/* * i386 helpers (without register variable usage) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA */ #include #include #include #include #include #include #include "cpu.h" #include "exec-all.h" #include "qemu-common.h" #include "kvm.h" //#define DEBUG_MMU /* feature flags taken from "Intel Processor Identification and the CPUID * Instruction" and AMD's "CPUID Specification". In cases of disagreement * about feature names, the Linux name is used. */ static const char *feature_name[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe", }; static const char *ext_feature_name[] = { "pni" /* Intel,AMD sse3 */, NULL, NULL, "monitor", "ds_cpl", "vmx", NULL /* Linux smx */, "est", "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL, NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *ext2_feature_name[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8" /* AMD CMPXCHG8B */, "apic", NULL, "syscall", "mtrr", "pge", "mca", "cmov", "pat", "pse36", NULL, NULL /* Linux mp */, "nx" /* Intel xd */, NULL, "mmxext", "mmx", "fxsr", "fxsr_opt" /* AMD ffxsr */, "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm" /* Intel 64 */, "3dnowext", "3dnow", }; static const char *ext3_feature_name[] = { "lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", NULL /* Linux ibs */, NULL, "skinit", "wdt", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static void add_flagname_to_bitmaps(char *flagname, uint32_t *features, uint32_t *ext_features, uint32_t *ext2_features, uint32_t *ext3_features) { int i; int found = 0; for ( i = 0 ; i < 32 ; i++ ) if (feature_name[i] && !strcmp (flagname, feature_name[i])) { *features |= 1 << i; found = 1; } for ( i = 0 ; i < 32 ; i++ ) if (ext_feature_name[i] && !strcmp (flagname, ext_feature_name[i])) { *ext_features |= 1 << i; found = 1; } for ( i = 0 ; i < 32 ; i++ ) if (ext2_feature_name[i] && !strcmp (flagname, ext2_feature_name[i])) { *ext2_features |= 1 << i; found = 1; } for ( i = 0 ; i < 32 ; i++ ) if (ext3_feature_name[i] && !strcmp (flagname, ext3_feature_name[i])) { *ext3_features |= 1 << i; found = 1; } if (!found) { fprintf(stderr, "CPU feature %s not found\n", flagname); } } static void kvm_trim_features(uint32_t *features, uint32_t supported, const char *names[]) { int i; uint32_t mask; for (i = 0; i < 32; ++i) { mask = 1U << i; if ((*features & mask) && !(supported & mask)) { *features &= ~mask; } } } typedef struct x86_def_t { const char *name; uint32_t level; uint32_t vendor1, vendor2, vendor3; int family; int model; int stepping; uint32_t features, ext_features, ext2_features, ext3_features; uint32_t xlevel; char model_id[48]; int vendor_override; } x86_def_t; #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE) #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX) #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_FXSR) #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE) #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \ CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \ CPUID_PAE | CPUID_SEP | CPUID_APIC) static x86_def_t x86_defs[] = { #ifdef TARGET_X86_64 { .name = "qemu64", .level = 2, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 6, .model = 2, .stepping = 3, .features = PPRO_FEATURES | /* these features are needed for Win64 and aren't fully implemented */ CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | /* this feature is needed for Solaris and isn't fully implemented */ CPUID_PSE36, .ext_features = CPUID_EXT_SSE3, .ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, .ext3_features = CPUID_EXT3_SVM, .xlevel = 0x8000000A, .model_id = "QEMU Virtual CPU version " QEMU_VERSION, }, { .name = "phenom", .level = 5, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 16, .model = 2, .stepping = 3, /* Missing: CPUID_VME, CPUID_HT */ .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* Missing: CPUID_EXT_CX16, CPUID_EXT_POPCNT */ .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR, /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */ .ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT | CPUID_EXT2_FFXSR, /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS */ .ext3_features = CPUID_EXT3_SVM, .xlevel = 0x8000001A, .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor" }, { .name = "core2duo", .level = 10, .family = 6, .model = 15, .stepping = 11, /* The original CPU also implements these features: CPUID_VME, CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* The original CPU also implements these ext features: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CX16, CPUID_EXT_XTPR, CPUID_EXT_PDCM */ .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, /* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */ .xlevel = 0x80000008, .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz", }, #endif { .name = "qemu32", .level = 2, .family = 6, .model = 3, .stepping = 3, .features = PPRO_FEATURES, .ext_features = CPUID_EXT_SSE3, .xlevel = 0, .model_id = "QEMU Virtual CPU version " QEMU_VERSION, }, { .name = "coreduo", .level = 10, .family = 6, .model = 14, .stepping = 8, /* The original CPU also implements these features: CPUID_DTS, CPUID_ACPI, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ .features = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA, /* The original CPU also implements these ext features: CPUID_EXT_VMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM */ .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR, .ext2_features = CPUID_EXT2_NX, .xlevel = 0x80000008, .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz", }, { .name = "486", .level = 0, .family = 4, .model = 0, .stepping = 0, .features = I486_FEATURES, .xlevel = 0, }, { .name = "pentium", .level = 1, .family = 5, .model = 4, .stepping = 3, .features = PENTIUM_FEATURES, .xlevel = 0, }, { .name = "pentium2", .level = 2, .family = 6, .model = 5, .stepping = 2, .features = PENTIUM2_FEATURES, .xlevel = 0, }, { .name = "pentium3", .level = 2, .family = 6, .model = 7, .stepping = 3, .features = PENTIUM3_FEATURES, .xlevel = 0, }, { .name = "athlon", .level = 2, .vendor1 = 0x68747541, /* "Auth" */ .vendor2 = 0x69746e65, /* "enti" */ .vendor3 = 0x444d4163, /* "cAMD" */ .family = 6, .model = 2, .stepping = 3, .features = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA, .ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, .xlevel = 0x80000008, /* XXX: put another string ? */ .model_id = "QEMU Virtual CPU version " QEMU_VERSION, }, { .name = "n270", /* original is on level 10 */ .level = 5, .family = 6, .model = 28, .stepping = 2, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME, /* Missing: CPUID_DTS | CPUID_ACPI | CPUID_SS | * CPUID_HT | CPUID_TM | CPUID_PBE */ /* Some CPUs got no CPUID_SEP */ .ext_features = CPUID_EXT_MONITOR | CPUID_EXT_SSE3 /* PNI */ | CPUID_EXT_SSSE3, /* Missing: CPUID_EXT_DSCPL | CPUID_EXT_EST | * CPUID_EXT_TM2 | CPUID_EXT_XTPR */ .ext2_features = (PPRO_FEATURES & 0x0183F3FF) | CPUID_EXT2_NX, /* Missing: .ext3_features = CPUID_EXT3_LAHF_LM */ .xlevel = 0x8000000A, .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz", }, }; static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *cpu_model) { unsigned int i; x86_def_t *def; char *s = strdup(cpu_model); char *featurestr, *name = strtok(s, ","); uint32_t plus_features = 0, plus_ext_features = 0, plus_ext2_features = 0, plus_ext3_features = 0; uint32_t minus_features = 0, minus_ext_features = 0, minus_ext2_features = 0, minus_ext3_features = 0; int family = -1, model = -1, stepping = -1; def = NULL; for (i = 0; i < ARRAY_SIZE(x86_defs); i++) { if (strcmp(name, x86_defs[i].name) == 0) { def = &x86_defs[i]; break; } } if (!def) goto error; memcpy(x86_cpu_def, def, sizeof(*def)); featurestr = strtok(NULL, ","); while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, &plus_features, &plus_ext_features, &plus_ext2_features, &plus_ext3_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, &minus_features, &minus_ext_features, &minus_ext2_features, &minus_ext3_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; if (!strcmp(featurestr, "family")) { char *err; family = strtol(val, &err, 10); if (!*val || *err || family < 0) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->family = family; } else if (!strcmp(featurestr, "model")) { char *err; model = strtol(val, &err, 10); if (!*val || *err || model < 0 || model > 0xff) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->model = model; } else if (!strcmp(featurestr, "stepping")) { char *err; stepping = strtol(val, &err, 10); if (!*val || *err || stepping < 0 || stepping > 0xf) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->stepping = stepping; } else if (!strcmp(featurestr, "vendor")) { if (strlen(val) != 12) { fprintf(stderr, "vendor string must be 12 chars long\n"); goto error; } x86_cpu_def->vendor1 = 0; x86_cpu_def->vendor2 = 0; x86_cpu_def->vendor3 = 0; for(i = 0; i < 4; i++) { x86_cpu_def->vendor1 |= ((uint8_t)val[i ]) << (8 * i); x86_cpu_def->vendor2 |= ((uint8_t)val[i + 4]) << (8 * i); x86_cpu_def->vendor3 |= ((uint8_t)val[i + 8]) << (8 * i); } x86_cpu_def->vendor_override = 1; } else if (!strcmp(featurestr, "model_id")) { pstrcpy(x86_cpu_def->model_id, sizeof(x86_cpu_def->model_id), val); } else { fprintf(stderr, "unrecognized feature %s\n", featurestr); goto error; } } else { fprintf(stderr, "feature string `%s' not in format (+feature|-feature|feature=xyz)\n", featurestr); goto error; } featurestr = strtok(NULL, ","); } x86_cpu_def->features |= plus_features; x86_cpu_def->ext_features |= plus_ext_features; x86_cpu_def->ext2_features |= plus_ext2_features; x86_cpu_def->ext3_features |= plus_ext3_features; x86_cpu_def->features &= ~minus_features; x86_cpu_def->ext_features &= ~minus_ext_features; x86_cpu_def->ext2_features &= ~minus_ext2_features; x86_cpu_def->ext3_features &= ~minus_ext3_features; free(s); return 0; error: free(s); return -1; } void x86_cpu_list (FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...)) { unsigned int i; for (i = 0; i < ARRAY_SIZE(x86_defs); i++) (*cpu_fprintf)(f, "x86 %16s\n", x86_defs[i].name); } static int cpu_x86_register (CPUX86State *env, const char *cpu_model) { x86_def_t def1, *def = &def1; if (cpu_x86_find_by_name(def, cpu_model) < 0) return -1; if (def->vendor1) { env->cpuid_vendor1 = def->vendor1; env->cpuid_vendor2 = def->vendor2; env->cpuid_vendor3 = def->vendor3; } else { env->cpuid_vendor1 = CPUID_VENDOR_INTEL_1; env->cpuid_vendor2 = CPUID_VENDOR_INTEL_2; env->cpuid_vendor3 = CPUID_VENDOR_INTEL_3; } env->cpuid_vendor_override = def->vendor_override; env->cpuid_level = def->level; if (def->family > 0x0f) env->cpuid_version = 0xf00 | ((def->family - 0x0f) << 20); else env->cpuid_version = def->family << 8; env->cpuid_version |= ((def->model & 0xf) << 4) | ((def->model >> 4) << 16); env->cpuid_version |= def->stepping; env->cpuid_features = def->features; env->pat = 0x0007040600070406ULL; env->cpuid_ext_features = def->ext_features; env->cpuid_ext2_features = def->ext2_features; env->cpuid_xlevel = def->xlevel; env->cpuid_ext3_features = def->ext3_features; { const char *model_id = def->model_id; int c, len, i; if (!model_id) model_id = ""; len = strlen(model_id); for(i = 0; i < 48; i++) { if (i >= len) c = '\0'; else c = (uint8_t)model_id[i]; env->cpuid_model[i >> 2] |= c << (8 * (i & 3)); } } return 0; } /* NOTE: must be called outside the CPU execute loop */ void cpu_reset(CPUX86State *env) { int i; if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP); } memset(env, 0, offsetof(CPUX86State, breakpoints)); tlb_flush(env, 1); env->old_exception = -1; /* init to reset state */ #ifdef CONFIG_SOFTMMU env->hflags |= HF_SOFTMMU_MASK; #endif env->hflags2 |= HF2_GIF_MASK; cpu_x86_update_cr0(env, 0x60000010); env->a20_mask = ~0x0; env->smbase = 0x30000; env->idt.limit = 0xffff; env->gdt.limit = 0xffff; env->ldt.limit = 0xffff; env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT); env->tr.limit = 0xffff; env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT); cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eip = 0xfff0; env->regs[R_EDX] = env->cpuid_version; env->eflags = 0x2; /* FPU init */ for(i = 0;i < 8; i++) env->fptags[i] = 1; env->fpuc = 0x37f; env->mxcsr = 0x1f80; memset(env->dr, 0, sizeof(env->dr)); env->dr[6] = DR6_FIXED_1; env->dr[7] = DR7_FIXED_1; cpu_breakpoint_remove_all(env, BP_CPU); cpu_watchpoint_remove_all(env, BP_CPU); } void cpu_x86_close(CPUX86State *env) { qemu_free(env); } /***********************************************************/ /* x86 debug */ static const char *cc_op_str[] = { "DYNAMIC", "EFLAGS", "MULB", "MULW", "MULL", "MULQ", "ADDB", "ADDW", "ADDL", "ADDQ", "ADCB", "ADCW", "ADCL", "ADCQ", "SUBB", "SUBW", "SUBL", "SUBQ", "SBBB", "SBBW", "SBBL", "SBBQ", "LOGICB", "LOGICW", "LOGICL", "LOGICQ", "INCB", "INCW", "INCL", "INCQ", "DECB", "DECW", "DECL", "DECQ", "SHLB", "SHLW", "SHLL", "SHLQ", "SARB", "SARW", "SARL", "SARQ", }; static void cpu_x86_dump_seg_cache(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), const char *name, struct SegmentCache *sc) { #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name, sc->selector, sc->base, sc->limit, sc->flags); } else #endif { cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector, (uint32_t)sc->base, sc->limit, sc->flags); } if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK)) goto done; cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT); if (sc->flags & DESC_S_MASK) { if (sc->flags & DESC_CS_MASK) { cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" : ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16")); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-', (sc->flags & DESC_R_MASK) ? 'R' : '-'); } else { cpu_fprintf(f, (sc->flags & DESC_B_MASK) ? "DS " : "DS16"); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-', (sc->flags & DESC_W_MASK) ? 'W' : '-'); } cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-'); } else { static const char *sys_type_name[2][16] = { { /* 32 bit mode */ "Reserved", "TSS16-avl", "LDT", "TSS16-busy", "CallGate16", "TaskGate", "IntGate16", "TrapGate16", "Reserved", "TSS32-avl", "Reserved", "TSS32-busy", "CallGate32", "Reserved", "IntGate32", "TrapGate32" }, { /* 64 bit mode */ "", "Reserved", "LDT", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64", "Reserved", "IntGate64", "TrapGate64" } }; cpu_fprintf(f, sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0] [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]); } done: cpu_fprintf(f, "\n"); } void cpu_dump_state(CPUState *env, FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...), int flags) { int eflags, i, nb; char cc_op_name[32]; static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" }; if (kvm_enabled()) kvm_arch_get_registers(env); eflags = env->eflags; #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n" "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n" "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n" "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n" "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15], env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (int)(env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, env->halted); } else #endif { cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n" "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n" "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_EBX], (uint32_t)env->regs[R_ECX], (uint32_t)env->regs[R_EDX], (uint32_t)env->regs[R_ESI], (uint32_t)env->regs[R_EDI], (uint32_t)env->regs[R_EBP], (uint32_t)env->regs[R_ESP], (uint32_t)env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (int)(env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, env->halted); } for(i = 0; i < 6; i++) { cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i], &env->segs[i]); } cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt); cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n", env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n", env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n", (uint32_t)env->cr[0], env->cr[2], env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]); cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n", env->dr[6], env->dr[7]); } else #endif { cpu_fprintf(f, "GDT= %08x %08x\n", (uint32_t)env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %08x %08x\n", (uint32_t)env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n", (uint32_t)env->cr[0], (uint32_t)env->cr[2], (uint32_t)env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) cpu_fprintf(f, "DR%d=%08x ", i, env->dr[i]); cpu_fprintf(f, "\nDR6=%08x DR7=%08x\n", env->dr[6], env->dr[7]); } if (flags & X86_DUMP_CCOP) { if ((unsigned)env->cc_op < CC_OP_NB) snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]); else snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n", env->cc_src, env->cc_dst, cc_op_name); } else #endif { cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n", (uint32_t)env->cc_src, (uint32_t)env->cc_dst, cc_op_name); } } if (flags & X86_DUMP_FPU) { int fptag; fptag = 0; for(i = 0; i < 8; i++) { fptag |= ((!env->fptags[i]) << i); } cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n", env->fpuc, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11, env->fpstt, fptag, env->mxcsr); for(i=0;i<8;i++) { #if defined(USE_X86LDOUBLE) union { long double d; struct { uint64_t lower; uint16_t upper; } l; } tmp; tmp.d = env->fpregs[i].d; cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x", i, tmp.l.lower, tmp.l.upper); #else cpu_fprintf(f, "FPR%d=%016" PRIx64, i, env->fpregs[i].mmx.q); #endif if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } if (env->hflags & HF_CS64_MASK) nb = 16; else nb = 8; for(i=0;ixmm_regs[i].XMM_L(3), env->xmm_regs[i].XMM_L(2), env->xmm_regs[i].XMM_L(1), env->xmm_regs[i].XMM_L(0)); if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } } } /***********************************************************/ /* x86 mmu */ /* XXX: add PGE support */ void cpu_x86_set_a20(CPUX86State *env, int a20_state) { a20_state = (a20_state != 0); if (a20_state != ((env->a20_mask >> 20) & 1)) { #if defined(DEBUG_MMU) printf("A20 update: a20=%d\n", a20_state); #endif /* if the cpu is currently executing code, we must unlink it and all the potentially executing TB */ cpu_interrupt(env, CPU_INTERRUPT_EXITTB); /* when a20 is changed, all the MMU mappings are invalid, so we must flush everything */ tlb_flush(env, 1); env->a20_mask = (~0x100000) | (a20_state << 20); } } void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) { int pe_state; #if defined(DEBUG_MMU) printf("CR0 update: CR0=0x%08x\n", new_cr0); #endif if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { tlb_flush(env, 1); } #ifdef TARGET_X86_64 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LME)) { /* enter in long mode */ /* XXX: generate an exception */ if (!(env->cr[4] & CR4_PAE_MASK)) return; env->efer |= MSR_EFER_LMA; env->hflags |= HF_LMA_MASK; } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LMA)) { /* exit long mode */ env->efer &= ~MSR_EFER_LMA; env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); env->eip &= 0xffffffff; } #endif env->cr[0] = new_cr0 | CR0_ET_MASK; /* update PE flag in hidden flags */ pe_state = (env->cr[0] & CR0_PE_MASK); env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); /* ensure that ADDSEG is always set in real mode */ env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); /* update FPU flags */ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); } /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in the PDPT */ void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) { env->cr[3] = new_cr3; if (env->cr[0] & CR0_PG_MASK) { #if defined(DEBUG_MMU) printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); #endif tlb_flush(env, 0); } } void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) { #if defined(DEBUG_MMU) printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]); #endif if ((new_cr4 & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK)) != (env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) { tlb_flush(env, 1); } /* SSE handling */ if (!(env->cpuid_features & CPUID_SSE)) new_cr4 &= ~CR4_OSFXSR_MASK; if (new_cr4 & CR4_OSFXSR_MASK) env->hflags |= HF_OSFXSR_MASK; else env->hflags &= ~HF_OSFXSR_MASK; env->cr[4] = new_cr4; } #if defined(CONFIG_USER_ONLY) int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, int is_write, int mmu_idx, int is_softmmu) { /* user mode only emulation */ is_write &= 1; env->cr[2] = addr; env->error_code = (is_write << PG_ERROR_W_BIT); env->error_code |= PG_ERROR_U_MASK; env->exception_index = EXCP0E_PAGE; return 1; } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { return addr; } #else /* XXX: This value should match the one returned by CPUID * and in exec.c */ #if defined(CONFIG_KQEMU) #define PHYS_ADDR_MASK 0xfffff000LL #else # if defined(TARGET_X86_64) # define PHYS_ADDR_MASK 0xfffffff000LL # else # define PHYS_ADDR_MASK 0xffffff000LL # endif #endif /* return value: -1 = cannot handle fault 0 = nothing more to do 1 = generate PF fault 2 = soft MMU activation required for this block */ int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, int is_write1, int mmu_idx, int is_softmmu) { uint64_t ptep, pte; target_ulong pde_addr, pte_addr; int error_code, is_dirty, prot, page_size, ret, is_write, is_user; target_phys_addr_t paddr; uint32_t page_offset; target_ulong vaddr, virt_addr; is_user = mmu_idx == MMU_USER_IDX; #if defined(DEBUG_MMU) printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n", addr, is_write1, is_user, env->eip); #endif is_write = is_write1 & 1; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; virt_addr = addr & TARGET_PAGE_MASK; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; page_size = 4096; goto do_mapping; } if (env->cr[4] & CR4_PAE_MASK) { uint64_t pde, pdpe; target_ulong pdpe_addr; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> 47; if (sext != 0 && sext != -1) { env->error_code = 0; env->exception_index = EXCP0D_GPF; return 1; } pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = ldq_phys(pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } if (!(pml4e & PG_ACCESSED_MASK)) { pml4e |= PG_ACCESSED_MASK; stl_phys_notdirty(pml4e_addr, pml4e); } ptep = pml4e ^ PG_NX_MASK; pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pdpe ^ PG_NX_MASK; if (!(pdpe & PG_ACCESSED_MASK)) { pdpe |= PG_ACCESSED_MASK; stl_phys_notdirty(pdpe_addr, pdpe); } } else #endif { /* XXX: load them when cr3 is loaded ? */ pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = ldq_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pde ^ PG_NX_MASK; if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) goto do_fault_protect; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(pde_addr, pde); } /* align to page_size */ pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff); virt_addr = addr & ~(page_size - 1); } else { /* 4 KB page */ if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(pde_addr, pde); } pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; pte = ldq_phys(pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } /* combine pde and pte nx, user and rw protections */ ptep &= pte ^ PG_NX_MASK; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) goto do_fault_protect; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; pte = pte & (PHYS_ADDR_MASK | 0xfff); } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = ldl_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* if PSE bit is set, then we use a 4MB page */ if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { page_size = 4096 * 1024; if (is_user) { if (!(pde & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(pde & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(pde & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(pde_addr, pde); } pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */ ptep = pte; virt_addr = addr & ~(page_size - 1); } else { if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(pde_addr, pde); } /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = ldl_phys(pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* combine pde and pte user and rw protections */ ptep = pte & pde; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; } } /* the page can be put in the TLB */ prot = PAGE_READ; if (!(ptep & PG_NX_MASK)) prot |= PAGE_EXEC; if (pte & PG_DIRTY_MASK) { /* only set write access if already dirty... otherwise wait for dirty access */ if (is_user) { if (ptep & PG_RW_MASK) prot |= PAGE_WRITE; } else { if (!(env->cr[0] & CR0_WP_MASK) || (ptep & PG_RW_MASK)) prot |= PAGE_WRITE; } } do_mapping: pte = pte & env->a20_mask; /* Even if 4MB pages, we map only one 4KB page in the cache to avoid filling it too fast */ page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; vaddr = virt_addr + page_offset; ret = tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu); return ret; do_fault_protect: error_code = PG_ERROR_P_MASK; do_fault: error_code |= (is_write << PG_ERROR_W_BIT); if (is_user) error_code |= PG_ERROR_U_MASK; if (is_write1 == 2 && (env->efer & MSR_EFER_NXE) && (env->cr[4] & CR4_PAE_MASK)) error_code |= PG_ERROR_I_D_MASK; if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { /* cr2 is not modified in case of exceptions */ stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), addr); } else { env->cr[2] = addr; } env->error_code = error_code; env->exception_index = EXCP0E_PAGE; return 1; } target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr) { target_ulong pde_addr, pte_addr; uint64_t pte; target_phys_addr_t paddr; uint32_t page_offset; int page_size; if (env->cr[4] & CR4_PAE_MASK) { target_ulong pdpe_addr; uint64_t pde, pdpe; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> 47; if (sext != 0 && sext != -1) return -1; pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = ldq_phys(pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) return -1; pdpe_addr = ((pml4e & ~0xfff) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } else #endif { pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } pde_addr = ((pdpe & ~0xfff) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = ldq_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) { return -1; } if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */ } else { /* 4 KB page */ pte_addr = ((pde & ~0xfff) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; page_size = 4096; pte = ldq_phys(pte_addr); } if (!(pte & PG_PRESENT_MASK)) return -1; } else { uint32_t pde; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; page_size = 4096; } else { /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = ldl_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde & ~0x003ff000; /* align to 4MB */ page_size = 4096 * 1024; } else { /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = ldl_phys(pte_addr); if (!(pte & PG_PRESENT_MASK)) return -1; page_size = 4096; } } pte = pte & env->a20_mask; } page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; return paddr; } void hw_breakpoint_insert(CPUState *env, int index) { int type, err = 0; switch (hw_breakpoint_type(env->dr[7], index)) { case 0: if (hw_breakpoint_enabled(env->dr[7], index)) err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU, &env->cpu_breakpoint[index]); break; case 1: type = BP_CPU | BP_MEM_WRITE; goto insert_wp; case 2: /* No support for I/O watchpoints yet */ break; case 3: type = BP_CPU | BP_MEM_ACCESS; insert_wp: err = cpu_watchpoint_insert(env, env->dr[index], hw_breakpoint_len(env->dr[7], index), type, &env->cpu_watchpoint[index]); break; } if (err) env->cpu_breakpoint[index] = NULL; } void hw_breakpoint_remove(CPUState *env, int index) { if (!env->cpu_breakpoint[index]) return; switch (hw_breakpoint_type(env->dr[7], index)) { case 0: if (hw_breakpoint_enabled(env->dr[7], index)) cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]); break; case 1: case 3: cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]); break; case 2: /* No support for I/O watchpoints yet */ break; } } int check_hw_breakpoints(CPUState *env, int force_dr6_update) { target_ulong dr6; int reg, type; int hit_enabled = 0; dr6 = env->dr[6] & ~0xf; for (reg = 0; reg < 4; reg++) { type = hw_breakpoint_type(env->dr[7], reg); if ((type == 0 && env->dr[reg] == env->eip) || ((type & 1) && env->cpu_watchpoint[reg] && (env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT))) { dr6 |= 1 << reg; if (hw_breakpoint_enabled(env->dr[7], reg)) hit_enabled = 1; } } if (hit_enabled || force_dr6_update) env->dr[6] = dr6; return hit_enabled; } static CPUDebugExcpHandler *prev_debug_excp_handler; void raise_exception(int exception_index); static void breakpoint_handler(CPUState *env) { CPUBreakpoint *bp; if (env->watchpoint_hit) { if (env->watchpoint_hit->flags & BP_CPU) { env->watchpoint_hit = NULL; if (check_hw_breakpoints(env, 0)) raise_exception(EXCP01_DB); else cpu_resume_from_signal(env, NULL); } } else { TAILQ_FOREACH(bp, &env->breakpoints, entry) if (bp->pc == env->eip) { if (bp->flags & BP_CPU) { check_hw_breakpoints(env, 1); raise_exception(EXCP01_DB); } break; } } if (prev_debug_excp_handler) prev_debug_excp_handler(env); } #endif /* !CONFIG_USER_ONLY */ static void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { #if defined(CONFIG_KVM) uint32_t vec[4]; #ifdef __x86_64__ asm volatile("cpuid" : "=a"(vec[0]), "=b"(vec[1]), "=c"(vec[2]), "=d"(vec[3]) : "0"(function), "c"(count) : "cc"); #else asm volatile("pusha \n\t" "cpuid \n\t" "mov %%eax, 0(%2) \n\t" "mov %%ebx, 4(%2) \n\t" "mov %%ecx, 8(%2) \n\t" "mov %%edx, 12(%2) \n\t" "popa" : : "a"(function), "c"(count), "S"(vec) : "memory", "cc"); #endif if (eax) *eax = vec[0]; if (ebx) *ebx = vec[1]; if (ecx) *ecx = vec[2]; if (edx) *edx = vec[3]; #endif } void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { /* test if maximum index reached */ if (index & 0x80000000) { if (index > env->cpuid_xlevel) index = env->cpuid_level; } else { if (index > env->cpuid_level) index = env->cpuid_level; } switch(index) { case 0: *eax = env->cpuid_level; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; /* sysenter isn't supported on compatibility mode on AMD. and syscall * isn't supported in compatibility mode on Intel. so advertise the * actuall cpu, and say goodbye to migration between different vendors * is you use compatibility mode. */ if (kvm_enabled() && !env->cpuid_vendor_override) host_cpuid(0, 0, NULL, ebx, ecx, edx); break; case 1: *eax = env->cpuid_version; *ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */ *ecx = env->cpuid_ext_features; *edx = env->cpuid_features; /* "Hypervisor present" bit required for Microsoft SVVP */ if (kvm_enabled()) *ecx |= (1 << 31); break; case 2: /* cache info: needed for Pentium Pro compatibility */ *eax = 1; *ebx = 0; *ecx = 0; *edx = 0x2c307d; break; case 4: /* cache info: needed for Core compatibility */ switch (count) { case 0: /* L1 dcache info */ *eax = 0x0000121; *ebx = 0x1c0003f; *ecx = 0x000003f; *edx = 0x0000001; break; case 1: /* L1 icache info */ *eax = 0x0000122; *ebx = 0x1c0003f; *ecx = 0x000003f; *edx = 0x0000001; break; case 2: /* L2 cache info */ *eax = 0x0000143; *ebx = 0x3c0003f; *ecx = 0x0000fff; *edx = 0x0000001; break; default: /* end of info */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } break; case 5: /* mwait info: needed for Core compatibility */ *eax = 0; /* Smallest monitor-line size in bytes */ *ebx = 0; /* Largest monitor-line size in bytes */ *ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE; *edx = 0; break; case 6: /* Thermal and Power Leaf */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 9: /* Direct Cache Access Information Leaf */ *eax = 0; /* Bits 0-31 in DCA_CAP MSR */ *ebx = 0; *ecx = 0; *edx = 0; break; case 0xA: /* Architectural Performance Monitoring Leaf */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 0x80000000: *eax = env->cpuid_xlevel; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 0x80000001: *eax = env->cpuid_features; *ebx = 0; *ecx = env->cpuid_ext3_features; *edx = env->cpuid_ext2_features; if (kvm_enabled()) { uint32_t h_eax, h_edx; host_cpuid(index, 0, &h_eax, NULL, NULL, &h_edx); /* disable CPU features that the host does not support */ /* long mode */ if ((h_edx & 0x20000000) == 0 /* || !lm_capable_kernel */) *edx &= ~0x20000000; /* syscall */ if ((h_edx & 0x00000800) == 0) *edx &= ~0x00000800; /* nx */ if ((h_edx & 0x00100000) == 0) *edx &= ~0x00100000; /* disable CPU features that KVM cannot support */ /* svm */ *ecx &= ~4UL; /* 3dnow */ *edx &= ~0xc0000000; } break; case 0x80000002: case 0x80000003: case 0x80000004: *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0]; *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1]; *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2]; *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3]; break; case 0x80000005: /* cache info (L1 cache) */ *eax = 0x01ff01ff; *ebx = 0x01ff01ff; *ecx = 0x40020140; *edx = 0x40020140; break; case 0x80000006: /* cache info (L2 cache) */ *eax = 0; *ebx = 0x42004200; *ecx = 0x02008140; *edx = 0; break; case 0x80000008: /* virtual & phys address size in low 2 bytes. */ /* XXX: This value must match the one used in the MMU code. */ if (env->cpuid_ext2_features & CPUID_EXT2_LM) { /* 64 bit processor */ #if defined(CONFIG_KQEMU) *eax = 0x00003020; /* 48 bits virtual, 32 bits physical */ #else /* XXX: The physical address space is limited to 42 bits in exec.c. */ *eax = 0x00003028; /* 48 bits virtual, 40 bits physical */ #endif } else { #if defined(CONFIG_KQEMU) *eax = 0x00000020; /* 32 bits physical */ #else if (env->cpuid_features & CPUID_PSE36) *eax = 0x00000024; /* 36 bits physical */ else *eax = 0x00000020; /* 32 bits physical */ #endif } *ebx = 0; *ecx = 0; *edx = 0; break; case 0x8000000A: *eax = 0x00000001; /* SVM Revision */ *ebx = 0x00000010; /* nr of ASIDs */ *ecx = 0; *edx = 0; /* optional features */ break; default: /* reserved values: zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } CPUX86State *cpu_x86_init(const char *cpu_model) { CPUX86State *env; static int inited; env = qemu_mallocz(sizeof(CPUX86State)); cpu_exec_init(env); env->cpu_model_str = cpu_model; /* init various static tables */ if (!inited) { inited = 1; optimize_flags_init(); #ifndef CONFIG_USER_ONLY prev_debug_excp_handler = cpu_set_debug_excp_handler(breakpoint_handler); #endif } if (cpu_x86_register(env, cpu_model) < 0) { cpu_x86_close(env); return NULL; } cpu_reset(env); #ifdef CONFIG_KQEMU kqemu_init(env); #endif qemu_init_vcpu(env); if (kvm_enabled()) { kvm_trim_features(&env->cpuid_features, kvm_arch_get_supported_cpuid(env, 1, R_EDX), feature_name); kvm_trim_features(&env->cpuid_ext_features, kvm_arch_get_supported_cpuid(env, 1, R_ECX), ext_feature_name); kvm_trim_features(&env->cpuid_ext2_features, kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX), ext2_feature_name); kvm_trim_features(&env->cpuid_ext3_features, kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX), ext3_feature_name); } return env; }