/* * QEMU KVM support * * Copyright (C) 2006-2008 Qumranet Technologies * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include #include #include #include #include #include "qemu-common.h" #include "sysemu.h" #include "kvm.h" #include "cpu.h" #include "gdbstub.h" #include "host-utils.h" #include "hw/pc.h" #include "hw/apic.h" #include "ioport.h" #include "kvm_x86.h" #ifdef CONFIG_KVM_PARA #include #endif // //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define MSR_KVM_WALL_CLOCK 0x11 #define MSR_KVM_SYSTEM_TIME 0x12 #ifndef BUS_MCEERR_AR #define BUS_MCEERR_AR 4 #endif #ifndef BUS_MCEERR_AO #define BUS_MCEERR_AO 5 #endif static int lm_capable_kernel; #ifdef KVM_CAP_EXT_CPUID static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) { struct kvm_cpuid2 *cpuid; int r, size; size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size); cpuid->nent = max; r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); if (r == 0 && cpuid->nent >= max) { r = -E2BIG; } if (r < 0) { if (r == -E2BIG) { qemu_free(cpuid); return NULL; } else { fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", strerror(-r)); exit(1); } } return cpuid; } uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, uint32_t index, int reg) { struct kvm_cpuid2 *cpuid; int i, max; uint32_t ret = 0; uint32_t cpuid_1_edx; if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) { return -1U; } max = 1; while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { max *= 2; } for (i = 0; i < cpuid->nent; ++i) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { switch (reg) { case R_EAX: ret = cpuid->entries[i].eax; break; case R_EBX: ret = cpuid->entries[i].ebx; break; case R_ECX: ret = cpuid->entries[i].ecx; break; case R_EDX: ret = cpuid->entries[i].edx; switch (function) { case 1: /* KVM before 2.6.30 misreports the following features */ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; break; case 0x80000001: /* On Intel, kvm returns cpuid according to the Intel spec, * so add missing bits according to the AMD spec: */ cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); ret |= cpuid_1_edx & 0x183f7ff; break; } break; } } } qemu_free(cpuid); return ret; } #else uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, uint32_t index, int reg) { return -1U; } #endif #ifdef CONFIG_KVM_PARA struct kvm_para_features { int cap; int feature; } para_features[] = { #ifdef KVM_CAP_CLOCKSOURCE { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, #endif #ifdef KVM_CAP_NOP_IO_DELAY { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, #endif #ifdef KVM_CAP_PV_MMU { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, #endif #ifdef KVM_CAP_ASYNC_PF { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, #endif { -1, -1 } }; static int get_para_features(CPUState *env) { int i, features = 0; for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { if (kvm_check_extension(env->kvm_state, para_features[i].cap)) features |= (1 << para_features[i].feature); } return features; } #endif #ifdef KVM_CAP_MCE static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, int *max_banks) { int r; r = kvm_check_extension(s, KVM_CAP_MCE); if (r > 0) { *max_banks = r; return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); } return -ENOSYS; } static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap) { return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap); } static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m) { return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m); } static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n) { struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs); int r; kmsrs->nmsrs = n; memcpy(kmsrs->entries, msrs, n * sizeof *msrs); r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs); memcpy(msrs, kmsrs->entries, n * sizeof *msrs); free(kmsrs); return r; } /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */ static int kvm_mce_in_exception(CPUState *env) { struct kvm_msr_entry msr_mcg_status = { .index = MSR_MCG_STATUS, }; int r; r = kvm_get_msr(env, &msr_mcg_status, 1); if (r == -1 || r == 0) { return -1; } return !!(msr_mcg_status.data & MCG_STATUS_MCIP); } struct kvm_x86_mce_data { CPUState *env; struct kvm_x86_mce *mce; int abort_on_error; }; static void kvm_do_inject_x86_mce(void *_data) { struct kvm_x86_mce_data *data = _data; int r; /* If there is an MCE exception being processed, ignore this SRAO MCE */ if ((data->env->mcg_cap & MCG_SER_P) && !(data->mce->status & MCI_STATUS_AR)) { r = kvm_mce_in_exception(data->env); if (r == -1) { fprintf(stderr, "Failed to get MCE status\n"); } else if (r) { return; } } r = kvm_set_mce(data->env, data->mce); if (r < 0) { perror("kvm_set_mce FAILED"); if (data->abort_on_error) { abort(); } } } static void kvm_mce_broadcast_rest(CPUState *env); #endif void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc, int flag) { #ifdef KVM_CAP_MCE struct kvm_x86_mce mce = { .bank = bank, .status = status, .mcg_status = mcg_status, .addr = addr, .misc = misc, }; struct kvm_x86_mce_data data = { .env = cenv, .mce = &mce, }; if (!cenv->mcg_cap) { fprintf(stderr, "MCE support is not enabled!\n"); return; } if (flag & MCE_BROADCAST) { kvm_mce_broadcast_rest(cenv); } run_on_cpu(cenv, kvm_do_inject_x86_mce, &data); #else if (flag & ABORT_ON_ERROR) { abort(); } #endif } int kvm_arch_init_vcpu(CPUState *env) { struct { struct kvm_cpuid2 cpuid; struct kvm_cpuid_entry2 entries[100]; } __attribute__((packed)) cpuid_data; uint32_t limit, i, j, cpuid_i; uint32_t unused; struct kvm_cpuid_entry2 *c; #ifdef KVM_CPUID_SIGNATURE uint32_t signature[3]; #endif env->mp_state = KVM_MP_STATE_RUNNABLE; env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX); i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX); env->cpuid_ext_features |= i; env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, 0, R_EDX); env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001, 0, R_ECX); env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A, 0, R_EDX); cpuid_i = 0; #ifdef CONFIG_KVM_PARA /* Paravirtualization CPUIDs */ memcpy(signature, "KVMKVMKVM\0\0\0", 12); c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = KVM_CPUID_SIGNATURE; c->eax = 0; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_data.entries[cpuid_i++]; memset(c, 0, sizeof(*c)); c->function = KVM_CPUID_FEATURES; c->eax = env->cpuid_kvm_features & get_para_features(env); #endif cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); for (i = 0; i <= limit; i++) { c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 2: { /* Keep reading function 2 till all the input is received */ int times; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | KVM_CPUID_FLAG_STATE_READ_NEXT; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); times = c->eax & 0xff; for (j = 1; j < times; ++j) { c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } break; } case 4: case 0xb: case 0xd: for (j = 0; ; j++) { c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); if (i == 4 && c->eax == 0) break; if (i == 0xb && !(c->ecx & 0xff00)) break; if (i == 0xd && c->eax == 0) break; c = &cpuid_data.entries[cpuid_i++]; } break; default: c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); break; } } cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); for (i = 0x80000000; i <= limit; i++) { c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } cpuid_data.cpuid.nent = cpuid_i; #ifdef KVM_CAP_MCE if (((env->cpuid_version >> 8)&0xF) >= 6 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA) && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) { uint64_t mcg_cap; int banks; if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) perror("kvm_get_mce_cap_supported FAILED"); else { if (banks > MCE_BANKS_DEF) banks = MCE_BANKS_DEF; mcg_cap &= MCE_CAP_DEF; mcg_cap |= banks; if (kvm_setup_mce(env, &mcg_cap)) perror("kvm_setup_mce FAILED"); else env->mcg_cap = mcg_cap; } } #endif return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data); } void kvm_arch_reset_vcpu(CPUState *env) { env->exception_injected = -1; env->interrupt_injected = -1; env->nmi_injected = 0; env->nmi_pending = 0; if (kvm_irqchip_in_kernel()) { env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE : KVM_MP_STATE_UNINITIALIZED; } else { env->mp_state = KVM_MP_STATE_RUNNABLE; } } int has_msr_star; int has_msr_hsave_pa; static void kvm_supported_msrs(CPUState *env) { static int kvm_supported_msrs; int ret; /* first time */ if (kvm_supported_msrs == 0) { struct kvm_msr_list msr_list, *kvm_msr_list; kvm_supported_msrs = -1; /* Obtain MSR list from KVM. These are the MSRs that we must * save/restore */ msr_list.nmsrs = 0; ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); if (ret < 0 && ret != -E2BIG) { return; } /* Old kernel modules had a bug and could write beyond the provided memory. Allocate at least a safe amount of 1K. */ kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))); kvm_msr_list->nmsrs = msr_list.nmsrs; ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); if (ret >= 0) { int i; for (i = 0; i < kvm_msr_list->nmsrs; i++) { if (kvm_msr_list->indices[i] == MSR_STAR) { has_msr_star = 1; continue; } if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { has_msr_hsave_pa = 1; continue; } } } free(kvm_msr_list); } return; } static int kvm_has_msr_hsave_pa(CPUState *env) { kvm_supported_msrs(env); return has_msr_hsave_pa; } static int kvm_has_msr_star(CPUState *env) { kvm_supported_msrs(env); return has_msr_star; } static int kvm_init_identity_map_page(KVMState *s) { #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR int ret; uint64_t addr = 0xfffbc000; if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { return 0; } ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr); if (ret < 0) { fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret)); return ret; } #endif return 0; } int kvm_arch_init(KVMState *s, int smp_cpus) { int ret; struct utsname utsname; uname(&utsname); lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code * directly. In order to use vm86 mode, a TSS is needed. Since this * must be part of guest physical memory, we need to allocate it. Older * versions of KVM just assumed that it would be at the end of physical * memory but that doesn't work with more than 4GB of memory. We simply * refuse to work with those older versions of KVM. */ ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR); if (ret <= 0) { fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n"); return ret; } /* this address is 3 pages before the bios, and the bios should present * as unavaible memory. FIXME, need to ensure the e820 map deals with * this? */ /* * Tell fw_cfg to notify the BIOS to reserve the range. */ if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { perror("e820_add_entry() table is full"); exit(1); } ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); if (ret < 0) { return ret; } return kvm_init_identity_map_page(s); } static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = 3; lhs->present = 1; lhs->dpl = 3; lhs->db = 0; lhs->s = 1; lhs->l = 0; lhs->g = 0; lhs->avl = 0; lhs->unusable = 0; } static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { unsigned flags = rhs->flags; lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; lhs->present = (flags & DESC_P_MASK) != 0; lhs->dpl = rhs->selector & 3; lhs->db = (flags >> DESC_B_SHIFT) & 1; lhs->s = (flags & DESC_S_MASK) != 0; lhs->l = (flags >> DESC_L_SHIFT) & 1; lhs->g = (flags & DESC_G_MASK) != 0; lhs->avl = (flags & DESC_AVL_MASK) != 0; lhs->unusable = 0; } static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | (rhs->present * DESC_P_MASK) | (rhs->dpl << DESC_DPL_SHIFT) | (rhs->db << DESC_B_SHIFT) | (rhs->s * DESC_S_MASK) | (rhs->l << DESC_L_SHIFT) | (rhs->g * DESC_G_MASK) | (rhs->avl * DESC_AVL_MASK); } static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) { if (set) *kvm_reg = *qemu_reg; else *qemu_reg = *kvm_reg; } static int kvm_getput_regs(CPUState *env, int set) { struct kvm_regs regs; int ret = 0; if (!set) { ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); if (ret < 0) return ret; } kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); #ifdef TARGET_X86_64 kvm_getput_reg(®s.r8, &env->regs[8], set); kvm_getput_reg(®s.r9, &env->regs[9], set); kvm_getput_reg(®s.r10, &env->regs[10], set); kvm_getput_reg(®s.r11, &env->regs[11], set); kvm_getput_reg(®s.r12, &env->regs[12], set); kvm_getput_reg(®s.r13, &env->regs[13], set); kvm_getput_reg(®s.r14, &env->regs[14], set); kvm_getput_reg(®s.r15, &env->regs[15], set); #endif kvm_getput_reg(®s.rflags, &env->eflags, set); kvm_getput_reg(®s.rip, &env->eip, set); if (set) ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); return ret; } static int kvm_put_fpu(CPUState *env) { struct kvm_fpu fpu; int i; memset(&fpu, 0, sizeof fpu); fpu.fsw = env->fpus & ~(7 << 11); fpu.fsw |= (env->fpstt & 7) << 11; fpu.fcw = env->fpuc; for (i = 0; i < 8; ++i) fpu.ftwx |= (!env->fptags[i]) << i; memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs); fpu.mxcsr = env->mxcsr; return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu); } #ifdef KVM_CAP_XSAVE #define XSAVE_CWD_RIP 2 #define XSAVE_CWD_RDP 4 #define XSAVE_MXCSR 6 #define XSAVE_ST_SPACE 8 #define XSAVE_XMM_SPACE 40 #define XSAVE_XSTATE_BV 128 #define XSAVE_YMMH_SPACE 144 #endif static int kvm_put_xsave(CPUState *env) { #ifdef KVM_CAP_XSAVE int i, r; struct kvm_xsave* xsave; uint16_t cwd, swd, twd, fop; if (!kvm_has_xsave()) return kvm_put_fpu(env); xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); memset(xsave, 0, sizeof(struct kvm_xsave)); cwd = swd = twd = fop = 0; swd = env->fpus & ~(7 << 11); swd |= (env->fpstt & 7) << 11; cwd = env->fpuc; for (i = 0; i < 8; ++i) twd |= (!env->fptags[i]) << i; xsave->region[0] = (uint32_t)(swd << 16) + cwd; xsave->region[1] = (uint32_t)(fop << 16) + twd; memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs, sizeof env->fpregs); memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs, sizeof env->xmm_regs); xsave->region[XSAVE_MXCSR] = env->mxcsr; *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv; memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs, sizeof env->ymmh_regs); r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave); qemu_free(xsave); return r; #else return kvm_put_fpu(env); #endif } static int kvm_put_xcrs(CPUState *env) { #ifdef KVM_CAP_XCRS struct kvm_xcrs xcrs; if (!kvm_has_xcrs()) return 0; xcrs.nr_xcrs = 1; xcrs.flags = 0; xcrs.xcrs[0].xcr = 0; xcrs.xcrs[0].value = env->xcr0; return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs); #else return 0; #endif } static int kvm_put_sregs(CPUState *env) { struct kvm_sregs sregs; memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); if (env->interrupt_injected >= 0) { sregs.interrupt_bitmap[env->interrupt_injected / 64] |= (uint64_t)1 << (env->interrupt_injected % 64); } if ((env->eflags & VM_MASK)) { set_v8086_seg(&sregs.cs, &env->segs[R_CS]); set_v8086_seg(&sregs.ds, &env->segs[R_DS]); set_v8086_seg(&sregs.es, &env->segs[R_ES]); set_v8086_seg(&sregs.fs, &env->segs[R_FS]); set_v8086_seg(&sregs.gs, &env->segs[R_GS]); set_v8086_seg(&sregs.ss, &env->segs[R_SS]); } else { set_seg(&sregs.cs, &env->segs[R_CS]); set_seg(&sregs.ds, &env->segs[R_DS]); set_seg(&sregs.es, &env->segs[R_ES]); set_seg(&sregs.fs, &env->segs[R_FS]); set_seg(&sregs.gs, &env->segs[R_GS]); set_seg(&sregs.ss, &env->segs[R_SS]); if (env->cr[0] & CR0_PE_MASK) { /* force ss cpl to cs cpl */ sregs.ss.selector = (sregs.ss.selector & ~3) | (sregs.cs.selector & 3); sregs.ss.dpl = sregs.ss.selector & 3; } } set_seg(&sregs.tr, &env->tr); set_seg(&sregs.ldt, &env->ldt); sregs.idt.limit = env->idt.limit; sregs.idt.base = env->idt.base; sregs.gdt.limit = env->gdt.limit; sregs.gdt.base = env->gdt.base; sregs.cr0 = env->cr[0]; sregs.cr2 = env->cr[2]; sregs.cr3 = env->cr[3]; sregs.cr4 = env->cr[4]; sregs.cr8 = cpu_get_apic_tpr(env->apic_state); sregs.apic_base = cpu_get_apic_base(env->apic_state); sregs.efer = env->efer; return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs); } static void kvm_msr_entry_set(struct kvm_msr_entry *entry, uint32_t index, uint64_t value) { entry->index = index; entry->data = value; } static int kvm_put_msrs(CPUState *env, int level) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; struct kvm_msr_entry *msrs = msr_data.entries; int n = 0; kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); if (kvm_has_msr_star(env)) kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); if (kvm_has_msr_hsave_pa(env)) kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave); #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); } #endif if (level == KVM_PUT_FULL_STATE) { /* * KVM is yet unable to synchronize TSC values of multiple VCPUs on * writeback. Until this is fixed, we only write the offset to SMP * guests after migration, desynchronizing the VCPUs, but avoiding * huge jump-backs that would occur without any writeback at all. */ if (smp_cpus == 1 || env->tsc != 0) { kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); } kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr); kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); #ifdef KVM_CAP_ASYNC_PF kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); #endif } #ifdef KVM_CAP_MCE if (env->mcg_cap) { int i; if (level == KVM_PUT_RESET_STATE) kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); else if (level == KVM_PUT_FULL_STATE) { kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status); kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl); for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]); } } #endif msr_data.info.nmsrs = n; return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data); } static int kvm_get_fpu(CPUState *env) { struct kvm_fpu fpu; int i, ret; ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); if (ret < 0) return ret; env->fpstt = (fpu.fsw >> 11) & 7; env->fpus = fpu.fsw; env->fpuc = fpu.fcw; for (i = 0; i < 8; ++i) env->fptags[i] = !((fpu.ftwx >> i) & 1); memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs); env->mxcsr = fpu.mxcsr; return 0; } static int kvm_get_xsave(CPUState *env) { #ifdef KVM_CAP_XSAVE struct kvm_xsave* xsave; int ret, i; uint16_t cwd, swd, twd, fop; if (!kvm_has_xsave()) return kvm_get_fpu(env); xsave = qemu_memalign(4096, sizeof(struct kvm_xsave)); ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave); if (ret < 0) { qemu_free(xsave); return ret; } cwd = (uint16_t)xsave->region[0]; swd = (uint16_t)(xsave->region[0] >> 16); twd = (uint16_t)xsave->region[1]; fop = (uint16_t)(xsave->region[1] >> 16); env->fpstt = (swd >> 11) & 7; env->fpus = swd; env->fpuc = cwd; for (i = 0; i < 8; ++i) env->fptags[i] = !((twd >> i) & 1); env->mxcsr = xsave->region[XSAVE_MXCSR]; memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE], sizeof env->fpregs); memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE], sizeof env->xmm_regs); env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV]; memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE], sizeof env->ymmh_regs); qemu_free(xsave); return 0; #else return kvm_get_fpu(env); #endif } static int kvm_get_xcrs(CPUState *env) { #ifdef KVM_CAP_XCRS int i, ret; struct kvm_xcrs xcrs; if (!kvm_has_xcrs()) return 0; ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs); if (ret < 0) return ret; for (i = 0; i < xcrs.nr_xcrs; i++) /* Only support xcr0 now */ if (xcrs.xcrs[0].xcr == 0) { env->xcr0 = xcrs.xcrs[0].value; break; } return 0; #else return 0; #endif } static int kvm_get_sregs(CPUState *env) { struct kvm_sregs sregs; uint32_t hflags; int bit, i, ret; ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); if (ret < 0) return ret; /* There can only be one pending IRQ set in the bitmap at a time, so try to find it and save its number instead (-1 for none). */ env->interrupt_injected = -1; for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { if (sregs.interrupt_bitmap[i]) { bit = ctz64(sregs.interrupt_bitmap[i]); env->interrupt_injected = i * 64 + bit; break; } } get_seg(&env->segs[R_CS], &sregs.cs); get_seg(&env->segs[R_DS], &sregs.ds); get_seg(&env->segs[R_ES], &sregs.es); get_seg(&env->segs[R_FS], &sregs.fs); get_seg(&env->segs[R_GS], &sregs.gs); get_seg(&env->segs[R_SS], &sregs.ss); get_seg(&env->tr, &sregs.tr); get_seg(&env->ldt, &sregs.ldt); env->idt.limit = sregs.idt.limit; env->idt.base = sregs.idt.base; env->gdt.limit = sregs.gdt.limit; env->gdt.base = sregs.gdt.base; env->cr[0] = sregs.cr0; env->cr[2] = sregs.cr2; env->cr[3] = sregs.cr3; env->cr[4] = sregs.cr4; cpu_set_apic_base(env->apic_state, sregs.apic_base); env->efer = sregs.efer; //cpu_set_apic_tpr(env->apic_state, sregs.cr8); #define HFLAG_COPY_MASK ~( \ HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); hflags |= (env->cr[4] & CR4_OSFXSR_MASK) << (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); if (env->efer & MSR_EFER_LMA) { hflags |= HF_LMA_MASK; } if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; } else { hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_CS32_SHIFT); hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_SS32_SHIFT); if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) { hflags |= HF_ADDSEG_MASK; } else { hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; } } env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; return 0; } static int kvm_get_msrs(CPUState *env) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; struct kvm_msr_entry *msrs = msr_data.entries; int ret, i, n; n = 0; msrs[n++].index = MSR_IA32_SYSENTER_CS; msrs[n++].index = MSR_IA32_SYSENTER_ESP; msrs[n++].index = MSR_IA32_SYSENTER_EIP; if (kvm_has_msr_star(env)) msrs[n++].index = MSR_STAR; if (kvm_has_msr_hsave_pa(env)) msrs[n++].index = MSR_VM_HSAVE_PA; msrs[n++].index = MSR_IA32_TSC; #ifdef TARGET_X86_64 if (lm_capable_kernel) { msrs[n++].index = MSR_CSTAR; msrs[n++].index = MSR_KERNELGSBASE; msrs[n++].index = MSR_FMASK; msrs[n++].index = MSR_LSTAR; } #endif msrs[n++].index = MSR_KVM_SYSTEM_TIME; msrs[n++].index = MSR_KVM_WALL_CLOCK; #ifdef KVM_CAP_ASYNC_PF msrs[n++].index = MSR_KVM_ASYNC_PF_EN; #endif #ifdef KVM_CAP_MCE if (env->mcg_cap) { msrs[n++].index = MSR_MCG_STATUS; msrs[n++].index = MSR_MCG_CTL; for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) msrs[n++].index = MSR_MC0_CTL + i; } #endif msr_data.info.nmsrs = n; ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); if (ret < 0) return ret; for (i = 0; i < ret; i++) { switch (msrs[i].index) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = msrs[i].data; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = msrs[i].data; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = msrs[i].data; break; case MSR_STAR: env->star = msrs[i].data; break; #ifdef TARGET_X86_64 case MSR_CSTAR: env->cstar = msrs[i].data; break; case MSR_KERNELGSBASE: env->kernelgsbase = msrs[i].data; break; case MSR_FMASK: env->fmask = msrs[i].data; break; case MSR_LSTAR: env->lstar = msrs[i].data; break; #endif case MSR_IA32_TSC: env->tsc = msrs[i].data; break; case MSR_VM_HSAVE_PA: env->vm_hsave = msrs[i].data; break; case MSR_KVM_SYSTEM_TIME: env->system_time_msr = msrs[i].data; break; case MSR_KVM_WALL_CLOCK: env->wall_clock_msr = msrs[i].data; break; #ifdef KVM_CAP_MCE case MSR_MCG_STATUS: env->mcg_status = msrs[i].data; break; case MSR_MCG_CTL: env->mcg_ctl = msrs[i].data; break; #endif default: #ifdef KVM_CAP_MCE if (msrs[i].index >= MSR_MC0_CTL && msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; } #endif break; #ifdef KVM_CAP_ASYNC_PF case MSR_KVM_ASYNC_PF_EN: env->async_pf_en_msr = msrs[i].data; break; #endif } } return 0; } static int kvm_put_mp_state(CPUState *env) { struct kvm_mp_state mp_state = { .mp_state = env->mp_state }; return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state); } static int kvm_get_mp_state(CPUState *env) { struct kvm_mp_state mp_state; int ret; ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); if (ret < 0) { return ret; } env->mp_state = mp_state.mp_state; return 0; } static int kvm_put_vcpu_events(CPUState *env, int level) { #ifdef KVM_CAP_VCPU_EVENTS struct kvm_vcpu_events events; if (!kvm_has_vcpu_events()) { return 0; } events.exception.injected = (env->exception_injected >= 0); events.exception.nr = env->exception_injected; events.exception.has_error_code = env->has_error_code; events.exception.error_code = env->error_code; events.interrupt.injected = (env->interrupt_injected >= 0); events.interrupt.nr = env->interrupt_injected; events.interrupt.soft = env->soft_interrupt; events.nmi.injected = env->nmi_injected; events.nmi.pending = env->nmi_pending; events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); events.sipi_vector = env->sipi_vector; events.flags = 0; if (level >= KVM_PUT_RESET_STATE) { events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; } return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events); #else return 0; #endif } static int kvm_get_vcpu_events(CPUState *env) { #ifdef KVM_CAP_VCPU_EVENTS struct kvm_vcpu_events events; int ret; if (!kvm_has_vcpu_events()) { return 0; } ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); if (ret < 0) { return ret; } env->exception_injected = events.exception.injected ? events.exception.nr : -1; env->has_error_code = events.exception.has_error_code; env->error_code = events.exception.error_code; env->interrupt_injected = events.interrupt.injected ? events.interrupt.nr : -1; env->soft_interrupt = events.interrupt.soft; env->nmi_injected = events.nmi.injected; env->nmi_pending = events.nmi.pending; if (events.nmi.masked) { env->hflags2 |= HF2_NMI_MASK; } else { env->hflags2 &= ~HF2_NMI_MASK; } env->sipi_vector = events.sipi_vector; #endif return 0; } static int kvm_guest_debug_workarounds(CPUState *env) { int ret = 0; #ifdef KVM_CAP_SET_GUEST_DEBUG unsigned long reinject_trap = 0; if (!kvm_has_vcpu_events()) { if (env->exception_injected == 1) { reinject_trap = KVM_GUESTDBG_INJECT_DB; } else if (env->exception_injected == 3) { reinject_trap = KVM_GUESTDBG_INJECT_BP; } env->exception_injected = -1; } /* * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF * injected via SET_GUEST_DEBUG while updating GP regs. Work around this * by updating the debug state once again if single-stepping is on. * Another reason to call kvm_update_guest_debug here is a pending debug * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to * reinject them via SET_GUEST_DEBUG. */ if (reinject_trap || (!kvm_has_robust_singlestep() && env->singlestep_enabled)) { ret = kvm_update_guest_debug(env, reinject_trap); } #endif /* KVM_CAP_SET_GUEST_DEBUG */ return ret; } static int kvm_put_debugregs(CPUState *env) { #ifdef KVM_CAP_DEBUGREGS struct kvm_debugregs dbgregs; int i; if (!kvm_has_debugregs()) { return 0; } for (i = 0; i < 4; i++) { dbgregs.db[i] = env->dr[i]; } dbgregs.dr6 = env->dr[6]; dbgregs.dr7 = env->dr[7]; dbgregs.flags = 0; return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs); #else return 0; #endif } static int kvm_get_debugregs(CPUState *env) { #ifdef KVM_CAP_DEBUGREGS struct kvm_debugregs dbgregs; int i, ret; if (!kvm_has_debugregs()) { return 0; } ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs); if (ret < 0) { return ret; } for (i = 0; i < 4; i++) { env->dr[i] = dbgregs.db[i]; } env->dr[4] = env->dr[6] = dbgregs.dr6; env->dr[5] = env->dr[7] = dbgregs.dr7; #endif return 0; } int kvm_arch_put_registers(CPUState *env, int level) { int ret; assert(cpu_is_stopped(env) || qemu_cpu_self(env)); ret = kvm_getput_regs(env, 1); if (ret < 0) return ret; ret = kvm_put_xsave(env); if (ret < 0) return ret; ret = kvm_put_xcrs(env); if (ret < 0) return ret; ret = kvm_put_sregs(env); if (ret < 0) return ret; ret = kvm_put_msrs(env, level); if (ret < 0) return ret; if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_mp_state(env); if (ret < 0) return ret; } ret = kvm_put_vcpu_events(env, level); if (ret < 0) return ret; /* must be last */ ret = kvm_guest_debug_workarounds(env); if (ret < 0) return ret; ret = kvm_put_debugregs(env); if (ret < 0) return ret; return 0; } int kvm_arch_get_registers(CPUState *env) { int ret; assert(cpu_is_stopped(env) || qemu_cpu_self(env)); ret = kvm_getput_regs(env, 0); if (ret < 0) return ret; ret = kvm_get_xsave(env); if (ret < 0) return ret; ret = kvm_get_xcrs(env); if (ret < 0) return ret; ret = kvm_get_sregs(env); if (ret < 0) return ret; ret = kvm_get_msrs(env); if (ret < 0) return ret; ret = kvm_get_mp_state(env); if (ret < 0) return ret; ret = kvm_get_vcpu_events(env); if (ret < 0) return ret; ret = kvm_get_debugregs(env); if (ret < 0) return ret; return 0; } int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) { /* Inject NMI */ if (env->interrupt_request & CPU_INTERRUPT_NMI) { env->interrupt_request &= ~CPU_INTERRUPT_NMI; DPRINTF("injected NMI\n"); kvm_vcpu_ioctl(env, KVM_NMI); } /* Try to inject an interrupt if the guest can accept it */ if (run->ready_for_interrupt_injection && (env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) { int irq; env->interrupt_request &= ~CPU_INTERRUPT_HARD; irq = cpu_get_pic_interrupt(env); if (irq >= 0) { struct kvm_interrupt intr; intr.irq = irq; /* FIXME: errors */ DPRINTF("injected interrupt %d\n", irq); kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); } } /* If we have an interrupt but the guest is not ready to receive an * interrupt, request an interrupt window exit. This will * cause a return to userspace as soon as the guest is ready to * receive interrupts. */ if ((env->interrupt_request & CPU_INTERRUPT_HARD)) run->request_interrupt_window = 1; else run->request_interrupt_window = 0; DPRINTF("setting tpr\n"); run->cr8 = cpu_get_apic_tpr(env->apic_state); return 0; } int kvm_arch_post_run(CPUState *env, struct kvm_run *run) { if (run->if_flag) env->eflags |= IF_MASK; else env->eflags &= ~IF_MASK; cpu_set_apic_tpr(env->apic_state, run->cr8); cpu_set_apic_base(env->apic_state, run->apic_base); return 0; } int kvm_arch_process_irqchip_events(CPUState *env) { if (env->interrupt_request & CPU_INTERRUPT_INIT) { kvm_cpu_synchronize_state(env); do_cpu_init(env); env->exception_index = EXCP_HALTED; } if (env->interrupt_request & CPU_INTERRUPT_SIPI) { kvm_cpu_synchronize_state(env); do_cpu_sipi(env); } return env->halted; } static int kvm_handle_halt(CPUState *env) { if (!((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(env->interrupt_request & CPU_INTERRUPT_NMI)) { env->halted = 1; env->exception_index = EXCP_HLT; return 0; } return 1; } int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) { int ret = 0; switch (run->exit_reason) { case KVM_EXIT_HLT: DPRINTF("handle_hlt\n"); ret = kvm_handle_halt(env); break; } return ret; } #ifdef KVM_CAP_SET_GUEST_DEBUG int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) { static const uint8_t int3 = 0xcc; if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) return -EINVAL; return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) { uint8_t int3; if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) return -EINVAL; return 0; } static struct { target_ulong addr; int len; int type; } hw_breakpoint[4]; static int nb_hw_breakpoint; static int find_hw_breakpoint(target_ulong addr, int len, int type) { int n; for (n = 0; n < nb_hw_breakpoint; n++) if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && (hw_breakpoint[n].len == len || len == -1)) return n; return -1; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: len = 1; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: switch (len) { case 1: break; case 2: case 4: case 8: if (addr & (len - 1)) return -EINVAL; break; default: return -EINVAL; } break; default: return -ENOSYS; } if (nb_hw_breakpoint == 4) return -ENOBUFS; if (find_hw_breakpoint(addr, len, type) >= 0) return -EEXIST; hw_breakpoint[nb_hw_breakpoint].addr = addr; hw_breakpoint[nb_hw_breakpoint].len = len; hw_breakpoint[nb_hw_breakpoint].type = type; nb_hw_breakpoint++; return 0; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int n; n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); if (n < 0) return -ENOENT; nb_hw_breakpoint--; hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoint = 0; } static CPUWatchpoint hw_watchpoint; int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) { int handle = 0; int n; if (arch_info->exception == 1) { if (arch_info->dr6 & (1 << 14)) { if (cpu_single_env->singlestep_enabled) handle = 1; } else { for (n = 0; n < 4; n++) if (arch_info->dr6 & (1 << n)) switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { case 0x0: handle = 1; break; case 0x1: handle = 1; cpu_single_env->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_WRITE; break; case 0x3: handle = 1; cpu_single_env->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_ACCESS; break; } } } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) handle = 1; if (!handle) { cpu_synchronize_state(cpu_single_env); assert(cpu_single_env->exception_injected == -1); cpu_single_env->exception_injected = arch_info->exception; cpu_single_env->has_error_code = 0; } return handle; } void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) { const uint8_t type_code[] = { [GDB_BREAKPOINT_HW] = 0x0, [GDB_WATCHPOINT_WRITE] = 0x1, [GDB_WATCHPOINT_ACCESS] = 0x3 }; const uint8_t len_code[] = { [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 }; int n; if (kvm_sw_breakpoints_active(env)) dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; if (nb_hw_breakpoint > 0) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; dbg->arch.debugreg[7] = 0x0600; for (n = 0; n < nb_hw_breakpoint; n++) { dbg->arch.debugreg[n] = hw_breakpoint[n].addr; dbg->arch.debugreg[7] |= (2 << (n * 2)) | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | (len_code[hw_breakpoint[n].len] << (18 + n*4)); } } /* Legal xcr0 for loading */ env->xcr0 = 1; } #endif /* KVM_CAP_SET_GUEST_DEBUG */ bool kvm_arch_stop_on_emulation_error(CPUState *env) { return !(env->cr[0] & CR0_PE_MASK) || ((env->segs[R_CS].selector & 3) != 3); } static void hardware_memory_error(void) { fprintf(stderr, "Hardware memory error!\n"); exit(1); } #ifdef KVM_CAP_MCE static void kvm_mce_broadcast_rest(CPUState *env) { CPUState *cenv; int family, model, cpuver = env->cpuid_version; family = (cpuver >> 8) & 0xf; model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf); /* Broadcast MCA signal for processor version 06H_EH and above */ if ((family == 6 && model >= 14) || family > 6) { for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) { if (cenv == env) { continue; } kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC, MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, ABORT_ON_ERROR); } } } #endif int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) { #if defined(KVM_CAP_MCE) struct kvm_x86_mce mce = { .bank = 9, }; void *vaddr; ram_addr_t ram_addr; target_phys_addr_t paddr; int r; if ((env->mcg_cap & MCG_SER_P) && addr && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { if (code == BUS_MCEERR_AR) { /* Fake an Intel architectural Data Load SRAR UCR */ mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | MCI_STATUS_AR | 0x134; mce.misc = (MCM_ADDR_PHYS << 6) | 0xc; mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV; } else { /* * If there is an MCE excpetion being processed, ignore * this SRAO MCE */ r = kvm_mce_in_exception(env); if (r == -1) { fprintf(stderr, "Failed to get MCE status\n"); } else if (r) { return 0; } /* Fake an Intel architectural Memory scrubbing UCR */ mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | 0xc0; mce.misc = (MCM_ADDR_PHYS << 6) | 0xc; mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; } vaddr = (void *)addr; if (qemu_ram_addr_from_host(vaddr, &ram_addr) || !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!\n"); /* Hope we are lucky for AO MCE */ if (code == BUS_MCEERR_AO) { return 0; } else { hardware_memory_error(); } } mce.addr = paddr; r = kvm_set_mce(env, &mce); if (r < 0) { fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno)); abort(); } kvm_mce_broadcast_rest(env); } else #endif { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; } int kvm_on_sigbus(int code, void *addr) { #if defined(KVM_CAP_MCE) if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { uint64_t status; void *vaddr; ram_addr_t ram_addr; target_phys_addr_t paddr; /* Hope we are lucky for AO MCE */ vaddr = addr; if (qemu_ram_addr_from_host(vaddr, &ram_addr) || !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!: %p\n", addr); return 0; } status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S | 0xc0; kvm_inject_x86_mce(first_cpu, 9, status, MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr, (MCM_ADDR_PHYS << 6) | 0xc, ABORT_ON_ERROR); kvm_mce_broadcast_rest(first_cpu); } else #endif { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; }