/* * QEMU KVM support * * Copyright (C) 2006-2008 Qumranet Technologies * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include #include #include #include #include "qemu-common.h" #include "cpu.h" #include "sysemu/sysemu.h" #include "sysemu/kvm_int.h" #include "kvm_i386.h" #include "hyperv.h" #include "exec/gdbstub.h" #include "qemu/host-utils.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "hw/i386/pc.h" #include "hw/i386/apic.h" #include "hw/i386/apic_internal.h" #include "hw/i386/apic-msidef.h" #include "exec/ioport.h" #include "standard-headers/asm-x86/hyperv.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "migration/migration.h" #include "exec/memattrs.h" //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define MSR_KVM_WALL_CLOCK 0x11 #define MSR_KVM_SYSTEM_TIME 0x12 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus * 255 kvm_msr_entry structs */ #define MSR_BUF_SIZE 4096 #ifndef BUS_MCEERR_AR #define BUS_MCEERR_AR 4 #endif #ifndef BUS_MCEERR_AO #define BUS_MCEERR_AO 5 #endif const KVMCapabilityInfo kvm_arch_required_capabilities[] = { KVM_CAP_INFO(SET_TSS_ADDR), KVM_CAP_INFO(EXT_CPUID), KVM_CAP_INFO(MP_STATE), KVM_CAP_LAST_INFO }; static bool has_msr_star; static bool has_msr_hsave_pa; static bool has_msr_tsc_aux; static bool has_msr_tsc_adjust; static bool has_msr_tsc_deadline; static bool has_msr_feature_control; static bool has_msr_async_pf_en; static bool has_msr_pv_eoi_en; static bool has_msr_misc_enable; static bool has_msr_smbase; static bool has_msr_bndcfgs; static bool has_msr_kvm_steal_time; static int lm_capable_kernel; static bool has_msr_hv_hypercall; static bool has_msr_hv_vapic; static bool has_msr_hv_tsc; static bool has_msr_hv_crash; static bool has_msr_hv_reset; static bool has_msr_hv_vpindex; static bool has_msr_hv_runtime; static bool has_msr_hv_synic; static bool has_msr_hv_stimer; static bool has_msr_mtrr; static bool has_msr_xss; static bool has_msr_architectural_pmu; static uint32_t num_architectural_pmu_counters; static int has_xsave; static int has_xcrs; static int has_pit_state2; static struct kvm_cpuid2 *cpuid_cache; int kvm_has_pit_state2(void) { return has_pit_state2; } bool kvm_has_smm(void) { return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); } bool kvm_allows_irq0_override(void) { return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); } static int kvm_get_tsc(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; struct { struct kvm_msrs info; struct kvm_msr_entry entries[1]; } msr_data; int ret; if (env->tsc_valid) { return 0; } msr_data.info.nmsrs = 1; msr_data.entries[0].index = MSR_IA32_TSC; env->tsc_valid = !runstate_is_running(); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); if (ret < 0) { return ret; } assert(ret == 1); env->tsc = msr_data.entries[0].data; return 0; } static inline void do_kvm_synchronize_tsc(void *arg) { CPUState *cpu = arg; kvm_get_tsc(cpu); } void kvm_synchronize_all_tsc(void) { CPUState *cpu; if (kvm_enabled()) { CPU_FOREACH(cpu) { run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu); } } } static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) { struct kvm_cpuid2 *cpuid; int r, size; size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); cpuid = g_malloc0(size); cpuid->nent = max; r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); if (r == 0 && cpuid->nent >= max) { r = -E2BIG; } if (r < 0) { if (r == -E2BIG) { g_free(cpuid); return NULL; } else { fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", strerror(-r)); exit(1); } } return cpuid; } /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough * for all entries. */ static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) { struct kvm_cpuid2 *cpuid; int max = 1; if (cpuid_cache != NULL) { return cpuid_cache; } while ((cpuid = try_get_cpuid(s, max)) == NULL) { max *= 2; } cpuid_cache = cpuid; return cpuid; } static const struct kvm_para_features { int cap; int feature; } para_features[] = { { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, }; static int get_para_features(KVMState *s) { int i, features = 0; for (i = 0; i < ARRAY_SIZE(para_features); i++) { if (kvm_check_extension(s, para_features[i].cap)) { features |= (1 << para_features[i].feature); } } return features; } /* Returns the value for a specific register on the cpuid entry */ static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) { uint32_t ret = 0; switch (reg) { case R_EAX: ret = entry->eax; break; case R_EBX: ret = entry->ebx; break; case R_ECX: ret = entry->ecx; break; case R_EDX: ret = entry->edx; break; } return ret; } /* Find matching entry for function/index on kvm_cpuid2 struct */ static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index) { int i; for (i = 0; i < cpuid->nent; ++i) { if (cpuid->entries[i].function == function && cpuid->entries[i].index == index) { return &cpuid->entries[i]; } } /* not found: */ return NULL; } uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, uint32_t index, int reg) { struct kvm_cpuid2 *cpuid; uint32_t ret = 0; uint32_t cpuid_1_edx; bool found = false; cpuid = get_supported_cpuid(s); struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); if (entry) { found = true; ret = cpuid_entry_get_reg(entry, reg); } /* Fixups for the data returned by KVM, below */ if (function == 1 && reg == R_EDX) { /* KVM before 2.6.30 misreports the following features */ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; } else if (function == 1 && reg == R_ECX) { /* We can set the hypervisor flag, even if KVM does not return it on * GET_SUPPORTED_CPUID */ ret |= CPUID_EXT_HYPERVISOR; /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, * and the irqchip is in the kernel. */ if (kvm_irqchip_in_kernel() && kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { ret |= CPUID_EXT_TSC_DEADLINE_TIMER; } /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled * without the in-kernel irqchip */ if (!kvm_irqchip_in_kernel()) { ret &= ~CPUID_EXT_X2APIC; } } else if (function == 6 && reg == R_EAX) { ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ } else if (function == 0x80000001 && reg == R_EDX) { /* On Intel, kvm returns cpuid according to the Intel spec, * so add missing bits according to the AMD spec: */ cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; } /* fallback for older kernels */ if ((function == KVM_CPUID_FEATURES) && !found) { ret = get_para_features(s); } return ret; } typedef struct HWPoisonPage { ram_addr_t ram_addr; QLIST_ENTRY(HWPoisonPage) list; } HWPoisonPage; static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = QLIST_HEAD_INITIALIZER(hwpoison_page_list); static void kvm_unpoison_all(void *param) { HWPoisonPage *page, *next_page; QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { QLIST_REMOVE(page, list); qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); g_free(page); } } static void kvm_hwpoison_page_add(ram_addr_t ram_addr) { HWPoisonPage *page; QLIST_FOREACH(page, &hwpoison_page_list, list) { if (page->ram_addr == ram_addr) { return; } } page = g_new(HWPoisonPage, 1); page->ram_addr = ram_addr; QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); } static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, int *max_banks) { int r; r = kvm_check_extension(s, KVM_CAP_MCE); if (r > 0) { *max_banks = r; return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); } return -ENOSYS; } static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) { CPUX86State *env = &cpu->env; uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; uint64_t mcg_status = MCG_STATUS_MCIP; if (code == BUS_MCEERR_AR) { status |= MCI_STATUS_AR | 0x134; mcg_status |= MCG_STATUS_EIPV; } else { status |= 0xc0; mcg_status |= MCG_STATUS_RIPV; } cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, (MCM_ADDR_PHYS << 6) | 0xc, cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0); } static void hardware_memory_error(void) { fprintf(stderr, "Hardware memory error!\n"); exit(1); } int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) { X86CPU *cpu = X86_CPU(c); CPUX86State *env = &cpu->env; ram_addr_t ram_addr; hwaddr paddr; if ((env->mcg_cap & MCG_SER_P) && addr && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) { ram_addr = qemu_ram_addr_from_host(addr); if (ram_addr == RAM_ADDR_INVALID || !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!\n"); /* Hope we are lucky for AO MCE */ if (code == BUS_MCEERR_AO) { return 0; } else { hardware_memory_error(); } } kvm_hwpoison_page_add(ram_addr); kvm_mce_inject(cpu, paddr, code); } else { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; } int kvm_arch_on_sigbus(int code, void *addr) { X86CPU *cpu = X86_CPU(first_cpu); if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) { ram_addr_t ram_addr; hwaddr paddr; /* Hope we are lucky for AO MCE */ ram_addr = qemu_ram_addr_from_host(addr); if (ram_addr == RAM_ADDR_INVALID || !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr, &paddr)) { fprintf(stderr, "Hardware memory error for memory used by " "QEMU itself instead of guest system!: %p\n", addr); return 0; } kvm_hwpoison_page_add(ram_addr); kvm_mce_inject(X86_CPU(first_cpu), paddr, code); } else { if (code == BUS_MCEERR_AO) { return 0; } else if (code == BUS_MCEERR_AR) { hardware_memory_error(); } else { return 1; } } return 0; } static int kvm_inject_mce_oldstyle(X86CPU *cpu) { CPUX86State *env = &cpu->env; if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { unsigned int bank, bank_num = env->mcg_cap & 0xff; struct kvm_x86_mce mce; env->exception_injected = -1; /* * There must be at least one bank in use if an MCE is pending. * Find it and use its values for the event injection. */ for (bank = 0; bank < bank_num; bank++) { if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { break; } } assert(bank < bank_num); mce.bank = bank; mce.status = env->mce_banks[bank * 4 + 1]; mce.mcg_status = env->mcg_status; mce.addr = env->mce_banks[bank * 4 + 2]; mce.misc = env->mce_banks[bank * 4 + 3]; return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); } return 0; } static void cpu_update_state(void *opaque, int running, RunState state) { CPUX86State *env = opaque; if (running) { env->tsc_valid = false; } } unsigned long kvm_arch_vcpu_id(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); return cpu->apic_id; } #ifndef KVM_CPUID_SIGNATURE_NEXT #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 #endif static bool hyperv_hypercall_available(X86CPU *cpu) { return cpu->hyperv_vapic || (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); } static bool hyperv_enabled(X86CPU *cpu) { CPUState *cs = CPU(cpu); return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && (hyperv_hypercall_available(cpu) || cpu->hyperv_time || cpu->hyperv_relaxed_timing || cpu->hyperv_crash || cpu->hyperv_reset || cpu->hyperv_vpindex || cpu->hyperv_runtime || cpu->hyperv_synic || cpu->hyperv_stimer); } static int kvm_arch_set_tsc_khz(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int r; if (!env->tsc_khz) { return 0; } r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : -ENOTSUP; if (r < 0) { /* When KVM_SET_TSC_KHZ fails, it's an error only if the current * TSC frequency doesn't match the one we want. */ int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; if (cur_freq <= 0 || cur_freq != env->tsc_khz) { error_report("warning: TSC frequency mismatch between " "VM (%" PRId64 " kHz) and host (%d kHz), " "and TSC scaling unavailable", env->tsc_khz, cur_freq); return r; } } return 0; } static int hyperv_handle_properties(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; if (cpu->hyperv_relaxed_timing) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; } if (cpu->hyperv_vapic) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; has_msr_hv_vapic = true; } if (cpu->hyperv_time && kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; env->features[FEAT_HYPERV_EAX] |= 0x200; has_msr_hv_tsc = true; } if (cpu->hyperv_crash && has_msr_hv_crash) { env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; } env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE; if (cpu->hyperv_reset && has_msr_hv_reset) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE; } if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE; } if (cpu->hyperv_runtime && has_msr_hv_runtime) { env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; } if (cpu->hyperv_synic) { int sint; if (!has_msr_hv_synic || kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); return -ENOSYS; } env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE; env->msr_hv_synic_version = HV_SYNIC_VERSION_1; for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED; } } if (cpu->hyperv_stimer) { if (!has_msr_hv_stimer) { fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); return -ENOSYS; } env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE; } return 0; } static Error *invtsc_mig_blocker; #define KVM_MAX_CPUID_ENTRIES 100 int kvm_arch_init_vcpu(CPUState *cs) { struct { struct kvm_cpuid2 cpuid; struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; } QEMU_PACKED cpuid_data; X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint32_t limit, i, j, cpuid_i; uint32_t unused; struct kvm_cpuid_entry2 *c; uint32_t signature[3]; int kvm_base = KVM_CPUID_SIGNATURE; int r; memset(&cpuid_data, 0, sizeof(cpuid_data)); cpuid_i = 0; /* Paravirtualization CPUIDs */ if (hyperv_enabled(cpu)) { c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; if (!cpu->hyperv_vendor_id) { memcpy(signature, "Microsoft Hv", 12); } else { size_t len = strlen(cpu->hyperv_vendor_id); if (len > 12) { error_report("hv-vendor-id truncated to 12 characters"); len = 12; } memset(signature, 0, 12); memcpy(signature, cpu->hyperv_vendor_id, len); } c->eax = HYPERV_CPUID_MIN; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_INTERFACE; memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); c->eax = signature[0]; c->ebx = 0; c->ecx = 0; c->edx = 0; c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_VERSION; c->eax = 0x00001bbc; c->ebx = 0x00060001; c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_FEATURES; r = hyperv_handle_properties(cs); if (r) { return r; } c->eax = env->features[FEAT_HYPERV_EAX]; c->ebx = env->features[FEAT_HYPERV_EBX]; c->edx = env->features[FEAT_HYPERV_EDX]; c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; if (cpu->hyperv_relaxed_timing) { c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; } if (has_msr_hv_vapic) { c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; } c->ebx = cpu->hyperv_spinlock_attempts; c = &cpuid_data.entries[cpuid_i++]; c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; c->eax = 0x40; c->ebx = 0x40; kvm_base = KVM_CPUID_SIGNATURE_NEXT; has_msr_hv_hypercall = true; } if (cpu->expose_kvm) { memcpy(signature, "KVMKVMKVM\0\0\0", 12); c = &cpuid_data.entries[cpuid_i++]; c->function = KVM_CPUID_SIGNATURE | kvm_base; c->eax = KVM_CPUID_FEATURES | kvm_base; c->ebx = signature[0]; c->ecx = signature[1]; c->edx = signature[2]; c = &cpuid_data.entries[cpuid_i++]; c->function = KVM_CPUID_FEATURES | kvm_base; c->eax = env->features[FEAT_KVM]; has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF); has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI); has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME); } cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); for (i = 0; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported level value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; switch (i) { case 2: { /* Keep reading function 2 till all the input is received */ int times; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | KVM_CPUID_FLAG_STATE_READ_NEXT; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); times = c->eax & 0xff; for (j = 1; j < times; ++j) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:2):eax & 0xf = 0x%x\n", times); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } break; } case 4: case 0xb: case 0xd: for (j = 0; ; j++) { if (i == 0xd && j == 64) { break; } c->function = i; c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; c->index = j; cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); if (i == 4 && c->eax == 0) { break; } if (i == 0xb && !(c->ecx & 0xff00)) { break; } if (i == 0xd && c->eax == 0) { continue; } if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "cpuid_data is full, no space for " "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); abort(); } c = &cpuid_data.entries[cpuid_i++]; } break; default: c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); break; } } if (limit >= 0x0a) { uint32_t ver; cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); if ((ver & 0xff) > 0) { has_msr_architectural_pmu = true; num_architectural_pmu_counters = (ver & 0xff00) >> 8; /* Shouldn't be more than 32, since that's the number of bits * available in EBX to tell us _which_ counters are available. * Play it safe. */ if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { num_architectural_pmu_counters = MAX_GP_COUNTERS; } } } cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); for (i = 0x80000000; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } /* Call Centaur's CPUID instructions they are supported. */ if (env->cpuid_xlevel2 > 0) { cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); for (i = 0xC0000000; i <= limit; i++) { if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); abort(); } c = &cpuid_data.entries[cpuid_i++]; c->function = i; c->flags = 0; cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); } } cpuid_data.cpuid.nent = cpuid_i; if (((env->cpuid_version >> 8)&0xF) >= 6 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA) && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { uint64_t mcg_cap, unsupported_caps; int banks; int ret; ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); if (ret < 0) { fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); return ret; } if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); return -ENOTSUP; } unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); if (unsupported_caps) { error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64, unsupported_caps); } env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); if (ret < 0) { fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); return ret; } } qemu_add_vm_change_state_handler(cpu_update_state, env); c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); if (c) { has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || !!(c->ecx & CPUID_EXT_SMX); } c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0); if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) { /* for migration */ error_setg(&invtsc_mig_blocker, "State blocked by non-migratable CPU device" " (invtsc flag)"); migrate_add_blocker(invtsc_mig_blocker); /* for savevm */ vmstate_x86_cpu.unmigratable = 1; } cpuid_data.cpuid.padding = 0; r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); if (r) { return r; } r = kvm_arch_set_tsc_khz(cs); if (r < 0) { return r; } /* vcpu's TSC frequency is either specified by user, or following * the value used by KVM if the former is not present. In the * latter case, we query it from KVM and record in env->tsc_khz, * so that vcpu's TSC frequency can be migrated later via this field. */ if (!env->tsc_khz) { r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; if (r > 0) { env->tsc_khz = r; } } if (has_xsave) { env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); } cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); if (env->features[FEAT_1_EDX] & CPUID_MTRR) { has_msr_mtrr = true; } if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { has_msr_tsc_aux = false; } return 0; } void kvm_arch_reset_vcpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; env->exception_injected = -1; env->interrupt_injected = -1; env->xcr0 = 1; if (kvm_irqchip_in_kernel()) { env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : KVM_MP_STATE_UNINITIALIZED; } else { env->mp_state = KVM_MP_STATE_RUNNABLE; } } void kvm_arch_do_init_vcpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; /* APs get directly into wait-for-SIPI state. */ if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { env->mp_state = KVM_MP_STATE_INIT_RECEIVED; } } static int kvm_get_supported_msrs(KVMState *s) { static int kvm_supported_msrs; int ret = 0; /* first time */ if (kvm_supported_msrs == 0) { struct kvm_msr_list msr_list, *kvm_msr_list; kvm_supported_msrs = -1; /* Obtain MSR list from KVM. These are the MSRs that we must * save/restore */ msr_list.nmsrs = 0; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); if (ret < 0 && ret != -E2BIG) { return ret; } /* Old kernel modules had a bug and could write beyond the provided memory. Allocate at least a safe amount of 1K. */ kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + msr_list.nmsrs * sizeof(msr_list.indices[0]))); kvm_msr_list->nmsrs = msr_list.nmsrs; ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); if (ret >= 0) { int i; for (i = 0; i < kvm_msr_list->nmsrs; i++) { if (kvm_msr_list->indices[i] == MSR_STAR) { has_msr_star = true; continue; } if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { has_msr_hsave_pa = true; continue; } if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { has_msr_tsc_aux = true; continue; } if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { has_msr_tsc_adjust = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { has_msr_tsc_deadline = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { has_msr_smbase = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { has_msr_misc_enable = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { has_msr_bndcfgs = true; continue; } if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { has_msr_xss = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { has_msr_hv_crash = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { has_msr_hv_reset = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { has_msr_hv_vpindex = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { has_msr_hv_runtime = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) { has_msr_hv_synic = true; continue; } if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) { has_msr_hv_stimer = true; continue; } } } g_free(kvm_msr_list); } return ret; } static Notifier smram_machine_done; static KVMMemoryListener smram_listener; static AddressSpace smram_address_space; static MemoryRegion smram_as_root; static MemoryRegion smram_as_mem; static void register_smram_listener(Notifier *n, void *unused) { MemoryRegion *smram = (MemoryRegion *) object_resolve_path("/machine/smram", NULL); /* Outer container... */ memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); memory_region_set_enabled(&smram_as_root, true); /* ... with two regions inside: normal system memory with low * priority, and... */ memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", get_system_memory(), 0, ~0ull); memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); memory_region_set_enabled(&smram_as_mem, true); if (smram) { /* ... SMRAM with higher priority */ memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); memory_region_set_enabled(smram, true); } address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); kvm_memory_listener_register(kvm_state, &smram_listener, &smram_address_space, 1); } int kvm_arch_init(MachineState *ms, KVMState *s) { uint64_t identity_base = 0xfffbc000; uint64_t shadow_mem; int ret; struct utsname utsname; #ifdef KVM_CAP_XSAVE has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); #endif #ifdef KVM_CAP_XCRS has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); #endif #ifdef KVM_CAP_PIT_STATE2 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); #endif ret = kvm_get_supported_msrs(s); if (ret < 0) { return ret; } uname(&utsname); lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; /* * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. * In order to use vm86 mode, an EPT identity map and a TSS are needed. * Since these must be part of guest physical memory, we need to allocate * them, both by setting their start addresses in the kernel and by * creating a corresponding e820 entry. We need 4 pages before the BIOS. * * Older KVM versions may not support setting the identity map base. In * that case we need to stick with the default, i.e. a 256K maximum BIOS * size. */ if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { /* Allows up to 16M BIOSes. */ identity_base = 0xfeffc000; ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); if (ret < 0) { return ret; } } /* Set TSS base one page after EPT identity map. */ ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); if (ret < 0) { return ret; } /* Tell fw_cfg to notify the BIOS to reserve the range. */ ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); if (ret < 0) { fprintf(stderr, "e820_add_entry() table is full\n"); return ret; } qemu_register_reset(kvm_unpoison_all, NULL); shadow_mem = machine_kvm_shadow_mem(ms); if (shadow_mem != -1) { shadow_mem /= 4096; ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); if (ret < 0) { return ret; } } if (kvm_check_extension(s, KVM_CAP_X86_SMM)) { smram_machine_done.notify = register_smram_listener; qemu_add_machine_init_done_notifier(&smram_machine_done); } return 0; } static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = 3; lhs->present = 1; lhs->dpl = 3; lhs->db = 0; lhs->s = 1; lhs->l = 0; lhs->g = 0; lhs->avl = 0; lhs->unusable = 0; } static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) { unsigned flags = rhs->flags; lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; lhs->present = (flags & DESC_P_MASK) != 0; lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; lhs->db = (flags >> DESC_B_SHIFT) & 1; lhs->s = (flags & DESC_S_MASK) != 0; lhs->l = (flags >> DESC_L_SHIFT) & 1; lhs->g = (flags & DESC_G_MASK) != 0; lhs->avl = (flags & DESC_AVL_MASK) != 0; lhs->unusable = !lhs->present; lhs->padding = 0; } static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) { lhs->selector = rhs->selector; lhs->base = rhs->base; lhs->limit = rhs->limit; if (rhs->unusable) { lhs->flags = 0; } else { lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | (rhs->present * DESC_P_MASK) | (rhs->dpl << DESC_DPL_SHIFT) | (rhs->db << DESC_B_SHIFT) | (rhs->s * DESC_S_MASK) | (rhs->l << DESC_L_SHIFT) | (rhs->g * DESC_G_MASK) | (rhs->avl * DESC_AVL_MASK); } } static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) { if (set) { *kvm_reg = *qemu_reg; } else { *qemu_reg = *kvm_reg; } } static int kvm_getput_regs(X86CPU *cpu, int set) { CPUX86State *env = &cpu->env; struct kvm_regs regs; int ret = 0; if (!set) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); if (ret < 0) { return ret; } } kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); #ifdef TARGET_X86_64 kvm_getput_reg(®s.r8, &env->regs[8], set); kvm_getput_reg(®s.r9, &env->regs[9], set); kvm_getput_reg(®s.r10, &env->regs[10], set); kvm_getput_reg(®s.r11, &env->regs[11], set); kvm_getput_reg(®s.r12, &env->regs[12], set); kvm_getput_reg(®s.r13, &env->regs[13], set); kvm_getput_reg(®s.r14, &env->regs[14], set); kvm_getput_reg(®s.r15, &env->regs[15], set); #endif kvm_getput_reg(®s.rflags, &env->eflags, set); kvm_getput_reg(®s.rip, &env->eip, set); if (set) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); } return ret; } static int kvm_put_fpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_fpu fpu; int i; memset(&fpu, 0, sizeof fpu); fpu.fsw = env->fpus & ~(7 << 11); fpu.fsw |= (env->fpstt & 7) << 11; fpu.fcw = env->fpuc; fpu.last_opcode = env->fpop; fpu.last_ip = env->fpip; fpu.last_dp = env->fpdp; for (i = 0; i < 8; ++i) { fpu.ftwx |= (!env->fptags[i]) << i; } memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); for (i = 0; i < CPU_NB_REGS; i++) { stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); } fpu.mxcsr = env->mxcsr; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); } #define XSAVE_FCW_FSW 0 #define XSAVE_FTW_FOP 1 #define XSAVE_CWD_RIP 2 #define XSAVE_CWD_RDP 4 #define XSAVE_MXCSR 6 #define XSAVE_ST_SPACE 8 #define XSAVE_XMM_SPACE 40 #define XSAVE_XSTATE_BV 128 #define XSAVE_YMMH_SPACE 144 #define XSAVE_BNDREGS 240 #define XSAVE_BNDCSR 256 #define XSAVE_OPMASK 272 #define XSAVE_ZMM_Hi256 288 #define XSAVE_Hi16_ZMM 416 #define XSAVE_PKRU 672 #define XSAVE_BYTE_OFFSET(word_offset) \ ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) #define ASSERT_OFFSET(word_offset, field) \ QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ offsetof(X86XSaveArea, field)) ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); ASSERT_OFFSET(XSAVE_PKRU, pkru_state); static int kvm_put_xsave(X86CPU *cpu) { CPUX86State *env = &cpu->env; X86XSaveArea *xsave = env->kvm_xsave_buf; uint16_t cwd, swd, twd; int i; if (!has_xsave) { return kvm_put_fpu(cpu); } memset(xsave, 0, sizeof(struct kvm_xsave)); twd = 0; swd = env->fpus & ~(7 << 11); swd |= (env->fpstt & 7) << 11; cwd = env->fpuc; for (i = 0; i < 8; ++i) { twd |= (!env->fptags[i]) << i; } xsave->legacy.fcw = cwd; xsave->legacy.fsw = swd; xsave->legacy.ftw = twd; xsave->legacy.fpop = env->fpop; xsave->legacy.fpip = env->fpip; xsave->legacy.fpdp = env->fpdp; memcpy(&xsave->legacy.fpregs, env->fpregs, sizeof env->fpregs); xsave->legacy.mxcsr = env->mxcsr; xsave->header.xstate_bv = env->xstate_bv; memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs, sizeof env->bnd_regs); xsave->bndcsr_state.bndcsr = env->bndcs_regs; memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs, sizeof env->opmask_regs); for (i = 0; i < CPU_NB_REGS; i++) { uint8_t *xmm = xsave->legacy.xmm_regs[i]; uint8_t *ymmh = xsave->avx_state.ymmh[i]; uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; stq_p(xmm, env->xmm_regs[i].ZMM_Q(0)); stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1)); stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2)); stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3)); stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4)); stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5)); stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6)); stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7)); } #ifdef TARGET_X86_64 memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16], 16 * sizeof env->xmm_regs[16]); memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru); #endif return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); } static int kvm_put_xcrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_xcrs xcrs = {}; if (!has_xcrs) { return 0; } xcrs.nr_xcrs = 1; xcrs.flags = 0; xcrs.xcrs[0].xcr = 0; xcrs.xcrs[0].value = env->xcr0; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); } static int kvm_put_sregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_sregs sregs; memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); if (env->interrupt_injected >= 0) { sregs.interrupt_bitmap[env->interrupt_injected / 64] |= (uint64_t)1 << (env->interrupt_injected % 64); } if ((env->eflags & VM_MASK)) { set_v8086_seg(&sregs.cs, &env->segs[R_CS]); set_v8086_seg(&sregs.ds, &env->segs[R_DS]); set_v8086_seg(&sregs.es, &env->segs[R_ES]); set_v8086_seg(&sregs.fs, &env->segs[R_FS]); set_v8086_seg(&sregs.gs, &env->segs[R_GS]); set_v8086_seg(&sregs.ss, &env->segs[R_SS]); } else { set_seg(&sregs.cs, &env->segs[R_CS]); set_seg(&sregs.ds, &env->segs[R_DS]); set_seg(&sregs.es, &env->segs[R_ES]); set_seg(&sregs.fs, &env->segs[R_FS]); set_seg(&sregs.gs, &env->segs[R_GS]); set_seg(&sregs.ss, &env->segs[R_SS]); } set_seg(&sregs.tr, &env->tr); set_seg(&sregs.ldt, &env->ldt); sregs.idt.limit = env->idt.limit; sregs.idt.base = env->idt.base; memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); sregs.gdt.limit = env->gdt.limit; sregs.gdt.base = env->gdt.base; memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); sregs.cr0 = env->cr[0]; sregs.cr2 = env->cr[2]; sregs.cr3 = env->cr[3]; sregs.cr4 = env->cr[4]; sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); sregs.apic_base = cpu_get_apic_base(cpu->apic_state); sregs.efer = env->efer; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); } static void kvm_msr_buf_reset(X86CPU *cpu) { memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); } static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) { struct kvm_msrs *msrs = cpu->kvm_msr_buf; void *limit = ((void *)msrs) + MSR_BUF_SIZE; struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; assert((void *)(entry + 1) <= limit); entry->index = index; entry->reserved = 0; entry->data = value; msrs->nmsrs++; } static int kvm_put_tscdeadline_msr(X86CPU *cpu) { CPUX86State *env = &cpu->env; int ret; if (!has_msr_tsc_deadline) { return 0; } kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } assert(ret == 1); return 0; } /* * Provide a separate write service for the feature control MSR in order to * kick the VCPU out of VMXON or even guest mode on reset. This has to be done * before writing any other state because forcibly leaving nested mode * invalidates the VCPU state. */ static int kvm_put_msr_feature_control(X86CPU *cpu) { int ret; if (!has_msr_feature_control) { return 0; } kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, cpu->env.msr_ia32_feature_control); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } assert(ret == 1); return 0; } static int kvm_put_msrs(X86CPU *cpu, int level) { CPUX86State *env = &cpu->env; int i; int ret; kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); kvm_msr_entry_add(cpu, MSR_PAT, env->pat); if (has_msr_star) { kvm_msr_entry_add(cpu, MSR_STAR, env->star); } if (has_msr_hsave_pa) { kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); } if (has_msr_tsc_aux) { kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); } if (has_msr_tsc_adjust) { kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); } if (has_msr_misc_enable) { kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, env->msr_ia32_misc_enable); } if (has_msr_smbase) { kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); } if (has_msr_bndcfgs) { kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); } if (has_msr_xss) { kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); } #endif /* * The following MSRs have side effects on the guest or are too heavy * for normal writeback. Limit them to reset or full state updates. */ if (level >= KVM_PUT_RESET_STATE) { kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); if (has_msr_async_pf_en) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); } if (has_msr_pv_eoi_en) { kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); } if (has_msr_kvm_steal_time) { kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); } if (has_msr_architectural_pmu) { /* Stop the counter. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); /* Set the counter values. */ for (i = 0; i < MAX_FIXED_COUNTERS; i++) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, env->msr_fixed_counters[i]); } for (i = 0; i < num_architectural_pmu_counters; i++) { kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, env->msr_gp_counters[i]); kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, env->msr_gp_evtsel[i]); } kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, env->msr_global_status); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, env->msr_global_ovf_ctrl); /* Now start the PMU. */ kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, env->msr_fixed_ctr_ctrl); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, env->msr_global_ctrl); } if (has_msr_hv_hypercall) { kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, env->msr_hv_guest_os_id); kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, env->msr_hv_hypercall); } if (has_msr_hv_vapic) { kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, env->msr_hv_vapic); } if (has_msr_hv_tsc) { kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); } if (has_msr_hv_crash) { int j; for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, env->msr_hv_crash_params[j]); kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_X64_MSR_CRASH_CTL_NOTIFY); } if (has_msr_hv_runtime) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); } if (cpu->hyperv_synic) { int j; kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, env->msr_hv_synic_control); kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, env->msr_hv_synic_version); kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, env->msr_hv_synic_evt_page); kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, env->msr_hv_synic_msg_page); for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, env->msr_hv_synic_sint[j]); } } if (has_msr_hv_stimer) { int j; for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, env->msr_hv_stimer_config[j]); } for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, env->msr_hv_stimer_count[j]); } } if (has_msr_mtrr) { kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); for (i = 0; i < MSR_MTRRcap_VCNT; i++) { kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), env->mtrr_var[i].base); kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), env->mtrr_var[i].mask); } } /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see * kvm_put_msr_feature_control. */ } if (env->mcg_cap) { int i; kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); } } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } assert(ret == cpu->kvm_msr_buf->nmsrs); return 0; } static int kvm_get_fpu(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_fpu fpu; int i, ret; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); if (ret < 0) { return ret; } env->fpstt = (fpu.fsw >> 11) & 7; env->fpus = fpu.fsw; env->fpuc = fpu.fcw; env->fpop = fpu.last_opcode; env->fpip = fpu.last_ip; env->fpdp = fpu.last_dp; for (i = 0; i < 8; ++i) { env->fptags[i] = !((fpu.ftwx >> i) & 1); } memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); for (i = 0; i < CPU_NB_REGS; i++) { env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); } env->mxcsr = fpu.mxcsr; return 0; } static int kvm_get_xsave(X86CPU *cpu) { CPUX86State *env = &cpu->env; X86XSaveArea *xsave = env->kvm_xsave_buf; int ret, i; uint16_t cwd, swd, twd; if (!has_xsave) { return kvm_get_fpu(cpu); } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); if (ret < 0) { return ret; } cwd = xsave->legacy.fcw; swd = xsave->legacy.fsw; twd = xsave->legacy.ftw; env->fpop = xsave->legacy.fpop; env->fpstt = (swd >> 11) & 7; env->fpus = swd; env->fpuc = cwd; for (i = 0; i < 8; ++i) { env->fptags[i] = !((twd >> i) & 1); } env->fpip = xsave->legacy.fpip; env->fpdp = xsave->legacy.fpdp; env->mxcsr = xsave->legacy.mxcsr; memcpy(env->fpregs, &xsave->legacy.fpregs, sizeof env->fpregs); env->xstate_bv = xsave->header.xstate_bv; memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs, sizeof env->bnd_regs); env->bndcs_regs = xsave->bndcsr_state.bndcsr; memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs, sizeof env->opmask_regs); for (i = 0; i < CPU_NB_REGS; i++) { uint8_t *xmm = xsave->legacy.xmm_regs[i]; uint8_t *ymmh = xsave->avx_state.ymmh[i]; uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm); env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8); env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh); env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8); env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh); env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8); env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16); env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24); } #ifdef TARGET_X86_64 memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm, 16 * sizeof env->xmm_regs[16]); memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru); #endif return 0; } static int kvm_get_xcrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; int i, ret; struct kvm_xcrs xcrs; if (!has_xcrs) { return 0; } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); if (ret < 0) { return ret; } for (i = 0; i < xcrs.nr_xcrs; i++) { /* Only support xcr0 now */ if (xcrs.xcrs[i].xcr == 0) { env->xcr0 = xcrs.xcrs[i].value; break; } } return 0; } static int kvm_get_sregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_sregs sregs; uint32_t hflags; int bit, i, ret; ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); if (ret < 0) { return ret; } /* There can only be one pending IRQ set in the bitmap at a time, so try to find it and save its number instead (-1 for none). */ env->interrupt_injected = -1; for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { if (sregs.interrupt_bitmap[i]) { bit = ctz64(sregs.interrupt_bitmap[i]); env->interrupt_injected = i * 64 + bit; break; } } get_seg(&env->segs[R_CS], &sregs.cs); get_seg(&env->segs[R_DS], &sregs.ds); get_seg(&env->segs[R_ES], &sregs.es); get_seg(&env->segs[R_FS], &sregs.fs); get_seg(&env->segs[R_GS], &sregs.gs); get_seg(&env->segs[R_SS], &sregs.ss); get_seg(&env->tr, &sregs.tr); get_seg(&env->ldt, &sregs.ldt); env->idt.limit = sregs.idt.limit; env->idt.base = sregs.idt.base; env->gdt.limit = sregs.gdt.limit; env->gdt.base = sregs.gdt.base; env->cr[0] = sregs.cr0; env->cr[2] = sregs.cr2; env->cr[3] = sregs.cr3; env->cr[4] = sregs.cr4; env->efer = sregs.efer; /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ #define HFLAG_COPY_MASK \ ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) hflags = env->hflags & HFLAG_COPY_MASK; hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); if (env->cr[4] & CR4_OSFXSR_MASK) { hflags |= HF_OSFXSR_MASK; } if (env->efer & MSR_EFER_LMA) { hflags |= HF_LMA_MASK; } if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; } else { hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_CS32_SHIFT); hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> (DESC_B_SHIFT - HF_SS32_SHIFT); if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || !(hflags & HF_CS32_MASK)) { hflags |= HF_ADDSEG_MASK; } else { hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; } } env->hflags = hflags; return 0; } static int kvm_get_msrs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; int ret, i; kvm_msr_buf_reset(cpu); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); kvm_msr_entry_add(cpu, MSR_PAT, 0); if (has_msr_star) { kvm_msr_entry_add(cpu, MSR_STAR, 0); } if (has_msr_hsave_pa) { kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); } if (has_msr_tsc_aux) { kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); } if (has_msr_tsc_adjust) { kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); } if (has_msr_tsc_deadline) { kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); } if (has_msr_misc_enable) { kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); } if (has_msr_smbase) { kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); } if (has_msr_feature_control) { kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); } if (has_msr_bndcfgs) { kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); } if (has_msr_xss) { kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); } if (!env->tsc_valid) { kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); env->tsc_valid = !runstate_is_running(); } #ifdef TARGET_X86_64 if (lm_capable_kernel) { kvm_msr_entry_add(cpu, MSR_CSTAR, 0); kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); kvm_msr_entry_add(cpu, MSR_FMASK, 0); kvm_msr_entry_add(cpu, MSR_LSTAR, 0); } #endif kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); if (has_msr_async_pf_en) { kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); } if (has_msr_pv_eoi_en) { kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); } if (has_msr_kvm_steal_time) { kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); } if (has_msr_architectural_pmu) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); for (i = 0; i < MAX_FIXED_COUNTERS; i++) { kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); } for (i = 0; i < num_architectural_pmu_counters; i++) { kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); } } if (env->mcg_cap) { kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); } } if (has_msr_hv_hypercall) { kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); } if (has_msr_hv_vapic) { kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); } if (has_msr_hv_tsc) { kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); } if (has_msr_hv_crash) { int j; for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); } } if (has_msr_hv_runtime) { kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); } if (cpu->hyperv_synic) { uint32_t msr; kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { kvm_msr_entry_add(cpu, msr, 0); } } if (has_msr_hv_stimer) { uint32_t msr; for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; msr++) { kvm_msr_entry_add(cpu, msr, 0); } } if (has_msr_mtrr) { kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); for (i = 0; i < MSR_MTRRcap_VCNT; i++) { kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); } } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); if (ret < 0) { return ret; } assert(ret == cpu->kvm_msr_buf->nmsrs); for (i = 0; i < ret; i++) { uint32_t index = msrs[i].index; switch (index) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = msrs[i].data; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = msrs[i].data; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = msrs[i].data; break; case MSR_PAT: env->pat = msrs[i].data; break; case MSR_STAR: env->star = msrs[i].data; break; #ifdef TARGET_X86_64 case MSR_CSTAR: env->cstar = msrs[i].data; break; case MSR_KERNELGSBASE: env->kernelgsbase = msrs[i].data; break; case MSR_FMASK: env->fmask = msrs[i].data; break; case MSR_LSTAR: env->lstar = msrs[i].data; break; #endif case MSR_IA32_TSC: env->tsc = msrs[i].data; break; case MSR_TSC_AUX: env->tsc_aux = msrs[i].data; break; case MSR_TSC_ADJUST: env->tsc_adjust = msrs[i].data; break; case MSR_IA32_TSCDEADLINE: env->tsc_deadline = msrs[i].data; break; case MSR_VM_HSAVE_PA: env->vm_hsave = msrs[i].data; break; case MSR_KVM_SYSTEM_TIME: env->system_time_msr = msrs[i].data; break; case MSR_KVM_WALL_CLOCK: env->wall_clock_msr = msrs[i].data; break; case MSR_MCG_STATUS: env->mcg_status = msrs[i].data; break; case MSR_MCG_CTL: env->mcg_ctl = msrs[i].data; break; case MSR_IA32_MISC_ENABLE: env->msr_ia32_misc_enable = msrs[i].data; break; case MSR_IA32_SMBASE: env->smbase = msrs[i].data; break; case MSR_IA32_FEATURE_CONTROL: env->msr_ia32_feature_control = msrs[i].data; break; case MSR_IA32_BNDCFGS: env->msr_bndcfgs = msrs[i].data; break; case MSR_IA32_XSS: env->xss = msrs[i].data; break; default: if (msrs[i].index >= MSR_MC0_CTL && msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; } break; case MSR_KVM_ASYNC_PF_EN: env->async_pf_en_msr = msrs[i].data; break; case MSR_KVM_PV_EOI_EN: env->pv_eoi_en_msr = msrs[i].data; break; case MSR_KVM_STEAL_TIME: env->steal_time_msr = msrs[i].data; break; case MSR_CORE_PERF_FIXED_CTR_CTRL: env->msr_fixed_ctr_ctrl = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_CTRL: env->msr_global_ctrl = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_STATUS: env->msr_global_status = msrs[i].data; break; case MSR_CORE_PERF_GLOBAL_OVF_CTRL: env->msr_global_ovf_ctrl = msrs[i].data; break; case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; break; case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; break; case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; break; case HV_X64_MSR_HYPERCALL: env->msr_hv_hypercall = msrs[i].data; break; case HV_X64_MSR_GUEST_OS_ID: env->msr_hv_guest_os_id = msrs[i].data; break; case HV_X64_MSR_APIC_ASSIST_PAGE: env->msr_hv_vapic = msrs[i].data; break; case HV_X64_MSR_REFERENCE_TSC: env->msr_hv_tsc = msrs[i].data; break; case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; break; case HV_X64_MSR_VP_RUNTIME: env->msr_hv_runtime = msrs[i].data; break; case HV_X64_MSR_SCONTROL: env->msr_hv_synic_control = msrs[i].data; break; case HV_X64_MSR_SVERSION: env->msr_hv_synic_version = msrs[i].data; break; case HV_X64_MSR_SIEFP: env->msr_hv_synic_evt_page = msrs[i].data; break; case HV_X64_MSR_SIMP: env->msr_hv_synic_msg_page = msrs[i].data; break; case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; break; case HV_X64_MSR_STIMER0_CONFIG: case HV_X64_MSR_STIMER1_CONFIG: case HV_X64_MSR_STIMER2_CONFIG: case HV_X64_MSR_STIMER3_CONFIG: env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = msrs[i].data; break; case HV_X64_MSR_STIMER0_COUNT: case HV_X64_MSR_STIMER1_COUNT: case HV_X64_MSR_STIMER2_COUNT: case HV_X64_MSR_STIMER3_COUNT: env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = msrs[i].data; break; case MSR_MTRRdefType: env->mtrr_deftype = msrs[i].data; break; case MSR_MTRRfix64K_00000: env->mtrr_fixed[0] = msrs[i].data; break; case MSR_MTRRfix16K_80000: env->mtrr_fixed[1] = msrs[i].data; break; case MSR_MTRRfix16K_A0000: env->mtrr_fixed[2] = msrs[i].data; break; case MSR_MTRRfix4K_C0000: env->mtrr_fixed[3] = msrs[i].data; break; case MSR_MTRRfix4K_C8000: env->mtrr_fixed[4] = msrs[i].data; break; case MSR_MTRRfix4K_D0000: env->mtrr_fixed[5] = msrs[i].data; break; case MSR_MTRRfix4K_D8000: env->mtrr_fixed[6] = msrs[i].data; break; case MSR_MTRRfix4K_E0000: env->mtrr_fixed[7] = msrs[i].data; break; case MSR_MTRRfix4K_E8000: env->mtrr_fixed[8] = msrs[i].data; break; case MSR_MTRRfix4K_F0000: env->mtrr_fixed[9] = msrs[i].data; break; case MSR_MTRRfix4K_F8000: env->mtrr_fixed[10] = msrs[i].data; break; case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): if (index & 1) { env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data; } else { env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; } break; } } return 0; } static int kvm_put_mp_state(X86CPU *cpu) { struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); } static int kvm_get_mp_state(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; struct kvm_mp_state mp_state; int ret; ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); if (ret < 0) { return ret; } env->mp_state = mp_state.mp_state; if (kvm_irqchip_in_kernel()) { cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); } return 0; } static int kvm_get_apic(X86CPU *cpu) { DeviceState *apic = cpu->apic_state; struct kvm_lapic_state kapic; int ret; if (apic && kvm_irqchip_in_kernel()) { ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); if (ret < 0) { return ret; } kvm_get_apic_state(apic, &kapic); } return 0; } static int kvm_put_apic(X86CPU *cpu) { DeviceState *apic = cpu->apic_state; struct kvm_lapic_state kapic; if (apic && kvm_irqchip_in_kernel()) { kvm_put_apic_state(apic, &kapic); return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic); } return 0; } static int kvm_put_vcpu_events(X86CPU *cpu, int level) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; struct kvm_vcpu_events events = {}; if (!kvm_has_vcpu_events()) { return 0; } events.exception.injected = (env->exception_injected >= 0); events.exception.nr = env->exception_injected; events.exception.has_error_code = env->has_error_code; events.exception.error_code = env->error_code; events.exception.pad = 0; events.interrupt.injected = (env->interrupt_injected >= 0); events.interrupt.nr = env->interrupt_injected; events.interrupt.soft = env->soft_interrupt; events.nmi.injected = env->nmi_injected; events.nmi.pending = env->nmi_pending; events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); events.nmi.pad = 0; events.sipi_vector = env->sipi_vector; if (has_msr_smbase) { events.smi.smm = !!(env->hflags & HF_SMM_MASK); events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); if (kvm_irqchip_in_kernel()) { /* As soon as these are moved to the kernel, remove them * from cs->interrupt_request. */ events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); } else { /* Keep these in cs->interrupt_request. */ events.smi.pending = 0; events.smi.latched_init = 0; } events.flags |= KVM_VCPUEVENT_VALID_SMM; } events.flags = 0; if (level >= KVM_PUT_RESET_STATE) { events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; } return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); } static int kvm_get_vcpu_events(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_vcpu_events events; int ret; if (!kvm_has_vcpu_events()) { return 0; } memset(&events, 0, sizeof(events)); ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); if (ret < 0) { return ret; } env->exception_injected = events.exception.injected ? events.exception.nr : -1; env->has_error_code = events.exception.has_error_code; env->error_code = events.exception.error_code; env->interrupt_injected = events.interrupt.injected ? events.interrupt.nr : -1; env->soft_interrupt = events.interrupt.soft; env->nmi_injected = events.nmi.injected; env->nmi_pending = events.nmi.pending; if (events.nmi.masked) { env->hflags2 |= HF2_NMI_MASK; } else { env->hflags2 &= ~HF2_NMI_MASK; } if (events.flags & KVM_VCPUEVENT_VALID_SMM) { if (events.smi.smm) { env->hflags |= HF_SMM_MASK; } else { env->hflags &= ~HF_SMM_MASK; } if (events.smi.pending) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } else { cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); } if (events.smi.smm_inside_nmi) { env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; } else { env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; } if (events.smi.latched_init) { cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); } else { cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); } } env->sipi_vector = events.sipi_vector; return 0; } static int kvm_guest_debug_workarounds(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int ret = 0; unsigned long reinject_trap = 0; if (!kvm_has_vcpu_events()) { if (env->exception_injected == 1) { reinject_trap = KVM_GUESTDBG_INJECT_DB; } else if (env->exception_injected == 3) { reinject_trap = KVM_GUESTDBG_INJECT_BP; } env->exception_injected = -1; } /* * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF * injected via SET_GUEST_DEBUG while updating GP regs. Work around this * by updating the debug state once again if single-stepping is on. * Another reason to call kvm_update_guest_debug here is a pending debug * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to * reinject them via SET_GUEST_DEBUG. */ if (reinject_trap || (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { ret = kvm_update_guest_debug(cs, reinject_trap); } return ret; } static int kvm_put_debugregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_debugregs dbgregs; int i; if (!kvm_has_debugregs()) { return 0; } for (i = 0; i < 4; i++) { dbgregs.db[i] = env->dr[i]; } dbgregs.dr6 = env->dr[6]; dbgregs.dr7 = env->dr[7]; dbgregs.flags = 0; return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); } static int kvm_get_debugregs(X86CPU *cpu) { CPUX86State *env = &cpu->env; struct kvm_debugregs dbgregs; int i, ret; if (!kvm_has_debugregs()) { return 0; } ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); if (ret < 0) { return ret; } for (i = 0; i < 4; i++) { env->dr[i] = dbgregs.db[i]; } env->dr[4] = env->dr[6] = dbgregs.dr6; env->dr[5] = env->dr[7] = dbgregs.dr7; return 0; } int kvm_arch_put_registers(CPUState *cpu, int level) { X86CPU *x86_cpu = X86_CPU(cpu); int ret; assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_msr_feature_control(x86_cpu); if (ret < 0) { return ret; } } if (level == KVM_PUT_FULL_STATE) { /* We don't check for kvm_arch_set_tsc_khz() errors here, * because TSC frequency mismatch shouldn't abort migration, * unless the user explicitly asked for a more strict TSC * setting (e.g. using an explicit "tsc-freq" option). */ kvm_arch_set_tsc_khz(cpu); } ret = kvm_getput_regs(x86_cpu, 1); if (ret < 0) { return ret; } ret = kvm_put_xsave(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_xcrs(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_sregs(x86_cpu); if (ret < 0) { return ret; } /* must be before kvm_put_msrs */ ret = kvm_inject_mce_oldstyle(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_msrs(x86_cpu, level); if (ret < 0) { return ret; } if (level >= KVM_PUT_RESET_STATE) { ret = kvm_put_mp_state(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_apic(x86_cpu); if (ret < 0) { return ret; } } ret = kvm_put_tscdeadline_msr(x86_cpu); if (ret < 0) { return ret; } ret = kvm_put_vcpu_events(x86_cpu, level); if (ret < 0) { return ret; } ret = kvm_put_debugregs(x86_cpu); if (ret < 0) { return ret; } /* must be last */ ret = kvm_guest_debug_workarounds(x86_cpu); if (ret < 0) { return ret; } return 0; } int kvm_arch_get_registers(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); int ret; assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); ret = kvm_getput_regs(cpu, 0); if (ret < 0) { goto out; } ret = kvm_get_xsave(cpu); if (ret < 0) { goto out; } ret = kvm_get_xcrs(cpu); if (ret < 0) { goto out; } ret = kvm_get_sregs(cpu); if (ret < 0) { goto out; } ret = kvm_get_msrs(cpu); if (ret < 0) { goto out; } ret = kvm_get_mp_state(cpu); if (ret < 0) { goto out; } ret = kvm_get_apic(cpu); if (ret < 0) { goto out; } ret = kvm_get_vcpu_events(cpu); if (ret < 0) { goto out; } ret = kvm_get_debugregs(cpu); if (ret < 0) { goto out; } ret = 0; out: cpu_sync_bndcs_hflags(&cpu->env); return ret; } void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; int ret; /* Inject NMI */ if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { qemu_mutex_lock_iothread(); cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; qemu_mutex_unlock_iothread(); DPRINTF("injected NMI\n"); ret = kvm_vcpu_ioctl(cpu, KVM_NMI); if (ret < 0) { fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", strerror(-ret)); } } if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { qemu_mutex_lock_iothread(); cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; qemu_mutex_unlock_iothread(); DPRINTF("injected SMI\n"); ret = kvm_vcpu_ioctl(cpu, KVM_SMI); if (ret < 0) { fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", strerror(-ret)); } } } if (!kvm_pic_in_kernel()) { qemu_mutex_lock_iothread(); } /* Force the VCPU out of its inner loop to process any INIT requests * or (for userspace APIC, but it is cheap to combine the checks here) * pending TPR access reports. */ if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && !(env->hflags & HF_SMM_MASK)) { cpu->exit_request = 1; } if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { cpu->exit_request = 1; } } if (!kvm_pic_in_kernel()) { /* Try to inject an interrupt if the guest can accept it */ if (run->ready_for_interrupt_injection && (cpu->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) { int irq; cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; irq = cpu_get_pic_interrupt(env); if (irq >= 0) { struct kvm_interrupt intr; intr.irq = irq; DPRINTF("injected interrupt %d\n", irq); ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); if (ret < 0) { fprintf(stderr, "KVM: injection failed, interrupt lost (%s)\n", strerror(-ret)); } } } /* If we have an interrupt but the guest is not ready to receive an * interrupt, request an interrupt window exit. This will * cause a return to userspace as soon as the guest is ready to * receive interrupts. */ if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { run->request_interrupt_window = 1; } else { run->request_interrupt_window = 0; } DPRINTF("setting tpr\n"); run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); qemu_mutex_unlock_iothread(); } } MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) { X86CPU *x86_cpu = X86_CPU(cpu); CPUX86State *env = &x86_cpu->env; if (run->flags & KVM_RUN_X86_SMM) { env->hflags |= HF_SMM_MASK; } else { env->hflags &= HF_SMM_MASK; } if (run->if_flag) { env->eflags |= IF_MASK; } else { env->eflags &= ~IF_MASK; } /* We need to protect the apic state against concurrent accesses from * different threads in case the userspace irqchip is used. */ if (!kvm_irqchip_in_kernel()) { qemu_mutex_lock_iothread(); } cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); if (!kvm_irqchip_in_kernel()) { qemu_mutex_unlock_iothread(); } return cpu_get_mem_attrs(env); } int kvm_arch_process_async_events(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; if (cs->interrupt_request & CPU_INTERRUPT_MCE) { /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ assert(env->mcg_cap); cs->interrupt_request &= ~CPU_INTERRUPT_MCE; kvm_cpu_synchronize_state(cs); if (env->exception_injected == EXCP08_DBLE) { /* this means triple fault */ qemu_system_reset_request(); cs->exit_request = 1; return 0; } env->exception_injected = EXCP12_MCHK; env->has_error_code = 0; cs->halted = 0; if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { env->mp_state = KVM_MP_STATE_RUNNABLE; } } if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && !(env->hflags & HF_SMM_MASK)) { kvm_cpu_synchronize_state(cs); do_cpu_init(cpu); } if (kvm_irqchip_in_kernel()) { return 0; } if (cs->interrupt_request & CPU_INTERRUPT_POLL) { cs->interrupt_request &= ~CPU_INTERRUPT_POLL; apic_poll_irq(cpu->apic_state); } if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (cs->interrupt_request & CPU_INTERRUPT_NMI)) { cs->halted = 0; } if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { kvm_cpu_synchronize_state(cs); do_cpu_sipi(cpu); } if (cs->interrupt_request & CPU_INTERRUPT_TPR) { cs->interrupt_request &= ~CPU_INTERRUPT_TPR; kvm_cpu_synchronize_state(cs); apic_handle_tpr_access_report(cpu->apic_state, env->eip, env->tpr_access_type); } return cs->halted; } static int kvm_handle_halt(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) && !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { cs->halted = 1; return EXCP_HLT; } return 0; } static int kvm_handle_tpr_access(X86CPU *cpu) { CPUState *cs = CPU(cpu); struct kvm_run *run = cs->kvm_run; apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, run->tpr_access.is_write ? TPR_ACCESS_WRITE : TPR_ACCESS_READ); return 1; } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { static const uint8_t int3 = 0xcc; if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { return -EINVAL; } return 0; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { uint8_t int3; if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { return -EINVAL; } return 0; } static struct { target_ulong addr; int len; int type; } hw_breakpoint[4]; static int nb_hw_breakpoint; static int find_hw_breakpoint(target_ulong addr, int len, int type) { int n; for (n = 0; n < nb_hw_breakpoint; n++) { if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && (hw_breakpoint[n].len == len || len == -1)) { return n; } } return -1; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { switch (type) { case GDB_BREAKPOINT_HW: len = 1; break; case GDB_WATCHPOINT_WRITE: case GDB_WATCHPOINT_ACCESS: switch (len) { case 1: break; case 2: case 4: case 8: if (addr & (len - 1)) { return -EINVAL; } break; default: return -EINVAL; } break; default: return -ENOSYS; } if (nb_hw_breakpoint == 4) { return -ENOBUFS; } if (find_hw_breakpoint(addr, len, type) >= 0) { return -EEXIST; } hw_breakpoint[nb_hw_breakpoint].addr = addr; hw_breakpoint[nb_hw_breakpoint].len = len; hw_breakpoint[nb_hw_breakpoint].type = type; nb_hw_breakpoint++; return 0; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { int n; n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); if (n < 0) { return -ENOENT; } nb_hw_breakpoint--; hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; return 0; } void kvm_arch_remove_all_hw_breakpoints(void) { nb_hw_breakpoint = 0; } static CPUWatchpoint hw_watchpoint; static int kvm_handle_debug(X86CPU *cpu, struct kvm_debug_exit_arch *arch_info) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int ret = 0; int n; if (arch_info->exception == 1) { if (arch_info->dr6 & (1 << 14)) { if (cs->singlestep_enabled) { ret = EXCP_DEBUG; } } else { for (n = 0; n < 4; n++) { if (arch_info->dr6 & (1 << n)) { switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { case 0x0: ret = EXCP_DEBUG; break; case 0x1: ret = EXCP_DEBUG; cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_WRITE; break; case 0x3: ret = EXCP_DEBUG; cs->watchpoint_hit = &hw_watchpoint; hw_watchpoint.vaddr = hw_breakpoint[n].addr; hw_watchpoint.flags = BP_MEM_ACCESS; break; } } } } } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { ret = EXCP_DEBUG; } if (ret == 0) { cpu_synchronize_state(cs); assert(env->exception_injected == -1); /* pass to guest */ env->exception_injected = arch_info->exception; env->has_error_code = 0; } return ret; } void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) { const uint8_t type_code[] = { [GDB_BREAKPOINT_HW] = 0x0, [GDB_WATCHPOINT_WRITE] = 0x1, [GDB_WATCHPOINT_ACCESS] = 0x3 }; const uint8_t len_code[] = { [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 }; int n; if (kvm_sw_breakpoints_active(cpu)) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; } if (nb_hw_breakpoint > 0) { dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; dbg->arch.debugreg[7] = 0x0600; for (n = 0; n < nb_hw_breakpoint; n++) { dbg->arch.debugreg[n] = hw_breakpoint[n].addr; dbg->arch.debugreg[7] |= (2 << (n * 2)) | (type_code[hw_breakpoint[n].type] << (16 + n*4)) | ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); } } } static bool host_supports_vmx(void) { uint32_t ecx, unused; host_cpuid(1, 0, &unused, &unused, &ecx, &unused); return ecx & CPUID_EXT_VMX; } #define VMX_INVALID_GUEST_STATE 0x80000021 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) { X86CPU *cpu = X86_CPU(cs); uint64_t code; int ret; switch (run->exit_reason) { case KVM_EXIT_HLT: DPRINTF("handle_hlt\n"); qemu_mutex_lock_iothread(); ret = kvm_handle_halt(cpu); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_SET_TPR: ret = 0; break; case KVM_EXIT_TPR_ACCESS: qemu_mutex_lock_iothread(); ret = kvm_handle_tpr_access(cpu); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_FAIL_ENTRY: code = run->fail_entry.hardware_entry_failure_reason; fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", code); if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { fprintf(stderr, "\nIf you're running a guest on an Intel machine without " "unrestricted mode\n" "support, the failure can be most likely due to the guest " "entering an invalid\n" "state for Intel VT. For example, the guest maybe running " "in big real mode\n" "which is not supported on less recent Intel processors." "\n\n"); } ret = -1; break; case KVM_EXIT_EXCEPTION: fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", run->ex.exception, run->ex.error_code); ret = -1; break; case KVM_EXIT_DEBUG: DPRINTF("kvm_exit_debug\n"); qemu_mutex_lock_iothread(); ret = kvm_handle_debug(cpu, &run->debug.arch); qemu_mutex_unlock_iothread(); break; case KVM_EXIT_HYPERV: ret = kvm_hv_handle_exit(cpu, &run->hyperv); break; case KVM_EXIT_IOAPIC_EOI: ioapic_eoi_broadcast(run->eoi.vector); ret = 0; break; default: fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); ret = -1; break; } return ret; } bool kvm_arch_stop_on_emulation_error(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; kvm_cpu_synchronize_state(cs); return !(env->cr[0] & CR0_PE_MASK) || ((env->segs[R_CS].selector & 3) != 3); } void kvm_arch_init_irq_routing(KVMState *s) { if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { /* If kernel can't do irq routing, interrupt source * override 0->2 cannot be set up as required by HPET. * So we have to disable it. */ no_hpet = 1; } /* We know at this point that we're using the in-kernel * irqchip, so we can use irqfds, and on x86 we know * we can use msi via irqfd and GSI routing. */ kvm_msi_via_irqfd_allowed = true; kvm_gsi_routing_allowed = true; if (kvm_irqchip_is_split()) { int i; /* If the ioapic is in QEMU and the lapics are in KVM, reserve MSI routes for signaling interrupts to the local apics. */ for (i = 0; i < IOAPIC_NUM_PINS; i++) { struct MSIMessage msg = { 0x0, 0x0 }; if (kvm_irqchip_add_msi_route(s, msg, NULL) < 0) { error_report("Could not enable split IRQ mode."); exit(1); } } } } int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) { int ret; if (machine_kernel_irqchip_split(ms)) { ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); if (ret) { error_report("Could not enable split irqchip mode: %s\n", strerror(-ret)); exit(1); } else { DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); kvm_split_irqchip = true; return 1; } } else { return 0; } } /* Classic KVM device assignment interface. Will remain x86 only. */ int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, uint32_t flags, uint32_t *dev_id) { struct kvm_assigned_pci_dev dev_data = { .segnr = dev_addr->domain, .busnr = dev_addr->bus, .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), .flags = flags, }; int ret; dev_data.assigned_dev_id = (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); if (ret < 0) { return ret; } *dev_id = dev_data.assigned_dev_id; return 0; } int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) { struct kvm_assigned_pci_dev dev_data = { .assigned_dev_id = dev_id, }; return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); } static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, uint32_t irq_type, uint32_t guest_irq) { struct kvm_assigned_irq assigned_irq = { .assigned_dev_id = dev_id, .guest_irq = guest_irq, .flags = irq_type, }; if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); } else { return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); } } int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, uint32_t guest_irq) { uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); } int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) { struct kvm_assigned_pci_dev dev_data = { .assigned_dev_id = dev_id, .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); } static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, uint32_t type) { struct kvm_assigned_irq assigned_irq = { .assigned_dev_id = dev_id, .flags = type, }; return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); } int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); } int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) { return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | KVM_DEV_IRQ_GUEST_MSI, virq); } int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | KVM_DEV_IRQ_HOST_MSI); } bool kvm_device_msix_supported(KVMState *s) { /* The kernel lacks a corresponding KVM_CAP, so we probe by calling * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; } int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, uint32_t nr_vectors) { struct kvm_assigned_msix_nr msix_nr = { .assigned_dev_id = dev_id, .entry_nr = nr_vectors, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); } int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, int virq) { struct kvm_assigned_msix_entry msix_entry = { .assigned_dev_id = dev_id, .gsi = virq, .entry = vector, }; return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); } int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) { return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | KVM_DEV_IRQ_GUEST_MSIX, 0); } int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) { return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | KVM_DEV_IRQ_HOST_MSIX); } int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, uint64_t address, uint32_t data, PCIDevice *dev) { return 0; } int kvm_arch_msi_data_to_gsi(uint32_t data) { abort(); }