/* * i386 helpers (without register variable usage) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "sysemu/kvm.h" #ifndef CONFIG_USER_ONLY #include "sysemu/sysemu.h" #include "monitor/monitor.h" #endif //#define DEBUG_MMU static void cpu_x86_version(CPUX86State *env, int *family, int *model) { int cpuver = env->cpuid_version; if (family == NULL || model == NULL) { return; } *family = (cpuver >> 8) & 0x0f; *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f); } /* Broadcast MCA signal for processor version 06H_EH and above */ int cpu_x86_support_mca_broadcast(CPUX86State *env) { int family = 0; int model = 0; cpu_x86_version(env, &family, &model); if ((family == 6 && model >= 14) || family > 6) { return 1; } return 0; } /***********************************************************/ /* x86 debug */ static const char *cc_op_str[CC_OP_NB] = { "DYNAMIC", "EFLAGS", "MULB", "MULW", "MULL", "MULQ", "ADDB", "ADDW", "ADDL", "ADDQ", "ADCB", "ADCW", "ADCL", "ADCQ", "SUBB", "SUBW", "SUBL", "SUBQ", "SBBB", "SBBW", "SBBL", "SBBQ", "LOGICB", "LOGICW", "LOGICL", "LOGICQ", "INCB", "INCW", "INCL", "INCQ", "DECB", "DECW", "DECL", "DECQ", "SHLB", "SHLW", "SHLL", "SHLQ", "SARB", "SARW", "SARL", "SARQ", "BMILGB", "BMILGW", "BMILGL", "BMILGQ", "ADCX", "ADOX", "ADCOX", "CLR", }; static void cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf, const char *name, struct SegmentCache *sc) { #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name, sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00); } else #endif { cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector, (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00); } if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK)) goto done; cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT); if (sc->flags & DESC_S_MASK) { if (sc->flags & DESC_CS_MASK) { cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" : ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16")); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-', (sc->flags & DESC_R_MASK) ? 'R' : '-'); } else { cpu_fprintf(f, (sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK) ? "DS " : "DS16"); cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-', (sc->flags & DESC_W_MASK) ? 'W' : '-'); } cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-'); } else { static const char *sys_type_name[2][16] = { { /* 32 bit mode */ "Reserved", "TSS16-avl", "LDT", "TSS16-busy", "CallGate16", "TaskGate", "IntGate16", "TrapGate16", "Reserved", "TSS32-avl", "Reserved", "TSS32-busy", "CallGate32", "Reserved", "IntGate32", "TrapGate32" }, { /* 64 bit mode */ "", "Reserved", "LDT", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "Reserved", "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64", "Reserved", "IntGate64", "TrapGate64" } }; cpu_fprintf(f, "%s", sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0] [(sc->flags & DESC_TYPE_MASK) >> DESC_TYPE_SHIFT]); } done: cpu_fprintf(f, "\n"); } #define DUMP_CODE_BYTES_TOTAL 50 #define DUMP_CODE_BYTES_BACKWARD 20 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; int eflags, i, nb; char cc_op_name[32]; static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" }; eflags = cpu_compute_eflags(env); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n" "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n" "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n" "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n" "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP], env->regs[R_ESP], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15], env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } else #endif { cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n" "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n" "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n", (uint32_t)env->regs[R_EAX], (uint32_t)env->regs[R_EBX], (uint32_t)env->regs[R_ECX], (uint32_t)env->regs[R_EDX], (uint32_t)env->regs[R_ESI], (uint32_t)env->regs[R_EDI], (uint32_t)env->regs[R_EBP], (uint32_t)env->regs[R_ESP], (uint32_t)env->eip, eflags, eflags & DF_MASK ? 'D' : '-', eflags & CC_O ? 'O' : '-', eflags & CC_S ? 'S' : '-', eflags & CC_Z ? 'Z' : '-', eflags & CC_A ? 'A' : '-', eflags & CC_P ? 'P' : '-', eflags & CC_C ? 'C' : '-', env->hflags & HF_CPL_MASK, (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1, (env->a20_mask >> 20) & 1, (env->hflags >> HF_SMM_SHIFT) & 1, cs->halted); } for(i = 0; i < 6; i++) { cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i], &env->segs[i]); } cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt); cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr); #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n", env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n", env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n", (uint32_t)env->cr[0], env->cr[2], env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]); cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n", env->dr[6], env->dr[7]); } else #endif { cpu_fprintf(f, "GDT= %08x %08x\n", (uint32_t)env->gdt.base, env->gdt.limit); cpu_fprintf(f, "IDT= %08x %08x\n", (uint32_t)env->idt.base, env->idt.limit); cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n", (uint32_t)env->cr[0], (uint32_t)env->cr[2], (uint32_t)env->cr[3], (uint32_t)env->cr[4]); for(i = 0; i < 4; i++) { cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]); } cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n", env->dr[6], env->dr[7]); } if (flags & CPU_DUMP_CCOP) { if ((unsigned)env->cc_op < CC_OP_NB) snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]); else snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op); #ifdef TARGET_X86_64 if (env->hflags & HF_CS64_MASK) { cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n", env->cc_src, env->cc_dst, cc_op_name); } else #endif { cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n", (uint32_t)env->cc_src, (uint32_t)env->cc_dst, cc_op_name); } } cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer); if (flags & CPU_DUMP_FPU) { int fptag; fptag = 0; for(i = 0; i < 8; i++) { fptag |= ((!env->fptags[i]) << i); } cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n", env->fpuc, (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11, env->fpstt, fptag, env->mxcsr); for(i=0;i<8;i++) { CPU_LDoubleU u; u.d = env->fpregs[i].d; cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x", i, u.l.lower, u.l.upper); if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } if (env->hflags & HF_CS64_MASK) nb = 16; else nb = 8; for(i=0;ixmm_regs[i].XMM_L(3), env->xmm_regs[i].XMM_L(2), env->xmm_regs[i].XMM_L(1), env->xmm_regs[i].XMM_L(0)); if ((i & 1) == 1) cpu_fprintf(f, "\n"); else cpu_fprintf(f, " "); } } if (flags & CPU_DUMP_CODE) { target_ulong base = env->segs[R_CS].base + env->eip; target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD); uint8_t code; char codestr[3]; cpu_fprintf(f, "Code="); for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) { if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) { snprintf(codestr, sizeof(codestr), "%02x", code); } else { snprintf(codestr, sizeof(codestr), "??"); } cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "", i == offs ? "<" : "", codestr, i == offs ? ">" : ""); } cpu_fprintf(f, "\n"); } } /***********************************************************/ /* x86 mmu */ /* XXX: add PGE support */ void x86_cpu_set_a20(X86CPU *cpu, int a20_state) { CPUX86State *env = &cpu->env; a20_state = (a20_state != 0); if (a20_state != ((env->a20_mask >> 20) & 1)) { #if defined(DEBUG_MMU) printf("A20 update: a20=%d\n", a20_state); #endif /* if the cpu is currently executing code, we must unlink it and all the potentially executing TB */ cpu_interrupt(CPU(cpu), CPU_INTERRUPT_EXITTB); /* when a20 is changed, all the MMU mappings are invalid, so we must flush everything */ tlb_flush(env, 1); env->a20_mask = ~(1 << 20) | (a20_state << 20); } } void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0) { int pe_state; #if defined(DEBUG_MMU) printf("CR0 update: CR0=0x%08x\n", new_cr0); #endif if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) != (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) { tlb_flush(env, 1); } #ifdef TARGET_X86_64 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LME)) { /* enter in long mode */ /* XXX: generate an exception */ if (!(env->cr[4] & CR4_PAE_MASK)) return; env->efer |= MSR_EFER_LMA; env->hflags |= HF_LMA_MASK; } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) && (env->efer & MSR_EFER_LMA)) { /* exit long mode */ env->efer &= ~MSR_EFER_LMA; env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK); env->eip &= 0xffffffff; } #endif env->cr[0] = new_cr0 | CR0_ET_MASK; /* update PE flag in hidden flags */ pe_state = (env->cr[0] & CR0_PE_MASK); env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT); /* ensure that ADDSEG is always set in real mode */ env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT); /* update FPU flags */ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) | ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)); } /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in the PDPT */ void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3) { env->cr[3] = new_cr3; if (env->cr[0] & CR0_PG_MASK) { #if defined(DEBUG_MMU) printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3); #endif tlb_flush(env, 0); } } void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4) { #if defined(DEBUG_MMU) printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]); #endif if ((new_cr4 ^ env->cr[4]) & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK | CR4_SMEP_MASK | CR4_SMAP_MASK)) { tlb_flush(env, 1); } /* SSE handling */ if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) { new_cr4 &= ~CR4_OSFXSR_MASK; } env->hflags &= ~HF_OSFXSR_MASK; if (new_cr4 & CR4_OSFXSR_MASK) { env->hflags |= HF_OSFXSR_MASK; } if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) { new_cr4 &= ~CR4_SMAP_MASK; } env->hflags &= ~HF_SMAP_MASK; if (new_cr4 & CR4_SMAP_MASK) { env->hflags |= HF_SMAP_MASK; } env->cr[4] = new_cr4; } #if defined(CONFIG_USER_ONLY) int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int is_write, int mmu_idx) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; /* user mode only emulation */ is_write &= 1; env->cr[2] = addr; env->error_code = (is_write << PG_ERROR_W_BIT); env->error_code |= PG_ERROR_U_MASK; cs->exception_index = EXCP0E_PAGE; return 1; } #else /* XXX: This value should match the one returned by CPUID * and in exec.c */ # if defined(TARGET_X86_64) # define PHYS_ADDR_MASK 0xfffffff000LL # else # define PHYS_ADDR_MASK 0xffffff000LL # endif /* return value: * -1 = cannot handle fault * 0 = nothing more to do * 1 = generate PF fault */ int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int is_write1, int mmu_idx) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; uint64_t ptep, pte; target_ulong pde_addr, pte_addr; int error_code, is_dirty, prot, page_size, is_write, is_user; hwaddr paddr; uint32_t page_offset; target_ulong vaddr, virt_addr; is_user = mmu_idx == MMU_USER_IDX; #if defined(DEBUG_MMU) printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n", addr, is_write1, is_user, env->eip); #endif is_write = is_write1 & 1; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; #ifdef TARGET_X86_64 if (!(env->hflags & HF_LMA_MASK)) { /* Without long mode we can only address 32bits in real mode */ pte = (uint32_t)pte; } #endif virt_addr = addr & TARGET_PAGE_MASK; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; page_size = 4096; goto do_mapping; } if (env->cr[4] & CR4_PAE_MASK) { uint64_t pde, pdpe; target_ulong pdpe_addr; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> 47; if (sext != 0 && sext != -1) { env->error_code = 0; cs->exception_index = EXCP0D_GPF; return 1; } pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = ldq_phys(cs->as, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } if (!(pml4e & PG_ACCESSED_MASK)) { pml4e |= PG_ACCESSED_MASK; stl_phys_notdirty(cs->as, pml4e_addr, pml4e); } ptep = pml4e ^ PG_NX_MASK; pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = ldq_phys(cs->as, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pdpe ^ PG_NX_MASK; if (!(pdpe & PG_ACCESSED_MASK)) { pdpe |= PG_ACCESSED_MASK; stl_phys_notdirty(cs->as, pdpe_addr, pdpe); } } else #endif { /* XXX: load them when cr3 is loaded ? */ pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = ldq_phys(cs->as, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = ldq_phys(cs->as, pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pde ^ PG_NX_MASK; if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) { goto do_fault_protect; } switch (mmu_idx) { case MMU_USER_IDX: if (!(ptep & PG_USER_MASK)) { goto do_fault_protect; } if (is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; case MMU_KERNEL_IDX: if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } /* fall through */ case MMU_KSMAP_IDX: if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; default: /* cannot happen */ break; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(cs->as, pde_addr, pde); } /* align to page_size */ pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff); virt_addr = addr & ~(page_size - 1); } else { /* 4 KB page */ if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(cs->as, pde_addr, pde); } pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; pte = ldq_phys(cs->as, pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } /* combine pde and pte nx, user and rw protections */ ptep &= pte ^ PG_NX_MASK; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) goto do_fault_protect; switch (mmu_idx) { case MMU_USER_IDX: if (!(ptep & PG_USER_MASK)) { goto do_fault_protect; } if (is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; case MMU_KERNEL_IDX: if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } /* fall through */ case MMU_KSMAP_IDX: if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; default: /* cannot happen */ break; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(cs->as, pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; pte = pte & (PHYS_ADDR_MASK | 0xfff); } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = ldl_phys(cs->as, pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* if PSE bit is set, then we use a 4MB page */ if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { page_size = 4096 * 1024; switch (mmu_idx) { case MMU_USER_IDX: if (!(pde & PG_USER_MASK)) { goto do_fault_protect; } if (is_write && !(pde & PG_RW_MASK)) { goto do_fault_protect; } break; case MMU_KERNEL_IDX: if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) && (pde & PG_USER_MASK)) { goto do_fault_protect; } /* fall through */ case MMU_KSMAP_IDX: if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) && (pde & PG_USER_MASK)) { goto do_fault_protect; } if ((env->cr[0] & CR0_WP_MASK) && is_write && !(pde & PG_RW_MASK)) { goto do_fault_protect; } break; default: /* cannot happen */ break; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(cs->as, pde_addr, pde); } pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */ ptep = pte; virt_addr = addr & ~(page_size - 1); } else { if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(cs->as, pde_addr, pde); } /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = ldl_phys(cs->as, pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* combine pde and pte user and rw protections */ ptep = pte & pde; switch (mmu_idx) { case MMU_USER_IDX: if (!(ptep & PG_USER_MASK)) { goto do_fault_protect; } if (is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; case MMU_KERNEL_IDX: if (is_write1 != 2 && (env->cr[4] & CR4_SMAP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } /* fall through */ case MMU_KSMAP_IDX: if (is_write1 == 2 && (env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)) { goto do_fault_protect; } if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) { goto do_fault_protect; } break; default: /* cannot happen */ break; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(cs->as, pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; } } /* the page can be put in the TLB */ prot = PAGE_READ; if (!(ptep & PG_NX_MASK)) prot |= PAGE_EXEC; if (pte & PG_DIRTY_MASK) { /* only set write access if already dirty... otherwise wait for dirty access */ if (is_user) { if (ptep & PG_RW_MASK) prot |= PAGE_WRITE; } else { if (!(env->cr[0] & CR0_WP_MASK) || (ptep & PG_RW_MASK)) prot |= PAGE_WRITE; } } do_mapping: pte = pte & env->a20_mask; /* Even if 4MB pages, we map only one 4KB page in the cache to avoid filling it too fast */ page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; vaddr = virt_addr + page_offset; tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size); return 0; do_fault_protect: error_code = PG_ERROR_P_MASK; do_fault: error_code |= (is_write << PG_ERROR_W_BIT); if (is_user) error_code |= PG_ERROR_U_MASK; if (is_write1 == 2 && (((env->efer & MSR_EFER_NXE) && (env->cr[4] & CR4_PAE_MASK)) || (env->cr[4] & CR4_SMEP_MASK))) error_code |= PG_ERROR_I_D_MASK; if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { /* cr2 is not modified in case of exceptions */ stq_phys(cs->as, env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), addr); } else { env->cr[2] = addr; } env->error_code = error_code; cs->exception_index = EXCP0E_PAGE; return 1; } hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; target_ulong pde_addr, pte_addr; uint64_t pte; hwaddr paddr; uint32_t page_offset; int page_size; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr & env->a20_mask; page_size = 4096; } else if (env->cr[4] & CR4_PAE_MASK) { target_ulong pdpe_addr; uint64_t pde, pdpe; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> 47; if (sext != 0 && sext != -1) return -1; pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = ldq_phys(cs->as, pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) return -1; pdpe_addr = ((pml4e & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = ldq_phys(cs->as, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } else #endif { pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = ldq_phys(cs->as, pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) return -1; } pde_addr = ((pdpe & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = ldq_phys(cs->as, pde_addr); if (!(pde & PG_PRESENT_MASK)) { return -1; } if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */ } else { /* 4 KB page */ pte_addr = ((pde & ~0xfff & ~(PG_NX_MASK | PG_HI_USER_MASK)) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; page_size = 4096; pte = ldq_phys(cs->as, pte_addr); } pte &= ~(PG_NX_MASK | PG_HI_USER_MASK); if (!(pte & PG_PRESENT_MASK)) return -1; } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = ldl_phys(cs->as, pde_addr); if (!(pde & PG_PRESENT_MASK)) return -1; if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { pte = pde & ~0x003ff000; /* align to 4MB */ page_size = 4096 * 1024; } else { /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = ldl_phys(cs->as, pte_addr); if (!(pte & PG_PRESENT_MASK)) return -1; page_size = 4096; } pte = pte & env->a20_mask; } page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; return paddr; } void hw_breakpoint_insert(CPUX86State *env, int index) { int type = 0, err = 0; switch (hw_breakpoint_type(env->dr[7], index)) { case DR7_TYPE_BP_INST: if (hw_breakpoint_enabled(env->dr[7], index)) { err = cpu_breakpoint_insert(env, env->dr[index], BP_CPU, &env->cpu_breakpoint[index]); } break; case DR7_TYPE_DATA_WR: type = BP_CPU | BP_MEM_WRITE; break; case DR7_TYPE_IO_RW: /* No support for I/O watchpoints yet */ break; case DR7_TYPE_DATA_RW: type = BP_CPU | BP_MEM_ACCESS; break; } if (type != 0) { err = cpu_watchpoint_insert(env, env->dr[index], hw_breakpoint_len(env->dr[7], index), type, &env->cpu_watchpoint[index]); } if (err) { env->cpu_breakpoint[index] = NULL; } } void hw_breakpoint_remove(CPUX86State *env, int index) { if (!env->cpu_breakpoint[index]) return; switch (hw_breakpoint_type(env->dr[7], index)) { case DR7_TYPE_BP_INST: if (hw_breakpoint_enabled(env->dr[7], index)) { cpu_breakpoint_remove_by_ref(env, env->cpu_breakpoint[index]); } break; case DR7_TYPE_DATA_WR: case DR7_TYPE_DATA_RW: cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[index]); break; case DR7_TYPE_IO_RW: /* No support for I/O watchpoints yet */ break; } } bool check_hw_breakpoints(CPUX86State *env, bool force_dr6_update) { target_ulong dr6; int reg; bool hit_enabled = false; dr6 = env->dr[6] & ~0xf; for (reg = 0; reg < DR7_MAX_BP; reg++) { bool bp_match = false; bool wp_match = false; switch (hw_breakpoint_type(env->dr[7], reg)) { case DR7_TYPE_BP_INST: if (env->dr[reg] == env->eip) { bp_match = true; } break; case DR7_TYPE_DATA_WR: case DR7_TYPE_DATA_RW: if (env->cpu_watchpoint[reg] && env->cpu_watchpoint[reg]->flags & BP_WATCHPOINT_HIT) { wp_match = true; } break; case DR7_TYPE_IO_RW: break; } if (bp_match || wp_match) { dr6 |= 1 << reg; if (hw_breakpoint_enabled(env->dr[7], reg)) { hit_enabled = true; } } } if (hit_enabled || force_dr6_update) { env->dr[6] = dr6; } return hit_enabled; } void breakpoint_handler(CPUX86State *env) { CPUState *cs = CPU(x86_env_get_cpu(env)); CPUBreakpoint *bp; if (cs->watchpoint_hit) { if (cs->watchpoint_hit->flags & BP_CPU) { cs->watchpoint_hit = NULL; if (check_hw_breakpoints(env, false)) { raise_exception(env, EXCP01_DB); } else { cpu_resume_from_signal(env, NULL); } } } else { QTAILQ_FOREACH(bp, &cs->breakpoints, entry) { if (bp->pc == env->eip) { if (bp->flags & BP_CPU) { check_hw_breakpoints(env, true); raise_exception(env, EXCP01_DB); } break; } } } } typedef struct MCEInjectionParams { Monitor *mon; X86CPU *cpu; int bank; uint64_t status; uint64_t mcg_status; uint64_t addr; uint64_t misc; int flags; } MCEInjectionParams; static void do_inject_x86_mce(void *data) { MCEInjectionParams *params = data; CPUX86State *cenv = ¶ms->cpu->env; CPUState *cpu = CPU(params->cpu); uint64_t *banks = cenv->mce_banks + 4 * params->bank; cpu_synchronize_state(cpu); /* * If there is an MCE exception being processed, ignore this SRAO MCE * unless unconditional injection was requested. */ if (!(params->flags & MCE_INJECT_UNCOND_AO) && !(params->status & MCI_STATUS_AR) && (cenv->mcg_status & MCG_STATUS_MCIP)) { return; } if (params->status & MCI_STATUS_UC) { /* * if MSR_MCG_CTL is not all 1s, the uncorrected error * reporting is disabled */ if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled\n", cpu->cpu_index); return; } /* * if MSR_MCi_CTL is not all 1s, the uncorrected error * reporting is disabled for the bank */ if (banks[0] != ~(uint64_t)0) { monitor_printf(params->mon, "CPU %d: Uncorrected error reporting disabled for" " bank %d\n", cpu->cpu_index, params->bank); return; } if ((cenv->mcg_status & MCG_STATUS_MCIP) || !(cenv->cr[4] & CR4_MCE_MASK)) { monitor_printf(params->mon, "CPU %d: Previous MCE still in progress, raising" " triple fault\n", cpu->cpu_index); qemu_log_mask(CPU_LOG_RESET, "Triple fault\n"); qemu_system_reset_request(); return; } if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; cenv->mcg_status = params->mcg_status; banks[1] = params->status; cpu_interrupt(cpu, CPU_INTERRUPT_MCE); } else if (!(banks[1] & MCI_STATUS_VAL) || !(banks[1] & MCI_STATUS_UC)) { if (banks[1] & MCI_STATUS_VAL) { params->status |= MCI_STATUS_OVER; } banks[2] = params->addr; banks[3] = params->misc; banks[1] = params->status; } else { banks[1] |= MCI_STATUS_OVER; } } void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank, uint64_t status, uint64_t mcg_status, uint64_t addr, uint64_t misc, int flags) { CPUState *cs = CPU(cpu); CPUX86State *cenv = &cpu->env; MCEInjectionParams params = { .mon = mon, .cpu = cpu, .bank = bank, .status = status, .mcg_status = mcg_status, .addr = addr, .misc = misc, .flags = flags, }; unsigned bank_num = cenv->mcg_cap & 0xff; if (!cenv->mcg_cap) { monitor_printf(mon, "MCE injection not supported\n"); return; } if (bank >= bank_num) { monitor_printf(mon, "Invalid MCE bank number\n"); return; } if (!(status & MCI_STATUS_VAL)) { monitor_printf(mon, "Invalid MCE status code\n"); return; } if ((flags & MCE_INJECT_BROADCAST) && !cpu_x86_support_mca_broadcast(cenv)) { monitor_printf(mon, "Guest CPU does not support MCA broadcast\n"); return; } run_on_cpu(cs, do_inject_x86_mce, ¶ms); if (flags & MCE_INJECT_BROADCAST) { CPUState *other_cs; params.bank = 1; params.status = MCI_STATUS_VAL | MCI_STATUS_UC; params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; params.addr = 0; params.misc = 0; CPU_FOREACH(other_cs) { if (other_cs == cs) { continue; } params.cpu = X86_CPU(other_cs); run_on_cpu(other_cs, do_inject_x86_mce, ¶ms); } } } void cpu_report_tpr_access(CPUX86State *env, TPRAccess access) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); if (kvm_enabled()) { env->tpr_access_type = access; cpu_interrupt(cs, CPU_INTERRUPT_TPR); } else { cpu_restore_state(env, cs->mem_io_pc); apic_handle_tpr_access_report(cpu->apic_state, env->eip, access); } } #endif /* !CONFIG_USER_ONLY */ int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector, target_ulong *base, unsigned int *limit, unsigned int *flags) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); SegmentCache *dt; target_ulong ptr; uint32_t e1, e2; int index; if (selector & 0x4) dt = &env->ldt; else dt = &env->gdt; index = selector & ~7; ptr = dt->base + index; if ((index + 7) > dt->limit || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0) return 0; *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000)); *limit = (e1 & 0xffff) | (e2 & 0x000f0000); if (e2 & DESC_G_MASK) *limit = (*limit << 12) | 0xfff; *flags = e2; return 1; } #if !defined(CONFIG_USER_ONLY) void do_cpu_init(X86CPU *cpu) { CPUState *cs = CPU(cpu); CPUX86State *env = &cpu->env; int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI; uint64_t pat = env->pat; cpu_reset(cs); cs->interrupt_request = sipi; env->pat = pat; apic_init_reset(cpu->apic_state); } void do_cpu_sipi(X86CPU *cpu) { apic_sipi(cpu->apic_state); } #else void do_cpu_init(X86CPU *cpu) { } void do_cpu_sipi(X86CPU *cpu) { } #endif