mask(CPU_LOG_INT, "SMM: enter\n"); log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP); env->hflags |= HF_SMM_MASK; cpu_smm_update(env); sm_state = env->smbase + 0x8000; #ifdef TARGET_X86_64 for(i = 0; i < 6; i++) { dt = &env->segs[i]; offset = 0x7e00 + i * 16; stw_phys(sm_state + offset, dt->selector); stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff); stl_phys(sm_state + offset + 4, dt->limit); stq_phys(sm_state + offset + 8, dt->base); } stq_phys(sm_state + 0x7e68, env->gdt.base); stl_phys(sm_state + 0x7e64, env->gdt.limit); stw_phys(sm_state + 0x7e70, env->ldt.selector); stq_phys(sm_state + 0x7e78, env->ldt.base); stl_phys(sm_state + 0x7e74, env->ldt.limit); stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff); stq_phys(sm_state + 0x7e88, env->idt.base); stl_phys(sm_state + 0x7e84, env->idt.limit); stw_phys(sm_state + 0x7e90, env->tr.selector); stq_phys(sm_state + 0x7e98, env->tr.base); stl_phys(sm_state + 0x7e94, env->tr.limit); stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff); stq_phys(sm_state + 0x7ed0, env->efer); stq_phys(sm_state + 0x7ff8, EAX); stq_phys(sm_state + 0x7ff0, ECX); stq_phys(sm_state + 0x7fe8, EDX); stq_phys(sm_state + 0x7fe0, EBX); stq_phys(sm_state + 0x7fd8, ESP); stq_phys(sm_state + 0x7fd0, EBP); stq_phys(sm_state + 0x7fc8, ESI); stq_phys(sm_state + 0x7fc0, EDI); for(i = 8; i < 16; i++) stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]); stq_phys(sm_state + 0x7f78, env->eip); stl_phys(sm_state + 0x7f70, compute_eflags()); stl_phys(sm_state + 0x7f68, env->dr[6]); stl_phys(sm_state + 0x7f60, env->dr[7]); stl_phys(sm_state + 0x7f48, env->cr[4]); stl_phys(sm_state + 0x7f50, env->cr[3]); stl_phys(sm_state + 0x7f58, env->cr[0]); stl_phys(sm_state + 0x7efc, SMM_REVISION_ID); stl_phys(sm_state + 0x7f00, env->smbase); #else stl_phys(sm_state + 0x7ffc, env->cr[0]); stl_phys(sm_state + 0x7ff8, env->cr[3]); stl_phys(sm_state + 0x7ff4, compute_eflags()); stl_phys(sm_state + 0x7ff0, env->eip); stl_phys(sm_state + 0x7fec, EDI); stl_phys(sm_state + 0x7fe8, ESI); stl_phys(sm_state + 0x7fe4, EBP); stl_phys(sm_state + 0x7fe0, ESP); stl_phys(sm_state + 0x7fdc, EBX); stl_phys(sm_state + 0x7fd8, EDX); stl_phys(sm_state + 0x7fd4, ECX); stl_phys(sm_state + 0x7fd0, EAX); stl_phys(sm_state + 0x7fcc, env->dr[6]); stl_phys(sm_state + 0x7fc8, env->dr[7]); stl_phys(sm_state + 0x7fc4, env->tr.selector); stl_phys(sm_state + 0x7f64, env->tr.base); stl_phys(sm_state + 0x7f60, env->tr.limit); stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff); stl_phys(sm_state + 0x7fc0, env->ldt.selector); stl_phys(sm_state + 0x7f80, env->ldt.base); stl_phys(sm_state + 0x7f7c, env->ldt.limit); stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff); stl_phys(sm_state + 0x7f74, env->gdt.base); stl_phys(sm_state + 0x7f70, env->gdt.limit); stl_phys(sm_state + 0x7f58, env->idt.base); stl_phys(sm_state + 0x7f54, env->idt.limit); for(i = 0; i < 6; i++) { dt = &env->segs[i]; if (i < 3) offset = 0x7f84 + i * 12; else offset = 0x7f2c + (i - 3) * 12; stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector); stl_phys(sm_state + offset + 8, dt->base); stl_phys(sm_state + offset + 4, dt->limit); stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff); } stl_phys(sm_state + 0x7f14, env->cr[4]); stl_phys(sm_state + 0x7efc, SMM_REVISION_ID); stl_phys(sm_state + 0x7ef8, env->smbase); #endif /* init SMM cpu state */ #ifdef TARGET_X86_64 cpu_load_efer(env, 0); #endif load_eflags(0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->eip = 0x00008000; cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase, 0xffffffff, 0); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0); cpu_x86_update_cr0(env, env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK)); cpu_x86_update_cr4(env, 0); env->dr[7] = 0x00000400; CC_OP = CC_OP_EFLAGS; } void helper_rsm(void) { target_ulong sm_state; int i, offset; uint32_t val; sm_state = env->smbase + 0x8000; #ifdef TARGET_X86_64 cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0)); for(i = 0; i < 6; i++) { offset = 0x7e00 + i * 16; cpu_x86_load_seg_cache(env, i, lduw_phys(sm_state + offset), ldq_phys(sm_state + offset + 8), ldl_phys(sm_state + offset + 4), (lduw_phys(sm_state + offset + 2) & 0xf0ff) << 8); } env->gdt.base = ldq_phys(sm_state + 0x7e68); env->gdt.limit = ldl_phys(sm_state + 0x7e64); env->ldt.selector = lduw_phys(sm_state + 0x7e70); env->ldt.base = ldq_phys(sm_state + 0x7e78); env->ldt.limit = ldl_phys(sm_state + 0x7e74); env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8; env->idt.base = ldq_phys(sm_state + 0x7e88); env->idt.limit = ldl_phys(sm_state + 0x7e84); env->tr.selector = lduw_phys(sm_state + 0x7e90); env->tr.base = ldq_phys(sm_state + 0x7e98); env->tr.limit = ldl_phys(sm_state + 0x7e94); env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8; EAX = ldq_phys(sm_state + 0x7ff8); ECX = ldq_phys(sm_state + 0x7ff0); EDX = ldq_phys(sm_state + 0x7fe8); EBX = ldq_phys(sm_state + 0x7fe0); ESP = ldq_phys(sm_state + 0x7fd8); EBP = ldq_phys(sm_state + 0x7fd0); ESI = ldq_phys(sm_state + 0x7fc8); EDI = ldq_phys(sm_state + 0x7fc0); for(i = 8; i < 16; i++) env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8); env->eip = ldq_phys(sm_state + 0x7f78); load_eflags(ldl_phys(sm_state + 0x7f70), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->dr[6] = ldl_phys(sm_state + 0x7f68); env->dr[7] = ldl_phys(sm_state + 0x7f60); cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48)); cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50)); cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58)); val = ldl_phys(sm_state + 0x7efc); /* revision ID */ if (val & 0x20000) { env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff; } #else cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc)); cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8)); load_eflags(ldl_phys(sm_state + 0x7ff4), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); env->eip = ldl_phys(sm_state + 0x7ff0); EDI = ldl_phys(sm_state + 0x7fec); ESI = ldl_phys(sm_state + 0x7fe8); EBP = ldl_phys(sm_state + 0x7fe4); ESP = ldl_phys(sm_state + 0x7fe0); EBX = ldl_phys(sm_state + 0x7fdc); EDX = ldl_phys(sm_state + 0x7fd8); ECX = ldl_phys(sm_state + 0x7fd4); EAX = ldl_phys(sm_state + 0x7fd0); env->dr[6] = ldl_phys(sm_state + 0x7fcc); env->dr[7] = ldl_phys(sm_state + 0x7fc8); env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff; env->tr.base = ldl_phys(sm_state + 0x7f64); env->tr.limit = ldl_phys(sm_state + 0x7f60); env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8; env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff; env->ldt.base = ldl_phys(sm_state + 0x7f80); env->ldt.limit = ldl_phys(sm_state + 0x7f7c); env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8; env->gdt.base = ldl_phys(sm_state + 0x7f74); env->gdt.limit = ldl_phys(sm_state + 0x7f70); env->idt.base = ldl_phys(sm_state + 0x7f58); env->idt.limit = ldl_phys(sm_state + 0x7f54); for(i = 0; i < 6; i++) { if (i < 3) offset = 0x7f84 + i * 12; else offset = 0x7f2c + (i - 3) * 12; cpu_x86_load_seg_cache(env, i, ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff, ldl_phys(sm_state + offset + 8), ldl_phys(sm_state + offset + 4), (ldl_phys(sm_state + offset) & 0xf0ff) << 8); } cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14)); val = ldl_phys(sm_state + 0x7efc); /* revision ID */ if (val & 0x20000) { env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff; } #endif CC_OP = CC_OP_EFLAGS; env->hflags &= ~HF_SMM_MASK; cpu_smm_update(env); qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n"); log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP); } #endif /* !CONFIG_USER_ONLY */ /* division, flags are undefined */ void helper_divb_AL(target_ulong t0) { unsigned int num, den, q, r; num = (EAX & 0xffff); den = (t0 & 0xff); if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); if (q > 0xff) raise_exception(EXCP00_DIVZ); q &= 0xff; r = (num % den) & 0xff; EAX = (EAX & ~0xffff) | (r << 8) | q; } void helper_idivb_AL(target_ulong t0) { int num, den, q, r; num = (int16_t)EAX; den = (int8_t)t0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); if (q != (int8_t)q) raise_exception(EXCP00_DIVZ); q &= 0xff; r = (num % den) & 0xff; EAX = (EAX & ~0xffff) | (r << 8) | q; } void helper_divw_AX(target_ulong t0) { unsigned int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (t0 & 0xffff); if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); if (q > 0xffff) raise_exception(EXCP00_DIVZ); q &= 0xffff; r = (num % den) & 0xffff; EAX = (EAX & ~0xffff) | q; EDX = (EDX & ~0xffff) | r; } void helper_idivw_AX(target_ulong t0) { int num, den, q, r; num = (EAX & 0xffff) | ((EDX & 0xffff) << 16); den = (int16_t)t0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); if (q != (int16_t)q) raise_exception(EXCP00_DIVZ); q &= 0xffff; r = (num % den) & 0xffff; EAX = (EAX & ~0xffff) | q; EDX = (EDX & ~0xffff) | r; } void helper_divl_EAX(target_ulong t0) { unsigned int den, r; uint64_t num, q; num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32); den = t0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); r = (num % den); if (q > 0xffffffff) raise_exception(EXCP00_DIVZ); EAX = (uint32_t)q; EDX = (uint32_t)r; } void helper_idivl_EAX(target_ulong t0) { int den, r; int64_t num, q; num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32); den = t0; if (den == 0) { raise_exception(EXCP00_DIVZ); } q = (num / den); r = (num % den); if (q != (int32_t)q) raise_exception(EXCP00_DIVZ); EAX = (uint32_t)q; EDX = (uint32_t)r; } /* bcd */ /* XXX: exception */ void helper_aam(int base) { int al, ah; al = EAX & 0xff; ah = al / base; al = al % base; EAX = (EAX & ~0xffff) | al | (ah << 8); CC_DST = al; } void helper_aad(int base) { int al, ah; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; al = ((ah * base) + al) & 0xff; EAX = (EAX & ~0xffff) | al; CC_DST = al; } void helper_aaa(void) { int icarry; int al, ah, af; int eflags; eflags = helper_cc_compute_all(CC_OP); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al > 0xf9); if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0x0f; ah = (ah + 1 + icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void helper_aas(void) { int icarry; int al, ah, af; int eflags; eflags = helper_cc_compute_all(CC_OP); af = eflags & CC_A; al = EAX & 0xff; ah = (EAX >> 8) & 0xff; icarry = (al < 6); if (((al & 0x0f) > 9 ) || af) { al = (al - 6) & 0x0f; ah = (ah - 1 - icarry) & 0xff; eflags |= CC_C | CC_A; } else { eflags &= ~(CC_C | CC_A); al &= 0x0f; } EAX = (EAX & ~0xffff) | al | (ah << 8); CC_SRC = eflags; } void helper_daa(void) { int al, af, cf; int eflags; eflags = helper_cc_compute_all(CC_OP); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; if (((al & 0x0f) > 9 ) || af) { al = (al + 6) & 0xff; eflags |= CC_A; } if ((al > 0x9f) || cf) { al = (al + 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } void helper_das(void) { int al, al1, af, cf; int eflags; eflags = helper_cc_compute_all(CC_OP); cf = eflags & CC_C; af = eflags & CC_A; al = EAX & 0xff; eflags = 0; al1 = al; if (((al & 0x0f) > 9 ) || af) { eflags |= CC_A; if (al < 6 || cf) eflags |= CC_C; al = (al - 6) & 0xff; } if ((al1 > 0x99) || cf) { al = (al - 0x60) & 0xff; eflags |= CC_C; } EAX = (EAX & ~0xff) | al; /* well, speed is not an issue here, so we compute the flags by hand */ eflags |= (al == 0) << 6; /* zf */ eflags |= parity_table[al]; /* pf */ eflags |= (al & 0x80); /* sf */ CC_SRC = eflags; } void helper_into(int next_eip_addend) { int eflags; eflags = helper_cc_compute_all(CC_OP); if (eflags & CC_O) { raise_interrupt(EXCP04_INTO, 1, 0, next_eip_addend); } } void helper_cmpxchg8b(target_ulong a0) { uint64_t d; int eflags; eflags = helper_cc_compute_all(CC_OP); d = ldq(a0); if (d == (((uint64_t)EDX << 32) | (uint32_t)EAX)) { stq(a0, ((uint64_t)ECX << 32) | (uint32_t)EBX); eflags |= CC_Z; } else { /* always do the store */ stq(a0, d); EDX = (uint32_t)(d >> 32); EAX = (uint32_t)d; eflags &= ~CC_Z; } CC_SRC = eflags; } #ifdef TARGET_X86_64 void helper_cmpxchg16b(target_ulong a0) { uint64_t d0, d1; int eflags; if ((a0 & 0xf) != 0) raise_exception(EXCP0D_GPF); eflags = helper_cc_compute_all(CC_OP); d0 = ldq(a0); d1 = ldq(a0 + 8); if (d0 == EAX && d1 == EDX) { stq(a0, EBX); stq(a0 + 8, ECX); eflags |= CC_Z; } else { /* always do the store */ stq(a0, d0); stq(a0 + 8, d1); EDX = d1; EAX = d0; eflags &= ~CC_Z; } CC_SRC = eflags; } #endif void helper_single_step(void) { #ifndef CONFIG_USER_ONLY check_hw_breakpoints(env, 1); env->dr[6] |= DR6_BS; #endif raise_exception(EXCP01_DB); } void helper_cpuid(void) { uint32_t eax, ebx, ecx, edx; helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0); cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx); EAX = eax; EBX = ebx; ECX = ecx; EDX = edx; } void helper_enter_level(int level, int data32, target_ulong t1) { target_ulong ssp; uint32_t esp_mask, esp, ebp; esp_mask = get_sp_mask(env->segs[R_SS].flags); ssp = env->segs[R_SS].base; ebp = EBP; esp = ESP; if (data32) { /* 32 bit */ esp -= 4; while (--level) { esp -= 4; ebp -= 4; stl(ssp + (esp & esp_mask), ldl(ssp + (ebp & esp_mask))); } esp -= 4; stl(ssp + (esp & esp_mask), t1); } else { /* 16 bit */ esp -= 2; while (--level) { esp -= 2; ebp -= 2; stw(ssp + (esp & esp_mask), lduw(ssp + (ebp & esp_mask))); } esp -= 2; stw(ssp + (esp & esp_mask), t1); } } #ifdef TARGET_X86_64 void helper_enter64_level(int level, int data64, target_ulong t1) { target_ulong esp, ebp; ebp = EBP; esp = ESP; if (data64) { /* 64 bit */ esp -= 8; while (--level) { esp -= 8; ebp -= 8; stq(esp, ldq(ebp)); } esp -= 8; stq(esp, t1); } else { /* 16 bit */ esp -= 2; while (--level) { esp -= 2; ebp -= 2; stw(esp, lduw(ebp)); } esp -= 2; stw(esp, t1); } } #endif void helper_lldt(int selector) { SegmentCache *dt; uint32_t e1, e2; int index, entry_limit; target_ulong ptr; selector &= 0xffff; if ((selector & 0xfffc) == 0) { /* XXX: NULL selector case: invalid LDT */ env->ldt.base = 0; env->ldt.limit = 0; } else { if (selector & 0x4) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); dt = &env->gdt; index = selector & ~7; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) entry_limit = 15; else #endif entry_limit = 7; if ((index + entry_limit) > dt->limit) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); ptr = dt->base + index; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint32_t e3; e3 = ldl_kernel(ptr + 8); load_seg_cache_raw_dt(&env->ldt, e1, e2); env->ldt.base |= (target_ulong)e3 << 32; } else #endif { load_seg_cache_raw_dt(&env->ldt, e1, e2); } } env->ldt.selector = selector; } void helper_ltr(int selector) { SegmentCache *dt; uint32_t e1, e2; int index, type, entry_limit; target_ulong ptr; selector &= 0xffff; if ((selector & 0xfffc) == 0) { /* NULL selector case: invalid TR */ env->tr.base = 0; env->tr.limit = 0; env->tr.flags = 0; } else { if (selector & 0x4) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); dt = &env->gdt; index = selector & ~7; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) entry_limit = 15; else #endif entry_limit = 7; if ((index + entry_limit) > dt->limit) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); ptr = dt->base + index; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); type = (e2 >> DESC_TYPE_SHIFT) & 0xf; if ((e2 & DESC_S_MASK) || (type != 1 && type != 9)) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint32_t e3, e4; e3 = ldl_kernel(ptr + 8); e4 = ldl_kernel(ptr + 12); if ((e4 >> DESC_TYPE_SHIFT) & 0xf) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); load_seg_cache_raw_dt(&env->tr, e1, e2); env->tr.base |= (target_ulong)e3 << 32; } else #endif { load_seg_cache_raw_dt(&env->tr, e1, e2); } e2 |= DESC_TSS_BUSY_MASK; stl_kernel(ptr + 4, e2); } env->tr.selector = selector; } /* only works if protected mode and not VM86. seg_reg must be != R_CS */ void helper_load_seg(int seg_reg, int selector) { uint32_t e1, e2; int cpl, dpl, rpl; SegmentCache *dt; int index; target_ulong ptr; selector &= 0xffff; cpl = env->hflags & HF_CPL_MASK; if ((selector & 0xfffc) == 0) { /* null selector case */ if (seg_reg == R_SS #ifdef TARGET_X86_64 && (!(env->hflags & HF_CS64_MASK) || cpl == 3) #endif ) raise_exception_err(EXCP0D_GPF, 0); cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0); } else { if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; if ((index + 7) > dt->limit) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); ptr = dt->base + index; e1 = ldl_kernel(ptr); e2 = ldl_kernel(ptr + 4); if (!(e2 & DESC_S_MASK)) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (seg_reg == R_SS) { /* must be writable segment */ if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK)) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (rpl != cpl || dpl != cpl) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); } else { /* must be readable segment */ if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) { /* if not conforming code, test rights */ if (dpl < cpl || dpl < rpl) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); } } if (!(e2 & DESC_P_MASK)) { if (seg_reg == R_SS) raise_exception_err(EXCP0C_STACK, selector & 0xfffc); else raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); } /* set the access bit if not already set */ if (!(e2 & DESC_A_MASK)) { e2 |= DESC_A_MASK; stl_kernel(ptr + 4, e2); } cpu_x86_load_seg_cache(env, seg_reg, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); #if 0 qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n", selector, (unsigned long)sc->base, sc->limit, sc->flags); #endif } } /* protected mode jump */ void helper_ljmp_protected(int new_cs, target_ulong new_eip, int next_eip_addend) { int gate_cs, type; uint32_t e1, e2, cpl, dpl, rpl, limit; target_ulong next_eip; if ((new_cs & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, 0); if (load_segment(&e1, &e2, new_cs) != 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if (!(e2 & DESC_CS_MASK)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { /* conforming code segment */ if (dpl > cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } else { /* non conforming code segment */ rpl = new_cs & 3; if (rpl > cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (dpl != cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); limit = get_seg_limit(e1, e2); if (new_eip > limit && !(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); EIP = new_eip; } else { /* jump to call or task gate */ dpl = (e2 >> DESC_DPL_SHIFT) & 3; rpl = new_cs & 3; cpl = env->hflags & HF_CPL_MASK; type = (e2 >> DESC_TYPE_SHIFT) & 0xf; switch(type) { case 1: /* 286 TSS */ case 9: /* 386 TSS */ case 5: /* task gate */ if (dpl < cpl || dpl < rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); next_eip = env->eip + next_eip_addend; switch_tss(new_cs, e1, e2, SWITCH_TSS_JMP, next_eip); CC_OP = CC_OP_EFLAGS; break; case 4: /* 286 call gate */ case 12: /* 386 call gate */ if ((dpl < cpl) || (dpl < rpl)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); gate_cs = e1 >> 16; new_eip = (e1 & 0xffff); if (type == 12) new_eip |= (e2 & 0xffff0000); if (load_segment(&e1, &e2, gate_cs) != 0) raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; /* must be code segment */ if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) != (DESC_S_MASK | DESC_CS_MASK))) raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc); if (((e2 & DESC_C_MASK) && (dpl > cpl)) || (!(e2 & DESC_C_MASK) && (dpl != cpl))) raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc); limit = get_seg_limit(e1, e2); if (new_eip > limit) raise_exception_err(EXCP0D_GPF, 0); cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); EIP = new_eip; break; default: raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); break; } } } /* real mode call */ void helper_lcall_real(int new_cs, target_ulong new_eip1, int shift, int next_eip) { int new_eip; uint32_t esp, esp_mask; target_ulong ssp; new_eip = new_eip1; esp = ESP; esp_mask = get_sp_mask(env->segs[R_SS].flags); ssp = env->segs[R_SS].base; if (shift) { PUSHL(ssp, esp, esp_mask, env->segs[R_CS].selector); PUSHL(ssp, esp, esp_mask, next_eip); } else { PUSHW(ssp, esp, esp_mask, env->segs[R_CS].selector); PUSHW(ssp, esp, esp_mask, next_eip); } SET_ESP(esp, esp_mask); env->eip = new_eip; env->segs[R_CS].selector = new_cs; env->segs[R_CS].base = (new_cs << 4); } /* protected mode call */ void helper_lcall_protected(int new_cs, target_ulong new_eip, int shift, int next_eip_addend) { int new_stack, i; uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count; uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask; uint32_t val, limit, old_sp_mask; target_ulong ssp, old_ssp, next_eip; next_eip = env->eip + next_eip_addend; LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift); LOG_PCALL_STATE(env); if ((new_cs & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, 0); if (load_segment(&e1, &e2, new_cs) != 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); cpl = env->hflags & HF_CPL_MASK; LOG_PCALL("desc=%08x:%08x\n", e1, e2); if (e2 & DESC_S_MASK) { if (!(e2 & DESC_CS_MASK)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { /* conforming code segment */ if (dpl > cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } else { /* non conforming code segment */ rpl = new_cs & 3; if (rpl > cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (dpl != cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); #ifdef TARGET_X86_64 /* XXX: check 16/32 bit cases in long mode */ if (shift == 2) { target_ulong rsp; /* 64 bit case */ rsp = ESP; PUSHQ(rsp, env->segs[R_CS].selector); PUSHQ(rsp, next_eip); /* from this point, not restartable */ ESP = rsp; cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); EIP = new_eip; } else #endif { sp = ESP; sp_mask = get_sp_mask(env->segs[R_SS].flags); ssp = env->segs[R_SS].base; if (shift) { PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector); PUSHL(ssp, sp, sp_mask, next_eip); } else { PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector); PUSHW(ssp, sp, sp_mask, next_eip); } limit = get_seg_limit(e1, e2); if (new_eip > limit) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); /* from this point, not restartable */ SET_ESP(sp, sp_mask); cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl, get_seg_base(e1, e2), limit, e2); EIP = new_eip; } } else { /* check gate type */ type = (e2 >> DESC_TYPE_SHIFT) & 0x1f; dpl = (e2 >> DESC_DPL_SHIFT) & 3; rpl = new_cs & 3; switch(type) { case 1: /* available 286 TSS */ case 9: /* available 386 TSS */ case 5: /* task gate */ if (dpl < cpl || dpl < rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); switch_tss(new_cs, e1, e2, SWITCH_TSS_CALL, next_eip); CC_OP = CC_OP_EFLAGS; return; case 4: /* 286 call gate */ case 12: /* 386 call gate */ break; default: raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); break; } shift = type >> 3; if (dpl < cpl || dpl < rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); /* check valid bit */ if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); selector = e1 >> 16; offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff); param_count = e2 & 0x1f; if ((selector & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, 0); if (load_segment(&e1, &e2, selector) != 0) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK))) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (dpl > cpl) raise_exception_err(EXCP0D_GPF, selector & 0xfffc); if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc); if (!(e2 & DESC_C_MASK) && dpl < cpl) { /* to inner privilege */ get_ss_esp_from_tss(&ss, &sp, dpl); LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n", ss, sp, param_count, ESP); if ((ss & 0xfffc) == 0) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if ((ss & 3) != dpl) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (load_segment(&ss_e1, &ss_e2, ss) != 0) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (ss_dpl != dpl) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); if (!(ss_e2 & DESC_P_MASK)) raise_exception_err(EXCP0A_TSS, ss & 0xfffc); // push_size = ((param_count * 2) + 8) << shift; old_sp_mask = get_sp_mask(env->segs[R_SS].flags); old_ssp = env->segs[R_SS].base; sp_mask = get_sp_mask(ss_e2); ssp = get_seg_base(ss_e1, ss_e2); if (shift) { PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector); PUSHL(ssp, sp, sp_mask, ESP); for(i = param_count - 1; i >= 0; i--) { val = ldl_kernel(old_ssp + ((ESP + i * 4) & old_sp_mask)); PUSHL(ssp, sp, sp_mask, val); } } else { PUSHW(ssp, sp, sp_mask, env->segs[R_SS].selector); PUSHW(ssp, sp, sp_mask, ESP); for(i = param_count - 1; i >= 0; i--) { val = lduw_kernel(old_ssp + ((ESP + i * 2) & old_sp_mask)); PUSHW(ssp, sp, sp_mask, val); } } new_stack = 1; } else { /* to same privilege */ sp = ESP; sp_mask = get_sp_mask(env->segs[R_SS].flags); ssp = env->segs[R_SS].base; // push_size = (4 << shift); new_stack = 0; } if (shift) { PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector); PUSHL(ssp, sp, sp_mask, next_eip); } else { PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector); PUSHW(ssp, sp, sp_mask, next_eip); } /* from this point, not restartable */ if (new_stack) { ss = (ss & ~3) | dpl; cpu_x86_load_seg_cache(env, R_SS, ss, ssp, get_seg_limit(ss_e1, ss_e2), ss_e2); } selector = (selector & ~3) | dpl; cpu_x86_load_seg_cache(env, R_CS, selector, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); cpu_x86_set_cpl(env, dpl); SET_ESP(sp, sp_mask); EIP = offset; } } /* real and vm86 mode iret */ void helper_iret_real(int shift) { uint32_t sp, new_cs, new_eip, new_eflags, sp_mask; target_ulong ssp; int eflags_mask; sp_mask = 0xffff; /* XXXX: use SS segment size ? */ sp = ESP; ssp = env->segs[R_SS].base; if (shift == 1) { /* 32 bits */ POPL(ssp, sp, sp_mask, new_eip); POPL(ssp, sp, sp_mask, new_cs); new_cs &= 0xffff; POPL(ssp, sp, sp_mask, new_eflags); } else { /* 16 bits */ POPW(ssp, sp, sp_mask, new_eip); POPW(ssp, sp, sp_mask, new_cs); POPW(ssp, sp, sp_mask, new_eflags); } ESP = (ESP & ~sp_mask) | (sp & sp_mask); env->segs[R_CS].selector = new_cs; env->segs[R_CS].base = (new_cs << 4); env->eip = new_eip; if (env->eflags & VM_MASK) eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK; else eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK; if (shift == 0) eflags_mask &= 0xffff; load_eflags(new_eflags, eflags_mask); env->hflags2 &= ~HF2_NMI_MASK; } static inline void validate_seg(int seg_reg, int cpl) { int dpl; uint32_t e2; /* XXX: on x86_64, we do not want to nullify FS and GS because they may still contain a valid base. I would be interested to know how a real x86_64 CPU behaves */ if ((seg_reg == R_FS || seg_reg == R_GS) && (env->segs[seg_reg].selector & 0xfffc) == 0) return; e2 = env->segs[seg_reg].flags; dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) { /* data or non conforming code segment */ if (dpl < cpl) { cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0); } } } /* protected mode iret */ static inline void helper_ret_protected(int shift, int is_iret, int addend) { uint32_t new_cs, new_eflags, new_ss; uint32_t new_es, new_ds, new_fs, new_gs; uint32_t e1, e2, ss_e1, ss_e2; int cpl, dpl, rpl, eflags_mask, iopl; target_ulong ssp, sp, new_eip, new_esp, sp_mask; #ifdef TARGET_X86_64 if (shift == 2) sp_mask = -1; else #endif sp_mask = get_sp_mask(env->segs[R_SS].flags); sp = ESP; ssp = env->segs[R_SS].base; new_eflags = 0; /* avoid warning */ #ifdef TARGET_X86_64 if (shift == 2) { POPQ(sp, new_eip); POPQ(sp, new_cs); new_cs &= 0xffff; if (is_iret) { POPQ(sp, new_eflags); } } else #endif if (shift == 1) { /* 32 bits */ POPL(ssp, sp, sp_mask, new_eip); POPL(ssp, sp, sp_mask, new_cs); new_cs &= 0xffff; if (is_iret) { POPL(ssp, sp, sp_mask, new_eflags); if (new_eflags & VM_MASK) goto return_to_vm86; } } else { /* 16 bits */ POPW(ssp, sp, sp_mask, new_eip); POPW(ssp, sp, sp_mask, new_cs); if (is_iret) POPW(ssp, sp, sp_mask, new_eflags); } LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n", new_cs, new_eip, shift, addend); LOG_PCALL_STATE(env); if ((new_cs & 0xfffc) == 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (load_segment(&e1, &e2, new_cs) != 0) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); if (!(e2 & DESC_S_MASK) || !(e2 & DESC_CS_MASK)) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); cpl = env->hflags & HF_CPL_MASK; rpl = new_cs & 3; if (rpl < cpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); dpl = (e2 >> DESC_DPL_SHIFT) & 3; if (e2 & DESC_C_MASK) { if (dpl > rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } else { if (dpl != rpl) raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc); } if (!(e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc); sp += addend; if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) || ((env->hflags & HF_CS64_MASK) && !is_iret))) { /* return to same privilege level */ cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); } else { /* return to different privilege level */ #ifdef TARGET_X86_64 if (shift == 2) { POPQ(sp, new_esp); POPQ(sp, new_ss); new_ss &= 0xffff; } else #endif if (shift == 1) { /* 32 bits */ POPL(ssp, sp, sp_mask, new_esp); POPL(ssp, sp, sp_mask, new_ss); new_ss &= 0xffff; } else { /* 16 bits */ POPW(ssp, sp, sp_mask, new_esp); POPW(ssp, sp, sp_mask, new_ss); } LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n", new_ss, new_esp); if ((new_ss & 0xfffc) == 0) { #ifdef TARGET_X86_64 /* NULL ss is allowed in long mode if cpl != 3*/ /* XXX: test CS64 ? */ if ((env->hflags & HF_LMA_MASK) && rpl != 3) { cpu_x86_load_seg_cache(env, R_SS, new_ss, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (rpl << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); ss_e2 = DESC_B_MASK; /* XXX: should not be needed ? */ } else #endif { raise_exception_err(EXCP0D_GPF, 0); } } else { if ((new_ss & 3) != rpl) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (load_segment(&ss_e1, &ss_e2, new_ss) != 0) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (!(ss_e2 & DESC_S_MASK) || (ss_e2 & DESC_CS_MASK) || !(ss_e2 & DESC_W_MASK)) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3; if (dpl != rpl) raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc); if (!(ss_e2 & DESC_P_MASK)) raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc); cpu_x86_load_seg_cache(env, R_SS, new_ss, get_seg_base(ss_e1, ss_e2), get_seg_limit(ss_e1, ss_e2), ss_e2); } cpu_x86_load_seg_cache(env, R_CS, new_cs, get_seg_base(e1, e2), get_seg_limit(e1, e2), e2); cpu_x86_set_cpl(env, rpl); sp = new_esp; #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) sp_mask = -1; else #endif sp_mask = get_sp_mask(ss_e2); /* validate data segments */ validate_seg(R_ES, rpl); validate_seg(R_DS, rpl); validate_seg(R_FS, rpl); validate_seg(R_GS, rpl); sp += addend; } SET_ESP(sp, sp_mask); env->eip = new_eip; if (is_iret) { /* NOTE: 'cpl' is the _old_ CPL */ eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK; if (cpl == 0) eflags_mask |= IOPL_MASK; iopl = (env->eflags >> IOPL_SHIFT) & 3; if (cpl <= iopl) eflags_mask |= IF_MASK; if (shift == 0) eflags_mask &= 0xffff; load_eflags(new_eflags, eflags_mask); } return; return_to_vm86: POPL(ssp, sp, sp_mask, new_esp); POPL(ssp, sp, sp_mask, new_ss); POPL(ssp, sp, sp_mask, new_es); POPL(ssp, sp, sp_mask, new_ds); POPL(ssp, sp, sp_mask, new_fs); POPL(ssp, sp, sp_mask, new_gs); /* modify processor state */ load_eflags(new_eflags, TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK); load_seg_vm(R_CS, new_cs & 0xffff); cpu_x86_set_cpl(env, 3); load_seg_vm(R_SS, new_ss & 0xffff); load_seg_vm(R_ES, new_es & 0xffff); load_seg_vm(R_DS, new_ds & 0xffff); load_seg_vm(R_FS, new_fs & 0xffff); load_seg_vm(R_GS, new_gs & 0xffff); env->eip = new_eip & 0xffff; ESP = new_esp; } void helper_iret_protected(int shift, int next_eip) { int tss_selector, type; uint32_t e1, e2; /* specific case for TSS */ if (env->eflags & NT_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) raise_exception_err(EXCP0D_GPF, 0); #endif tss_selector = lduw_kernel(env->tr.base + 0); if (tss_selector & 4) raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc); if (load_segment(&e1, &e2, tss_selector) != 0) raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc); type = (e2 >> DESC_TYPE_SHIFT) & 0x17; /* NOTE: we check both segment and busy TSS */ if (type != 3) raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc); switch_tss(tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip); } else { helper_ret_protected(shift, 1, 0); } env->hflags2 &= ~HF2_NMI_MASK; } void helper_lret_protected(int shift, int addend) { helper_ret_protected(shift, 0, addend); } void helper_sysenter(void) { if (env->sysenter_cs == 0) { raise_exception_err(EXCP0D_GPF, 0); } env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK); cpu_x86_set_cpl(env, 0); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); } else #endif { cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); } cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); ESP = env->sysenter_esp; EIP = env->sysenter_eip; } void helper_sysexit(int dflag) { int cpl; cpl = env->hflags & HF_CPL_MASK; if (env->sysenter_cs == 0 || cpl != 0) { raise_exception_err(EXCP0D_GPF, 0); } cpu_x86_set_cpl(env, 3); #ifdef TARGET_X86_64 if (dflag == 2) { cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK); cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } else #endif { cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3, 0, 0xffffffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | DESC_W_MASK | DESC_A_MASK); } ESP = ECX; EIP = EDX; } #if defined(CONFIG_USER_ONLY) target_ulong helper_read_crN(int reg) { return 0; } void helper_write_crN(int reg, target_ulong t0) { } void helper_movl_drN_T0(int reg, target_ulong t0) { } #else target_ulong helper_read_crN(int reg) { target_ulong val; helper_svm_check_intercept_param(SVM_EXIT_READ_CR0 + reg, 0); switch(reg) { default: val = env->cr[reg]; break; case 8: if (!(env->hflags2 & HF2_VINTR_MASK)) { val = cpu_get_apic_tpr(env->apic_state); } else { val = env->v_tpr; } break; } return val; } void helper_write_crN(int reg, target_ulong t0) { helper_svm_check_intercept_param(SVM_EXIT_WRITE_CR0 + reg, 0); switch(reg) { case 0: cpu_x86_update_cr0(env, t0); break; case 3: cpu_x86_update_cr3(env, t0); break; case 4: cpu_x86_update_cr4(env, t0); break; case 8: if (!(env->hflags2 & HF2_VINTR_MASK)) { cpu_set_apic_tpr(env->apic_state, t0); } env->v_tpr = t0 & 0x0f; break; default: env->cr[reg] = t0; break; } } void helper_movl_drN_T0(int reg, target_ulong t0) { int i; if (reg < 4) { hw_breakpoint_remove(env, reg); env->dr[reg] = t0; hw_breakpoint_insert(env, reg); } else if (reg == 7) { for (i = 0; i < 4; i++) hw_breakpoint_remove(env, i); env->dr[7] = t0; for (i = 0; i < 4; i++) hw_breakpoint_insert(env, i); } else env->dr[reg] = t0; } #endif void helper_lmsw(target_ulong t0) { /* only 4 lower bits of CR0 are modified. PE cannot be set to zero if already set to one. */ t0 = (env->cr[0] & ~0xe) | (t0 & 0xf); helper_write_crN(0, t0); } void helper_clts(void) { env->cr[0] &= ~CR0_TS_MASK; env->hflags &= ~HF_TS_MASK; } void helper_invlpg(target_ulong addr) { helper_svm_check_intercept_param(SVM_EXIT_INVLPG, 0); tlb_flush_page(env, addr); } void helper_rdtsc(void) { uint64_t val; if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) { raise_exception(EXCP0D_GPF); } helper_svm_check_intercept_param(SVM_EXIT_RDTSC, 0); val = cpu_get_tsc(env) + env->tsc_offset; EAX = (uint32_t)(val); EDX = (uint32_t)(val >> 32); } void helper_rdtscp(void) { helper_rdtsc(); ECX = (uint32_t)(env->tsc_aux); } void helper_rdpmc(void) { if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) { raise_exception(EXCP0D_GPF); } helper_svm_check_intercept_param(SVM_EXIT_RDPMC, 0); /* currently unimplemented */ raise_exception_err(EXCP06_ILLOP, 0); } #if defined(CONFIG_USER_ONLY) void helper_wrmsr(void) { } void helper_rdmsr(void) { } #else void helper_wrmsr(void) { uint64_t val; helper_svm_check_intercept_param(SVM_EXIT_MSR, 1); val = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32); switch((uint32_t)ECX) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = val & 0xffff; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = val; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = val; break; case MSR_IA32_APICBASE: cpu_set_apic_base(env->apic_state, val); break; case MSR_EFER: { uint64_t update_mask; update_mask = 0; if (env->cpuid_ext2_features & CPUID_EXT2_SYSCALL) update_mask |= MSR_EFER_SCE; if (env->cpuid_ext2_features & CPUID_EXT2_LM) update_mask |= MSR_EFER_LME; if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR) update_mask |= MSR_EFER_FFXSR; if (env->cpuid_ext2_features & CPUID_EXT2_NX) update_mask |= MSR_EFER_NXE; if (env->cpuid_ext3_features & CPUID_EXT3_SVM) update_mask |= MSR_EFER_SVME; if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR) update_mask |= MSR_EFER_FFXSR; cpu_load_efer(env, (env->efer & ~update_mask) | (val & update_mask)); } break; case MSR_STAR: env->star = val; break; case MSR_PAT: env->pat = val; break; case MSR_VM_HSAVE_PA: env->vm_hsave = val; break; #ifdef TARGET_X86_64 case MSR_LSTAR: env->lstar = val; break; case MSR_CSTAR: env->cstar = val; break; case MSR_FMASK: env->fmask = val; break; case MSR_FSBASE: env->segs[R_FS].base = val; break; case MSR_GSBASE: env->segs[R_GS].base = val; break; case MSR_KERNELGSBASE: env->kernelgsbase = val; break; #endif case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val; break; case MSR_MTRRfix64K_00000: env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val; break; case MSR_MTRRdefType: env->mtrr_deftype = val; break; case MSR_MCG_STATUS: env->mcg_status = val; break; case MSR_MCG_CTL: if ((env->mcg_cap & MCG_CTL_P) && (val == 0 || val == ~(uint64_t)0)) env->mcg_ctl = val; break; case MSR_TSC_AUX: env->tsc_aux = val; break; default: if ((uint32_t)ECX >= MSR_MC0_CTL && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) { uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL; if ((offset & 0x3) != 0 || (val == 0 || val == ~(uint64_t)0)) env->mce_banks[offset] = val; break; } /* XXX: exception ? */ break; } } void helper_rdmsr(void) { uint64_t val; helper_svm_check_intercept_param(SVM_EXIT_MSR, 0); switch((uint32_t)ECX) { case MSR_IA32_SYSENTER_CS: val = env->sysenter_cs; break; case MSR_IA32_SYSENTER_ESP: val = env->sysenter_esp; break; case MSR_IA32_SYSENTER_EIP: val = env->sysenter_eip; break; case MSR_IA32_APICBASE: val = cpu_get_apic_base(env->apic_state); break; case MSR_EFER: val = env->efer; break; case MSR_STAR: val = env->star; break; case MSR_PAT: val = env->pat; break; case MSR_VM_HSAVE_PA: val = env->vm_hsave; break; case MSR_IA32_PERF_STATUS: /* tsc_increment_by_tick */ val = 1000ULL; /* CPU multiplier */ val |= (((uint64_t)4ULL) << 40); break; #ifdef TARGET_X86_64 case MSR_LSTAR: val = env->lstar; break; case MSR_CSTAR: val = env->cstar; break; case MSR_FMASK: val = env->fmask; break; case MSR_FSBASE: val = env->segs[R_FS].base; break; case MSR_GSBASE: val = env->segs[R_GS].base; break; case MSR_KERNELGSBASE: val = env->kernelgsbase; break; case MSR_TSC_AUX: val = env->tsc_aux; break; #endif case MSR_MTRRphysBase(0): case MSR_MTRRphysBase(1): case MSR_MTRRphysBase(2): case MSR_MTRRphysBase(3): case MSR_MTRRphysBase(4): case MSR_MTRRphysBase(5): case MSR_MTRRphysBase(6): case MSR_MTRRphysBase(7): val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base; break; case MSR_MTRRphysMask(0): case MSR_MTRRphysMask(1): case MSR_MTRRphysMask(2): case MSR_MTRRphysMask(3): case MSR_MTRRphysMask(4): case MSR_MTRRphysMask(5): case MSR_MTRRphysMask(6): case MSR_MTRRphysMask(7): val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask; break; case MSR_MTRRfix64K_00000: val = env->mtrr_fixed[0]; break; case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1]; break; case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3]; break; case MSR_MTRRdefType: val = env->mtrr_deftype; break; case MSR_MTRRcap: if (env->cpuid_features & CPUID_MTRR) val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED; else /* XXX: exception ? */ val = 0; break; case MSR_MCG_CAP: val = env->mcg_cap; break; case MSR_MCG_CTL: if (env->mcg_cap & MCG_CTL_P) val = env->mcg_ctl; else val = 0; break; case MSR_MCG_STATUS: val = env->mcg_status; break; default: if ((uint32_t)ECX >= MSR_MC0_CTL && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) { uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL; val = env->mce_banks[offset]; break; } /* XXX: exception ? */ val = 0; break; } EAX = (uint32_t)(val); EDX = (uint32_t)(val >> 32); } #endif target_ulong helper_lsl(target_ulong selector1) { unsigned int limit; uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl, type; selector = selector1 & 0xffff; eflags = helper_cc_compute_all(CC_OP); if ((selector & 0xfffc) == 0) goto fail; if (load_segment(&e1, &e2, selector) != 0) goto fail; rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) { /* conforming */ } else { if (dpl < cpl || dpl < rpl) goto fail; } } else { type = (e2 >> DESC_TYPE_SHIFT) & 0xf; switch(type) { case 1: case 2: case 3: case 9: case 11: break; default: goto fail; } if (dpl < cpl || dpl < rpl) { fail: CC_SRC = eflags & ~CC_Z; return 0; } } limit = get_seg_limit(e1, e2); CC_SRC = eflags | CC_Z; return limit; } target_ulong helper_lar(target_ulong selector1) { uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl, type; selector = selector1 & 0xffff; eflags = helper_cc_compute_all(CC_OP); if ((selector & 0xfffc) == 0) goto fail; if (load_segment(&e1, &e2, selector) != 0) goto fail; rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_S_MASK) { if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) { /* conforming */ } else { if (dpl < cpl || dpl < rpl) goto fail; } } else { type = (e2 >> DESC_TYPE_SHIFT) & 0xf; switch(type) { case 1: case 2: case 3: case 4: case 5: case 9: case 11: case 12: break; default: goto fail; } if (dpl < cpl || dpl < rpl) { fail: CC_SRC = eflags & ~CC_Z; return 0; } } CC_SRC = eflags | CC_Z; return e2 & 0x00f0ff00; } void helper_verr(target_ulong selector1) { uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl; selector = selector1 & 0xffff; eflags = helper_cc_compute_all(CC_OP); if ((selector & 0xfffc) == 0) goto fail; if (load_segment(&e1, &e2, selector) != 0) goto fail; if (!(e2 & DESC_S_MASK)) goto fail; rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_CS_MASK) { if (!(e2 & DESC_R_MASK)) goto fail; if (!(e2 & DESC_C_MASK)) { if (dpl < cpl || dpl < rpl) goto fail; } } else { if (dpl < cpl || dpl < rpl) { fail: CC_SRC = eflags & ~CC_Z; return; } } CC_SRC = eflags | CC_Z; } void helper_verw(target_ulong selector1) { uint32_t e1, e2, eflags, selector; int rpl, dpl, cpl; selector = selector1 & 0xffff; eflags = helper_cc_compute_all(CC_OP); if ((selector & 0xfffc) == 0) goto fail; if (load_segment(&e1, &e2, selector) != 0) goto fail; if (!(e2 & DESC_S_MASK)) goto fail; rpl = selector & 3; dpl = (e2 >> DESC_DPL_SHIFT) & 3; cpl = env->hflags & HF_CPL_MASK; if (e2 & DESC_CS_MASK) { goto fail; } else { if (dpl < cpl || dpl < rpl) goto fail; if (!(e2 & DESC_W_MASK)) { fail: CC_SRC = eflags & ~CC_Z; return; } } CC_SRC = eflags | CC_Z; } /* x87 FPU helpers */ static void fpu_set_exception(int mask) { env->fpus |= mask; if (env->fpus & (~env->fpuc & FPUC_EM)) env->fpus |= FPUS_SE | FPUS_B; } static inline CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b) { if (b == 0.0) fpu_set_exception(FPUS_ZE); return a / b; } static void fpu_raise_exception(void) { if (env->cr[0] & CR0_NE_MASK) { raise_exception(EXCP10_COPR); } #if !defined(CONFIG_USER_ONLY) else { cpu_set_ferr(env); } #endif } void helper_flds_FT0(uint32_t val) { union { float32 f; uint32_t i; } u; u.i = val; FT0 = float32_to_floatx(u.f, &env->fp_status); } void helper_fldl_FT0(uint64_t val) { union { float64 f; uint64_t i; } u; u.i = val; FT0 = float64_to_floatx(u.f, &env->fp_status); } void helper_fildl_FT0(int32_t val) { FT0 = int32_to_floatx(val, &env->fp_status); } void helper_flds_ST0(uint32_t val) { int new_fpstt; union { float32 f; uint32_t i; } u; new_fpstt = (env->fpstt - 1) & 7; u.i = val; env->fpregs[new_fpstt].d = float32_to_floatx(u.f, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fldl_ST0(uint64_t val) { int new_fpstt; union { float64 f; uint64_t i; } u; new_fpstt = (env->fpstt - 1) & 7; u.i = val; env->fpregs[new_fpstt].d = float64_to_floatx(u.f, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildl_ST0(int32_t val) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = int32_to_floatx(val, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fildll_ST0(int64_t val) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = int64_to_floatx(val, &env->fp_status); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } uint32_t helper_fsts_ST0(void) { union { float32 f; uint32_t i; } u; u.f = floatx_to_float32(ST0, &env->fp_status); return u.i; } uint64_t helper_fstl_ST0(void) { union { float64 f; uint64_t i; } u; u.f = floatx_to_float64(ST0, &env->fp_status); return u.i; } int32_t helper_fist_ST0(void) { int32_t val; val = floatx_to_int32(ST0, &env->fp_status); if (val != (int16_t)val) val = -32768; return val; } int32_t helper_fistl_ST0(void) { int32_t val; val = floatx_to_int32(ST0, &env->fp_status); return val; } int64_t helper_fistll_ST0(void) { int64_t val; val = floatx_to_int64(ST0, &env->fp_status); return val; } int32_t helper_fistt_ST0(void) { int32_t val; val = floatx_to_int32_round_to_zero(ST0, &env->fp_status); if (val != (int16_t)val) val = -32768; return val; } int32_t helper_fisttl_ST0(void) { int32_t val; val = floatx_to_int32_round_to_zero(ST0, &env->fp_status); return val; } int64_t helper_fisttll_ST0(void) { int64_t val; val = floatx_to_int64_round_to_zero(ST0, &env->fp_status); return val; } void helper_fldt_ST0(target_ulong ptr) { int new_fpstt; new_fpstt = (env->fpstt - 1) & 7; env->fpregs[new_fpstt].d = helper_fldt(ptr); env->fpstt = new_fpstt; env->fptags[new_fpstt] = 0; /* validate stack entry */ } void helper_fstt_ST0(target_ulong ptr) { helper_fstt(ST0, ptr); } void helper_fpush(void) { fpush(); } void helper_fpop(void) { fpop(); } void helper_fdecstp(void) { env->fpstt = (env->fpstt - 1) & 7; env->fpus &= (~0x4700); } void helper_fincstp(void) { env->fpstt = (env->fpstt + 1) & 7; env->fpus &= (~0x4700); } /* FPU move */ void helper_ffree_STN(int st_index) { env->fptags[(env->fpstt + st_index) & 7] = 1; } void helper_fmov_ST0_FT0(void) { ST0 = FT0; } void helper_fmov_FT0_STN(int st_index) { FT0 = ST(st_index); } void helper_fmov_ST0_STN(int st_index) { ST0 = ST(st_index); } void helper_fmov_STN_ST0(int st_index) { ST(st_index) = ST0; } void helper_fxchg_ST0_STN(int st_index) { CPU86_LDouble tmp; tmp = ST(st_index); ST(st_index) = ST0; ST0 = tmp; } /* FPU operations */ static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500}; void helper_fcom_ST0_FT0(void) { int ret; ret = floatx_compare(ST0, FT0, &env->fp_status); env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1]; } void helper_fucom_ST0_FT0(void) { int ret; ret = floatx_compare_quiet(ST0, FT0, &env->fp_status); env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1]; } static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; void helper_fcomi_ST0_FT0(void) { int eflags; int ret; ret = floatx_compare(ST0, FT0, &env->fp_status); eflags = helper_cc_compute_all(CC_OP); eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; CC_SRC = eflags; } void helper_fucomi_ST0_FT0(void) { int eflags; int ret; ret = floatx_compare_quiet(ST0, FT0, &env->fp_status); eflags = helper_cc_compute_all(CC_OP); eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1]; CC_SRC = eflags; } void helper_fadd_ST0_FT0(void) { ST0 = floatx_add(ST0, FT0, &env->fp_status); } void helper_fmul_ST0_FT0(void) { ST0 = floatx_mul(ST0, FT0, &env->fp_status); } void helper_fsub_ST0_FT0(void) { ST0 = floatx_sub(ST0, FT0, &env->fp_status); } void helper_fsubr_ST0_FT0(void) { ST0 = floatx_sub(FT0, ST0, &env->fp_status); } void helper_fdiv_ST0_FT0(void) { ST0 = helper_fdiv(ST0, FT0); } void helper_fdivr_ST0_FT0(void) { ST0 = helper_fdiv(FT0, ST0); } /* fp operations between STN and ST0 */ void helper_fadd_STN_ST0(int st_index) { ST(st_index) = floatx_add(ST(st_index), ST0, &env->fp_status); } void helper_fmul_STN_ST0(int st_index) { ST(st_index) = floatx_mul(ST(st_index), ST0, &env->fp_status); } void helper_fsub_STN_ST0(int st_index) { ST(st_index) = floatx_sub(ST(st_index), ST0, &env->fp_status); } void helper_fsubr_STN_ST0(int st_index) { ST(st_index) = floatx_sub(ST0, ST(st_index), &env->fp_status); } void helper_fdiv_STN_ST0(int st_index) { CPU86_LDouble *p; p = &ST(st_index); *p = helper_fdiv(*p, ST0); } void helper_fdivr_STN_ST0(int st_index) { CPU86_LDouble *p; p = &ST(st_index); *p = helper_fdiv(ST0, *p); } /* misc FPU operations */ void helper_fchs_ST0(void) { ST0 = floatx_chs(ST0); } void helper_fabs_ST0(void) { ST0 = floatx_abs(ST0); } void helper_fld1_ST0(void) { ST0 = f15rk[1]; } void helper_fldl2t_ST0(void) { ST0 = f15rk[6]; } void helper_fldl2e_ST0(void) { ST0 = f15rk[5]; } void helper_fldpi_ST0(void) { ST0 = f15rk[2]; } void helper_fldlg2_ST0(void) { ST0 = f15rk[3]; } void helper_fldln2_ST0(void) { ST0 = f15rk[4]; } void helper_fldz_ST0(void) { ST0 = f15rk[0]; } void helper_fldz_FT0(void) { FT0 = f15rk[0]; } uint32_t helper_fnstsw(void) { return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; } uint32_t helper_fnstcw(void) { return env->fpuc; } static void update_fp_status(void) { int rnd_type; /* set rounding mode */ switch(env->fpuc & RC_MASK) { default: case RC_NEAR: rnd_type = float_round_nearest_even; break; case RC_DOWN: rnd_type = float_round_down; break; case RC_UP: rnd_type = float_round_up; break; case RC_CHOP: rnd_type = float_round_to_zero; break; } set_float_rounding_mode(rnd_type, &env->fp_status); #ifdef FLOATX80 switch((env->fpuc >> 8) & 3) { case 0: rnd_type = 32; break; case 2: rnd_type = 64; break; case 3: default: rnd_type = 80; break; } set_floatx80_rounding_precision(rnd_type, &env->fp_status); #endif } void helper_fldcw(uint32_t val) { env->fpuc = val; update_fp_status(); } void helper_fclex(void) { env->fpus &= 0x7f00; } void helper_fwait(void) { if (env->fpus & FPUS_SE) fpu_raise_exception(); } void helper_fninit(void) { env->fpus = 0; env->fpstt = 0; env->fpuc = 0x37f; env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; } /* BCD ops */ void helper_fbld_ST0(target_ulong ptr) { CPU86_LDouble tmp; uint64_t val; unsigned int v; int i; val = 0; for(i = 8; i >= 0; i--) { v = ldub(ptr + i); val = (val * 100) + ((v >> 4) * 10) + (v & 0xf); } tmp = int64_to_floatx(val, &env->fp_status); if (ldub(ptr + 9) & 0x80) { floatx_chs(tmp); } fpush(); ST0 = tmp; } void helper_fbst_ST0(target_ulong ptr) { int v; target_ulong mem_ref, mem_end; int64_t val; val = floatx_to_int64(ST0, &env->fp_status); mem_ref = ptr; mem_end = mem_ref + 9; if (val < 0) { stb(mem_end, 0x80); val = -val; } else { stb(mem_end, 0x00); } while (mem_ref < mem_end) { if (val == 0) break; v = val % 100; val = val / 100; v = ((v / 10) << 4) | (v % 10); stb(mem_ref++, v); } while (mem_ref < mem_end) { stb(mem_ref++, 0); } } void helper_f2xm1(void) { ST0 = pow(2.0,ST0) - 1.0; } void helper_fyl2x(void) { CPU86_LDouble fptemp; fptemp = ST0; if (fptemp>0.0){ fptemp = log(fptemp)/log(2.0); /* log2(ST) */ ST1 *= fptemp; fpop(); } else { env->fpus &= (~0x4700); env->fpus |= 0x400; } } void helper_fptan(void) { CPU86_LDouble fptemp; fptemp = ST0; if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = tan(fptemp); fpush(); ST0 = 1.0; env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**52 only */ } } void helper_fpatan(void) { CPU86_LDouble fptemp, fpsrcop; fpsrcop = ST1; fptemp = ST0; ST1 = atan2(fpsrcop,fptemp); fpop(); } void helper_fxtract(void) { CPU86_LDoubleU temp; temp.d = ST0; if (floatx_is_zero(ST0)) { /* Easy way to generate -inf and raising division by 0 exception */ ST0 = floatx_div(floatx_chs(floatx_one), floatx_zero, &env->fp_status); fpush(); ST0 = temp.d; } else { int expdif; expdif = EXPD(temp) - EXPBIAS; /*DP exponent bias*/ ST0 = int32_to_floatx(expdif, &env->fp_status); fpush(); BIASEXPONENT(temp); ST0 = temp.d; } } void helper_fprem1(void) { CPU86_LDouble dblq, fpsrcop, fptemp; CPU86_LDoubleU fpsrcop1, fptemp1; int expdif; signed long long int q; if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) { ST0 = 0.0 / 0.0; /* NaN */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ return; } fpsrcop = ST0; fptemp = ST1; fpsrcop1.d = fpsrcop; fptemp1.d = fptemp; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if (expdif < 0) { /* optimisation? taken from the AMD docs */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* ST0 is unchanged */ return; } if (expdif < 53) { dblq = fpsrcop / fptemp; /* round dblq towards nearest integer */ dblq = rint(dblq); ST0 = fpsrcop - fptemp * dblq; /* convert dblq to q by truncating towards zero */ if (dblq < 0.0) q = (signed long long int)(-dblq); else q = (signed long long int)dblq; env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C3,C1) <-- (q2,q1,q0) */ env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */ env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */ env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */ } else { env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, expdif - 50); fpsrcop = (ST0 / ST1) / fptemp; /* fpsrcop = integer obtained by chopping */ fpsrcop = (fpsrcop < 0.0) ? -(floor(fabs(fpsrcop))) : floor(fpsrcop); ST0 -= (ST1 * fpsrcop * fptemp); } } void helper_fprem(void) { CPU86_LDouble dblq, fpsrcop, fptemp; CPU86_LDoubleU fpsrcop1, fptemp1; int expdif; signed long long int q; if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) { ST0 = 0.0 / 0.0; /* NaN */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ return; } fpsrcop = (CPU86_LDouble)ST0; fptemp = (CPU86_LDouble)ST1; fpsrcop1.d = fpsrcop; fptemp1.d = fptemp; expdif = EXPD(fpsrcop1) - EXPD(fptemp1); if (expdif < 0) { /* optimisation? taken from the AMD docs */ env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* ST0 is unchanged */ return; } if ( expdif < 53 ) { dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/; /* round dblq towards zero */ dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq); ST0 = fpsrcop/*ST0*/ - fptemp * dblq; /* convert dblq to q by truncating towards zero */ if (dblq < 0.0) q = (signed long long int)(-dblq); else q = (signed long long int)dblq; env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ /* (C0,C3,C1) <-- (q2,q1,q0) */ env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */ env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */ env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */ } else { int N = 32 + (expdif % 32); /* as per AMD docs */ env->fpus |= 0x400; /* C2 <-- 1 */ fptemp = pow(2.0, (double)(expdif - N)); fpsrcop = (ST0 / ST1) / fptemp; /* fpsrcop = integer obtained by chopping */ fpsrcop = (fpsrcop < 0.0) ? -(floor(fabs(fpsrcop))) : floor(fpsrcop); ST0 -= (ST1 * fpsrcop * fptemp); } } void helper_fyl2xp1(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp+1.0)>0.0) { fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */ ST1 *= fptemp; fpop(); } else { env->fpus &= (~0x4700); env->fpus |= 0x400; } } void helper_fsqrt(void) { CPU86_LDouble fptemp; fptemp = ST0; if (fptemp<0.0) { env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ env->fpus |= 0x400; } ST0 = sqrt(fptemp); } void helper_fsincos(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = sin(fptemp); fpush(); ST0 = cos(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**63 only */ } } void helper_frndint(void) { ST0 = floatx_round_to_int(ST0, &env->fp_status); } void helper_fscale(void) { if (floatx_is_any_nan(ST1)) { ST0 = ST1; } else { int n = floatx_to_int32_round_to_zero(ST1, &env->fp_status); ST0 = floatx_scalbn(ST0, n, &env->fp_status); } } void helper_fsin(void) { CPU86_LDouble fptemp; fptemp = ST0; if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = sin(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg| < 2**53 only */ } } void helper_fcos(void) { CPU86_LDouble fptemp; fptemp = ST0; if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) { env->fpus |= 0x400; } else { ST0 = cos(fptemp); env->fpus &= (~0x400); /* C2 <-- 0 */ /* the above code is for |arg5 < 2**63 only */ } } void helper_fxam_ST0(void) { CPU86_LDoubleU temp; int expdif; temp.d = ST0; env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */ if (SIGND(temp)) env->fpus |= 0x200; /* C1 <-- 1 */ /* XXX: test fptags too */ expdif = EXPD(temp); if (expdif == MAXEXPD) { #ifdef USE_X86LDOUBLE if (MANTD(temp) == 0x8000000000000000ULL) #else if (MANTD(temp) == 0) #endif env->fpus |= 0x500 /*Infinity*/; else env->fpus |= 0x100 /*NaN*/; } else if (expdif == 0) { if (MANTD(temp) == 0) env->fpus |= 0x4000 /*Zero*/; else env->fpus |= 0x4400 /*Denormal*/; } else { env->fpus |= 0x400; } } void helper_fstenv(target_ulong ptr, int data32) { int fpus, fptag, exp, i; uint64_t mant; CPU86_LDoubleU tmp; fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; fptag = 0; for (i=7; i>=0; i--) { fptag <<= 2; if (env->fptags[i]) { fptag |= 3; } else { tmp.d = env->fpregs[i].d; exp = EXPD(tmp); mant = MANTD(tmp); if (exp == 0 && mant == 0) { /* zero */ fptag |= 1; } else if (exp == 0 || exp == MAXEXPD #ifdef USE_X86LDOUBLE || (mant & (1LL << 63)) == 0 #endif ) { /* NaNs, infinity, denormal */ fptag |= 2; } } } if (data32) { /* 32 bit */ stl(ptr, env->fpuc); stl(ptr + 4, fpus); stl(ptr + 8, fptag); stl(ptr + 12, 0); /* fpip */ stl(ptr + 16, 0); /* fpcs */ stl(ptr + 20, 0); /* fpoo */ stl(ptr + 24, 0); /* fpos */ } else { /* 16 bit */ stw(ptr, env->fpuc); stw(ptr + 2, fpus); stw(ptr + 4, fptag); stw(ptr + 6, 0); stw(ptr + 8, 0); stw(ptr + 10, 0); stw(ptr + 12, 0); } } void helper_fldenv(target_ulong ptr, int data32) { int i, fpus, fptag; if (data32) { env->fpuc = lduw(ptr); fpus = lduw(ptr + 4); fptag = lduw(ptr + 8); } else { env->fpuc = lduw(ptr); fpus = lduw(ptr + 2); fptag = lduw(ptr + 4); } env->fpstt = (fpus >> 11) & 7; env->fpus = fpus & ~0x3800; for(i = 0;i < 8; i++) { env->fptags[i] = ((fptag & 3) == 3); fptag >>= 2; } } void helper_fsave(target_ulong ptr, int data32) { CPU86_LDouble tmp; int i; helper_fstenv(ptr, data32); ptr += (14 << data32); for(i = 0;i < 8; i++) { tmp = ST(i); helper_fstt(tmp, ptr); ptr += 10; } /* fninit */ env->fpus = 0; env->fpstt = 0; env->fpuc = 0x37f; env->fptags[0] = 1; env->fptags[1] = 1; env->fptags[2] = 1; env->fptags[3] = 1; env->fptags[4] = 1; env->fptags[5] = 1; env->fptags[6] = 1; env->fptags[7] = 1; } void helper_frstor(target_ulong ptr, int data32) { CPU86_LDouble tmp; int i; helper_fldenv(ptr, data32); ptr += (14 << data32); for(i = 0;i < 8; i++) { tmp = helper_fldt(ptr); ST(i) = tmp; ptr += 10; } } void helper_fxsave(target_ulong ptr, int data64) { int fpus, fptag, i, nb_xmm_regs; CPU86_LDouble tmp; target_ulong addr; /* The operand must be 16 byte aligned */ if (ptr & 0xf) { raise_exception(EXCP0D_GPF); } fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11; fptag = 0; for(i = 0; i < 8; i++) { fptag |= (env->fptags[i] << i); } stw(ptr, env->fpuc); stw(ptr + 2, fpus); stw(ptr + 4, fptag ^ 0xff); #ifdef TARGET_X86_64 if (data64) { stq(ptr + 0x08, 0); /* rip */ stq(ptr + 0x10, 0); /* rdp */ } else #endif { stl(ptr + 0x08, 0); /* eip */ stl(ptr + 0x0c, 0); /* sel */ stl(ptr + 0x10, 0); /* dp */ stl(ptr + 0x14, 0); /* sel */ } addr = ptr + 0x20; for(i = 0;i < 8; i++) { tmp = ST(i); helper_fstt(tmp, addr); addr += 16; } if (env->cr[4] & CR4_OSFXSR_MASK) { /* XXX: finish it */ stl(ptr + 0x18, env->mxcsr); /* mxcsr */ stl(ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */ if (env->hflags & HF_CS64_MASK) nb_xmm_regs = 16; else nb_xmm_regs = 8; addr = ptr + 0xa0; /* Fast FXSAVE leaves out the XMM registers */ if (!(env->efer & MSR_EFER_FFXSR) || (env->hflags & HF_CPL_MASK) || !(env->hflags & HF_LMA_MASK)) { for(i = 0; i < nb_xmm_regs; i++) { stq(addr, env->xmm_regs[i].XMM_Q(0)); stq(addr + 8, env->xmm_regs[i].XMM_Q(1)); addr += 16; } } } } void helper_fxrstor(target_ulong ptr, int data64) { int i, fpus, fptag, nb_xmm_regs; CPU86_LDouble tmp; target_ulong addr; /* The operand must be 16 byte aligned */ if (ptr & 0xf) { raise_exception(EXCP0D_GPF); } env->fpuc = lduw(ptr); fpus = lduw(ptr + 2); fptag = lduw(ptr + 4); env->fpstt = (fpus >> 11) & 7; env->fpus = fpus & ~0x3800; fptag ^= 0xff; for(i = 0;i < 8; i++) { env->fptags[i] = ((fptag >> i) & 1); } addr = ptr + 0x20; for(i = 0;i < 8; i++) { tmp = helper_fldt(addr); ST(i) = tmp; addr += 16; } if (env->cr[4] & CR4_OSFXSR_MASK) { /* XXX: finish it */ env->mxcsr = ldl(ptr + 0x18); //ldl(ptr + 0x1c); if (env->hflags & HF_CS64_MASK) nb_xmm_regs = 16; else nb_xmm_regs = 8; addr = ptr + 0xa0; /* Fast FXRESTORE leaves out the XMM registers */ if (!(env->efer & MSR_EFER_FFXSR) || (env->hflags & HF_CPL_MASK) || !(env->hflags & HF_LMA_MASK)) { for(i = 0; i < nb_xmm_regs; i++) { env->xmm_regs[i].XMM_Q(0) = ldq(addr); env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8); addr += 16; } } } } #ifndef USE_X86LDOUBLE void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f) { CPU86_LDoubleU temp; int e; temp.d = f; /* mantissa */ *pmant = (MANTD(temp) << 11) | (1LL << 63); /* exponent + sign */ e = EXPD(temp) - EXPBIAS + 16383; e |= SIGND(temp) >> 16; *pexp = e; } CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper) { CPU86_LDoubleU temp; int e; uint64_t ll; /* XXX: handle overflow ? */ e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */ e |= (upper >> 4) & 0x800; /* sign */ ll = (mant >> 11) & ((1LL << 52) - 1); #ifdef __arm__ temp.l.upper = (e << 20) | (ll >> 32); temp.l.lower = ll; #else temp.ll = ll | ((uint64_t)e << 52); #endif return temp.d; } #else void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f) { CPU86_LDoubleU temp; temp.d = f; *pmant = temp.l.lower; *pexp = temp.l.upper; } CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper) { CPU86_LDoubleU temp; temp.l.upper = upper; temp.l.lower = mant; return temp.d; } #endif #ifdef TARGET_X86_64 //#define DEBUG_MULDIV static void add128(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b) { *plow += a; /* carry test */ if (*plow < a) (*phigh)++; *phigh += b; } static void neg128(uint64_t *plow, uint64_t *phigh) { *plow = ~ *plow; *phigh = ~ *phigh; add128(plow, phigh, 1, 0); } /* return TRUE if overflow */ static int div64(uint64_t *plow, uint64_t *phigh, uint64_t b) { uint64_t q, r, a1, a0; int i, qb, ab; a0 = *plow; a1 = *phigh; if (a1 == 0) { q = a0 / b; r = a0 % b; *plow = q; *phigh = r; } else { if (a1 >= b) return 1; /* XXX: use a better algorithm */ for(i = 0; i < 64; i++) { ab = a1 >> 63; a1 = (a1 << 1) | (a0 >> 63); if (ab || a1 >= b) { a1 -= b; qb = 1; } else { qb = 0; } a0 = (a0 << 1) | qb; } #if defined(DEBUG_MULDIV) printf("div: 0x%016" PRIx64 "%016" PRIx64 " / 0x%016" PRIx64 ": q=0x%016" PRIx64 " r=0x%016" PRIx64 "\n", *phigh, *plow, b, a0, a1); #endif *plow = a0; *phigh = a1; } return 0; } /* return TRUE if overflow */ static int idiv64(uint64_t *plow, uint64_t *phigh, int64_t b) { int sa, sb; sa = ((int64_t)*phigh < 0); if (sa) neg128(plow, phigh); sb = (b < 0); if (sb) b = -b; if (div64(plow, phigh, b) != 0) return 1; if (sa ^ sb) { if (*plow > (1ULL << 63)) return 1; *plow = - *plow; } else { if (*plow >= (1ULL << 63)) return 1; } if (sa) *phigh = - *phigh; return 0; } void helper_mulq_EAX_T0(target_ulong t0) { uint64_t r0, r1; mulu64(&r0, &r1, EAX, t0); EAX = r0; EDX = r1; CC_DST = r0; CC_SRC = r1; } void helper_imulq_EAX_T0(target_ulong t0) { uint64_t r0, r1; muls64(&r0, &r1, EAX, t0); EAX = r0; EDX = r1; CC_DST = r0; CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63)); } target_ulong helper_imulq_T0_T1(target_ulong t0, target_ulong t1) { uint64_t r0, r1; muls64(&r0, &r1, t0, t1); CC_DST = r0; CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63)); return r0; } void helper_divq_EAX(target_ulong t0) { uint64_t r0, r1; if (t0 == 0) { raise_exception(EXCP00_DIVZ); } r0 = EAX; r1 = EDX; if (div64(&r0, &r1, t0)) raise_exception(EXCP00_DIVZ); EAX = r0; EDX = r1; } void helper_idivq_EAX(target_ulong t0) { uint64_t r0, r1; if (t0 == 0) { raise_exception(EXCP00_DIVZ); } r0 = EAX; r1 = EDX; if (idiv64(&r0, &r1, t0)) raise_exception(EXCP00_DIVZ); EAX = r0; EDX = r1; } #endif static void do_hlt(void) { env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */ env->halted = 1; env->exception_index = EXCP_HLT; cpu_loop_exit(); } void helper_hlt(int next_eip_addend) { helper_svm_check_intercept_param(SVM_EXIT_HLT, 0); EIP += next_eip_addend; do_hlt(); } void helper_monitor(target_ulong ptr) { if ((uint32_t)ECX != 0) raise_exception(EXCP0D_GPF); /* XXX: store address ? */ helper_svm_check_intercept_param(SVM_EXIT_MONITOR, 0); } void helper_mwait(int next_eip_addend) { if ((uint32_t)ECX != 0) raise_exception(EXCP0D_GPF); helper_svm_check_intercept_param(SVM_EXIT_MWAIT, 0); EIP += next_eip_addend; /* XXX: not complete but not completely erroneous */ if (env->cpu_index != 0 || env->next_cpu != NULL) { /* more than one CPU: do not sleep because another CPU may wake this one */ } else { do_hlt(); } } void helper_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void helper_reset_rf(void) { env->eflags &= ~RF_MASK; } void helper_raise_interrupt(int intno, int next_eip_addend) { raise_interrupt(intno, 1, 0, next_eip_addend); } void helper_raise_exception(int exception_index) { raise_exception(exception_index); } void helper_cli(void) { env->eflags &= ~IF_MASK; } void helper_sti(void) { env->eflags |= IF_MASK; } #if 0 /* vm86plus instructions */ void helper_cli_vm(void) { env->eflags &= ~VIF_MASK; } void helper_sti_vm(void) { env->eflags |= VIF_MASK; if (env->eflags & VIP_MASK) { raise_exception(EXCP0D_GPF); } } #endif void helper_set_inhibit_irq(void) { env->hflags |= HF_INHIBIT_IRQ_MASK; } void helper_reset_inhibit_irq(void) { env->hflags &= ~HF_INHIBIT_IRQ_MASK; } void helper_boundw(target_ulong a0, int v) { int low, high; low = ldsw(a0); high = ldsw(a0 + 2); v = (int16_t)v; if (v < low || v > high) { raise_exception(EXCP05_BOUND); } } void helper_boundl(target_ulong a0, int v) { int low, high; low = ldl(a0); high = ldl(a0 + 4); if (v < low || v > high) { raise_exception(EXCP05_BOUND); } } static float approx_rsqrt(float a) { return 1.0 / sqrt(a); } static float approx_rcp(float a) { return 1.0 / a; } #if !defined(CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" #endif #if !defined(CONFIG_USER_ONLY) /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; int ret; unsigned long pc; CPUX86State *saved_env; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (ret) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc); } } raise_exception_err(env->exception_index, env->error_code); } env = saved_env; } #endif /* Secure Virtual Machine helpers */ #if defined(CONFIG_USER_ONLY) void helper_vmrun(int aflag, int next_eip_addend) { } void helper_vmmcall(void) { } void helper_vmload(int aflag) { } void helper_vmsave(int aflag) { } void helper_stgi(void) { } void helper_clgi(void) { } void helper_skinit(void) { } void helper_invlpga(int aflag) { } void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1) { } void helper_svm_check_intercept_param(uint32_t type, uint64_t param) { } void helper_svm_check_io(uint32_t port, uint32_t param, uint32_t next_eip_addend) { } #else static inline void svm_save_seg(target_phys_addr_t addr, const SegmentCache *sc) { stw_phys(addr + offsetof(struct vmcb_seg, selector), sc->selector); stq_phys(addr + offsetof(struct vmcb_seg, base), sc->base); stl_phys(addr + offsetof(struct vmcb_seg, limit), sc->limit); stw_phys(addr + offsetof(struct vmcb_seg, attrib), ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00)); } static inline void svm_load_seg(target_phys_addr_t addr, SegmentCache *sc) { unsigned int flags; sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector)); sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base)); sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit)); flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib)); sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); } static inline void svm_load_seg_cache(target_phys_addr_t addr, CPUState *env, int seg_reg) { SegmentCache sc1, *sc = &sc1; svm_load_seg(addr, sc); cpu_x86_load_seg_cache(env, seg_reg, sc->selector, sc->base, sc->limit, sc->flags); } void helper_vmrun(int aflag, int next_eip_addend) { target_ulong addr; uint32_t event_inj; uint32_t int_ctl; helper_svm_check_intercept_param(SVM_EXIT_VMRUN, 0); if (aflag == 2) addr = EAX; else addr = (uint32_t)EAX; qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); env->vm_vmcb = addr; /* save the current CPU state in the hsave page */ stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base); stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags()); svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip), EIP + next_eip_addend); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP); stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX); /* load the interception bitmaps so we do not need to access the vmcb in svm mode */ env->intercept = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept)); env->intercept_cr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read)); env->intercept_cr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write)); env->intercept_dr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read)); env->intercept_dr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write)); env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions)); /* enable intercepts */ env->hflags |= HF_SVMI_MASK; env->tsc_offset = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset)); env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit)); /* clear exit_info_2 so we behave like the real hardware */ stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0))); cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3))); env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2)); int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); if (int_ctl & V_INTR_MASKING_MASK) { env->v_tpr = int_ctl & V_TPR_MASK; env->hflags2 |= HF2_VINTR_MASK; if (env->eflags & IF_MASK) env->hflags2 |= HF2_HIF_MASK; } cpu_load_efer(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer))); env->eflags = 0; load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); CC_OP = CC_OP_EFLAGS; svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.es), env, R_ES); svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.cs), env, R_CS); svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ss), env, R_SS); svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ds), env, R_DS); EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip)); env->eip = EIP; ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp)); EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax)); env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7)); env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6)); cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl))); /* FIXME: guest state consistency checks */ switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { case TLB_CONTROL_DO_NOTHING: break; case TLB_CONTROL_FLUSH_ALL_ASID: /* FIXME: this is not 100% correct but should work for now */ tlb_flush(env, 1); break; } env->hflags2 |= HF2_GIF_MASK; if (int_ctl & V_IRQ_MASK) { env->interrupt_request |= CPU_INTERRUPT_VIRQ; } /* maybe we need to inject an event */ event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)); if (event_inj & SVM_EVTINJ_VALID) { uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)); qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); /* FIXME: need to implement valid_err */ switch (event_inj & SVM_EVTINJ_TYPE_MASK) { case SVM_EVTINJ_TYPE_INTR: env->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); /* XXX: is it always correct ? */ do_interrupt(vector, 0, 0, 0, 1); break; case SVM_EVTINJ_TYPE_NMI: env->exception_index = EXCP02_NMI; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = EIP; qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); cpu_loop_exit(); break; case SVM_EVTINJ_TYPE_EXEPT: env->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 0; env->exception_next_eip = -1; qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); cpu_loop_exit(); break; case SVM_EVTINJ_TYPE_SOFT: env->exception_index = vector; env->error_code = event_inj_err; env->exception_is_int = 1; env->exception_next_eip = EIP; qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); cpu_loop_exit(); break; } qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index, env->error_code); } } void helper_vmmcall(void) { helper_svm_check_intercept_param(SVM_EXIT_VMMCALL, 0); raise_exception(EXCP06_ILLOP); } void helper_vmload(int aflag) { target_ulong addr; helper_svm_check_intercept_param(SVM_EXIT_VMLOAD, 0); if (aflag == 2) addr = EAX; else addr = (uint32_t)EAX; qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)), env->segs[R_FS].base); svm_load_seg_cache(addr + offsetof(struct vmcb, save.fs), env, R_FS); svm_load_seg_cache(addr + offsetof(struct vmcb, save.gs), env, R_GS); svm_load_seg(addr + offsetof(struct vmcb, save.tr), &env->tr); svm_load_seg(addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 env->kernelgsbase = ldq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base)); env->lstar = ldq_phys(addr + offsetof(struct vmcb, save.lstar)); env->cstar = ldq_phys(addr + offsetof(struct vmcb, save.cstar)); env->fmask = ldq_phys(addr + offsetof(struct vmcb, save.sfmask)); #endif env->star = ldq_phys(addr + offsetof(struct vmcb, save.star)); env->sysenter_cs = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_cs)); env->sysenter_esp = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_esp)); env->sysenter_eip = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_eip)); } void helper_vmsave(int aflag) { target_ulong addr; helper_svm_check_intercept_param(SVM_EXIT_VMSAVE, 0); if (aflag == 2) addr = EAX; else addr = (uint32_t)EAX; qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n", addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)), env->segs[R_FS].base); svm_save_seg(addr + offsetof(struct vmcb, save.fs), &env->segs[R_FS]); svm_save_seg(addr + offsetof(struct vmcb, save.gs), &env->segs[R_GS]); svm_save_seg(addr + offsetof(struct vmcb, save.tr), &env->tr); svm_save_seg(addr + offsetof(struct vmcb, save.ldtr), &env->ldt); #ifdef TARGET_X86_64 stq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase); stq_phys(addr + offsetof(struct vmcb, save.lstar), env->lstar); stq_phys(addr + offsetof(struct vmcb, save.cstar), env->cstar); stq_phys(addr + offsetof(struct vmcb, save.sfmask), env->fmask); #endif stq_phys(addr + offsetof(struct vmcb, save.star), env->star); stq_phys(addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs); stq_phys(addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp); stq_phys(addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip); } void helper_stgi(void) { helper_svm_check_intercept_param(SVM_EXIT_STGI, 0); env->hflags2 |= HF2_GIF_MASK; } void helper_clgi(void) { helper_svm_check_intercept_param(SVM_EXIT_CLGI, 0); env->hflags2 &= ~HF2_GIF_MASK; } void helper_skinit(void) { helper_svm_check_intercept_param(SVM_EXIT_SKINIT, 0); /* XXX: not implemented */ raise_exception(EXCP06_ILLOP); } void helper_invlpga(int aflag) { target_ulong addr; helper_svm_check_intercept_param(SVM_EXIT_INVLPGA, 0); if (aflag == 2) addr = EAX; else addr = (uint32_t)EAX; /* XXX: could use the ASID to see if it is needed to do the flush */ tlb_flush_page(env, addr); } void helper_svm_check_intercept_param(uint32_t type, uint64_t param) { if (likely(!(env->hflags & HF_SVMI_MASK))) return; switch(type) { case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8: if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { helper_vmexit(type, param); } break; case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8: if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { helper_vmexit(type, param); } break; case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7: if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { helper_vmexit(type, param); } break; case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7: if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { helper_vmexit(type, param); } break; case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31: if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { helper_vmexit(type, param); } break; case SVM_EXIT_MSR: if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa)); uint32_t t0, t1; switch((uint32_t)ECX) { case 0 ... 0x1fff: t0 = (ECX * 2) % 8; t1 = (ECX * 2) / 8; break; case 0xc0000000 ... 0xc0001fff: t0 = (8192 + ECX - 0xc0000000) * 2; t1 = (t0 / 8); t0 %= 8; break; case 0xc0010000 ... 0xc0011fff: t0 = (16384 + ECX - 0xc0010000) * 2; t1 = (t0 / 8); t0 %= 8; break; default: helper_vmexit(type, param); t0 = 0; t1 = 0; break; } if (ldub_phys(addr + t1) & ((1 << param) << t0)) helper_vmexit(type, param); } break; default: if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { helper_vmexit(type, param); } break; } } void helper_svm_check_io(uint32_t port, uint32_t param, uint32_t next_eip_addend) { if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { /* FIXME: this should be read in at vmrun (faster this way?) */ uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa)); uint16_t mask = (1 << ((param >> 4) & 7)) - 1; if(lduw_phys(addr + port / 8) & (mask << (port & 7))) { /* next EIP */ stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), env->eip + next_eip_addend); helper_vmexit(SVM_EXIT_IOIO, param | (port << 16)); } } } /* Note: currently only 32 bits of exit_code are used */ void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1) { uint32_t int_ctl; qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n", exit_code, exit_info_1, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)), EIP); if(env->hflags & HF_INHIBIT_IRQ_MASK) { stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK); env->hflags &= ~HF_INHIBIT_IRQ_MASK; } else { stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); } /* Save the VM state in the vmcb */ svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.es), &env->segs[R_ES]); svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.cs), &env->segs[R_CS]); svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ss), &env->segs[R_SS]); svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ds), &env->segs[R_DS]); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base); stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base); stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK); int_ctl |= env->v_tpr & V_TPR_MASK; if (env->interrupt_request & CPU_INTERRUPT_VIRQ) int_ctl |= V_IRQ_MASK; stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags), compute_eflags()); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp), ESP); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax), EAX); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); stb_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK); /* Reload the host state from vm_hsave */ env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); env->hflags &= ~HF_SVMI_MASK; env->intercept = 0; env->intercept_exceptions = 0; env->interrupt_request &= ~CPU_INTERRUPT_VIRQ; env->tsc_offset = 0; env->gdt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base)); env->gdt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit)); env->idt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base)); env->idt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit)); cpu_x86_update_cr0(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK); cpu_x86_update_cr4(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4))); cpu_x86_update_cr3(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3))); /* we need to set the efer after the crs so the hidden flags get set properly */ cpu_load_efer(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer))); env->eflags = 0; load_eflags(ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags)), ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); CC_OP = CC_OP_EFLAGS; svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.es), env, R_ES); svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.cs), env, R_CS); svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ss), env, R_SS); svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ds), env, R_DS); EIP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip)); ESP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp)); EAX = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax)); env->dr[6] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6)); env->dr[7] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7)); /* other setups */ cpu_x86_set_cpl(env, 0); stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code); stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1); stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj))); stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err))); stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); env->hflags2 &= ~HF2_GIF_MASK; /* FIXME: Resets the current ASID register to zero (host ASID). */ /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ /* Clears the TSC_OFFSET inside the processor. */ /* If the host is in PAE mode, the processor reloads the host's PDPEs from the page table indicated the host's CR3. If the PDPEs contain illegal state, the processor causes a shutdown. */ /* Forces CR0.PE = 1, RFLAGS.VM = 0. */ env->cr[0] |= CR0_PE_MASK; env->eflags &= ~VM_MASK; /* Disables all breakpoints in the host DR7 register. */ /* Checks the reloaded host state for consistency. */ /* If the host's rIP reloaded by #VMEXIT is outside the limit of the host's code segment or non-canonical (in the case of long mode), a #GP fault is delivered inside the host.) */ /* remove any pending exception */ env->exception_index = -1; env->error_code = 0; env->old_exception = -1; cpu_loop_exit(); } #endif /* MMX/SSE */ /* XXX: optimize by storing fptt and fptags in the static cpu state */ void helper_enter_mmx(void) { env->fpstt = 0; *(uint32_t *)(env->fptags) = 0; *(uint32_t *)(env->fptags + 4) = 0; } void helper_emms(void) { /* set to empty state */ *(uint32_t *)(env->fptags) = 0x01010101; *(uint32_t *)(env->fptags + 4) = 0x01010101; } /* XXX: suppress */ void helper_movq(void *d, void *s) { *(uint64_t *)d = *(uint64_t *)s; } #define SHIFT 0 #include "ops_sse.h" #define SHIFT 1 #include "ops_sse.h" #define SHIFT 0 #include "helper_template.h" #undef SHIFT #define SHIFT 1 #include "helper_template.h" #undef SHIFT #define SHIFT 2 #include "helper_template.h" #undef SHIFT #ifdef TARGET_X86_64 #define SHIFT 3 #include "helper_template.h" #undef SHIFT #endif /* bit operations */ target_ulong helper_bsf(target_ulong t0) { int count; target_ulong res; res = t0; count = 0; while ((res & 1) == 0) { count++; res >>= 1; } return count; } target_ulong helper_lzcnt(target_ulong t0, int wordsize) { int count; target_ulong res, mask; if (wordsize > 0 && t0 == 0) { return wordsize; } res = t0; count = TARGET_LONG_BITS - 1; mask = (target_ulong)1 << (TARGET_LONG_BITS - 1); while ((res & mask) == 0) { count--; res <<= 1; } if (wordsize > 0) { return wordsize - 1 - count; } return count; } target_ulong helper_bsr(target_ulong t0) { return helper_lzcnt(t0, 0); } static int compute_all_eflags(void) { return CC_SRC; } static int compute_c_eflags(void) { return CC_SRC & CC_C; } uint32_t helper_cc_compute_all(int op) { switch (op) { default: /* should never happen */ return 0; case CC_OP_EFLAGS: return compute_all_eflags(); case CC_OP_MULB: return compute_all_mulb(); case CC_OP_MULW: return compute_all_mulw(); case CC_OP_MULL: return compute_all_mull(); case CC_OP_ADDB: return compute_all_addb(); case CC_OP_ADDW: return compute_all_addw(); case CC_OP_ADDL: return compute_all_addl(); case CC_OP_ADCB: return compute_all_adcb(); case CC_OP_ADCW: return compute_all_adcw(); case CC_OP_ADCL: return compute_all_adcl(); case CC_OP_SUBB: return compute_all_subb(); case CC_OP_SUBW: return compute_all_subw(); case CC_OP_SUBL: return compute_all_subl(); case CC_OP_SBBB: return compute_all_sbbb(); case CC_OP_SBBW: return compute_all_sbbw(); case CC_OP_SBBL: return compute_all_sbbl(); case CC_OP_LOGICB: return compute_all_logicb(); case CC_OP_LOGICW: return compute_all_logicw(); case CC_OP_LOGICL: return compute_all_logicl(); case CC_OP_INCB: return compute_all_incb(); case CC_OP_INCW: return compute_all_incw(); case CC_OP_INCL: return compute_all_incl(); case CC_OP_DECB: return compute_all_decb(); case CC_OP_DECW: return compute_all_decw(); case CC_OP_DECL: return compute_all_decl(); case CC_OP_SHLB: return compute_all_shlb(); case CC_OP_SHLW: return compute_all_shlw(); case CC_OP_SHLL: return compute_all_shll(); case CC_OP_SARB: return compute_all_sarb(); case CC_OP_SARW: return compute_all_sarw(); case CC_OP_SARL: return compute_all_sarl(); #ifdef TARGET_X86_64 case CC_OP_MULQ: return compute_all_mulq(); case CC_OP_ADDQ: return compute_all_addq(); case CC_OP_ADCQ: return compute_all_adcq(); case CC_OP_SUBQ: return compute_all_subq(); case CC_OP_SBBQ: return compute_all_sbbq(); case CC_OP_LOGICQ: return compute_all_logicq(); case CC_OP_INCQ: return compute_all_incq(); case CC_OP_DECQ: return compute_all_decq(); case CC_OP_SHLQ: return compute_all_shlq(); case CC_OP_SARQ: return compute_all_sarq(); #endif } } uint32_t helper_cc_compute_c(int op) { switch (op) { default: /* should never happen */ return 0; case CC_OP_EFLAGS: return compute_c_eflags(); case CC_OP_MULB: return compute_c_mull(); case CC_OP_MULW: return compute_c_mull(); case CC_OP_MULL: return compute_c_mull(); case CC_OP_ADDB: return compute_c_addb(); case CC_OP_ADDW: return compute_c_addw(); case CC_OP_ADDL: return compute_c_addl(); case CC_OP_ADCB: return compute_c_adcb(); case CC_OP_ADCW: return compute_c_adcw(); case CC_OP_ADCL: return compute_c_adcl(); case CC_OP_SUBB: return compute_c_subb(); case CC_OP_SUBW: return compute_c_subw(); case CC_OP_SUBL: return compute_c_subl(); case CC_OP_SBBB: return compute_c_sbbb(); case CC_OP_SBBW: return compute_c_sbbw(); case CC_OP_SBBL: return compute_c_sbbl(); case CC_OP_LOGICB: return compute_c_logicb(); case CC_OP_LOGICW: return compute_c_logicw(); case CC_OP_LOGICL: return compute_c_logicl(); case CC_OP_INCB: return compute_c_incl(); case CC_OP_INCW: return compute_c_incl(); case CC_OP_INCL: return compute_c_incl(); case CC_OP_DECB: return compute_c_incl(); case CC_OP_DECW: return compute_c_incl(); case CC_OP_DECL: return compute_c_incl(); case CC_OP_SHLB: return compute_c_shlb(); case CC_OP_SHLW: return compute_c_shlw(); case CC_OP_SHLL: return compute_c_shll(); case CC_OP_SARB: return compute_c_sarl(); case CC_OP_SARW: return compute_c_sarl(); case CC_OP_SARL: return compute_c_sarl(); #ifdef TARGET_X86_64 case CC_OP_MULQ: return compute_c_mull(); case CC_OP_ADDQ: return compute_c_addq(); case CC_OP_ADCQ: return compute_c_adcq(); case CC_OP_SUBQ: return compute_c_subq(); case CC_OP_SBBQ: return compute_c_sbbq(); case CC_OP_LOGICQ: return compute_c_logicq(); case CC_OP_INCQ: return compute_c_incl(); case CC_OP_DECQ: return compute_c_incl(); case CC_OP_SHLQ: return compute_c_shlq(); case CC_OP_SARQ: return compute_c_sarl(); #endif } }