/* * i386 execution defines * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "config.h" #include "dyngen-exec.h" /* XXX: factorize this mess */ #ifdef TARGET_X86_64 #define TARGET_LONG_BITS 64 #else #define TARGET_LONG_BITS 32 #endif #include "cpu-defs.h" register struct CPUX86State *env asm(AREG0); #include "qemu-common.h" #include "qemu-log.h" #undef EAX #define EAX (env->regs[R_EAX]) #undef ECX #define ECX (env->regs[R_ECX]) #undef EDX #define EDX (env->regs[R_EDX]) #undef EBX #define EBX (env->regs[R_EBX]) #undef ESP #define ESP (env->regs[R_ESP]) #undef EBP #define EBP (env->regs[R_EBP]) #undef ESI #define ESI (env->regs[R_ESI]) #undef EDI #define EDI (env->regs[R_EDI]) #undef EIP #define EIP (env->eip) #define DF (env->df) #define CC_SRC (env->cc_src) #define CC_DST (env->cc_dst) #define CC_OP (env->cc_op) /* float macros */ #define FT0 (env->ft0) #define ST0 (env->fpregs[env->fpstt].d) #define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d) #define ST1 ST(1) #include "cpu.h" #include "exec-all.h" /* op_helper.c */ void do_interrupt(int intno, int is_int, int error_code, target_ulong next_eip, int is_hw); void do_interrupt_user(int intno, int is_int, int error_code, target_ulong next_eip); void QEMU_NORETURN raise_exception_err(int exception_index, int error_code); void QEMU_NORETURN raise_exception(int exception_index); void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv); void do_smm_enter(void); /* n must be a constant to be efficient */ static inline target_long lshift(target_long x, int n) { if (n >= 0) return x << n; else return x >> (-n); } #include "helper.h" static inline void svm_check_intercept(uint32_t type) { helper_svm_check_intercept_param(type, 0); } #if !defined(CONFIG_USER_ONLY) #include "softmmu_exec.h" #endif /* !defined(CONFIG_USER_ONLY) */ #ifdef USE_X86LDOUBLE /* use long double functions */ #define floatx_to_int32 floatx80_to_int32 #define floatx_to_int64 floatx80_to_int64 #define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero #define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero #define int32_to_floatx int32_to_floatx80 #define int64_to_floatx int64_to_floatx80 #define float32_to_floatx float32_to_floatx80 #define float64_to_floatx float64_to_floatx80 #define floatx_to_float32 floatx80_to_float32 #define floatx_to_float64 floatx80_to_float64 #define floatx_abs floatx80_abs #define floatx_chs floatx80_chs #define floatx_round_to_int floatx80_round_to_int #define floatx_compare floatx80_compare #define floatx_compare_quiet floatx80_compare_quiet #else #define floatx_to_int32 float64_to_int32 #define floatx_to_int64 float64_to_int64 #define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero #define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero #define int32_to_floatx int32_to_float64 #define int64_to_floatx int64_to_float64 #define float32_to_floatx float32_to_float64 #define float64_to_floatx(x, e) (x) #define floatx_to_float32 float64_to_float32 #define floatx_to_float64(x, e) (x) #define floatx_abs float64_abs #define floatx_chs float64_chs #define floatx_round_to_int float64_round_to_int #define floatx_compare float64_compare #define floatx_compare_quiet float64_compare_quiet #endif #define RC_MASK 0xc00 #define RC_NEAR 0x000 #define RC_DOWN 0x400 #define RC_UP 0x800 #define RC_CHOP 0xc00 #define MAXTAN 9223372036854775808.0 #ifdef USE_X86LDOUBLE /* only for x86 */ typedef CPU_LDoubleU CPU86_LDoubleU; /* the following deal with x86 long double-precision numbers */ #define MAXEXPD 0x7fff #define EXPBIAS 16383 #define EXPD(fp) (fp.l.upper & 0x7fff) #define SIGND(fp) ((fp.l.upper) & 0x8000) #define MANTD(fp) (fp.l.lower) #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS #else typedef CPU_DoubleU CPU86_LDoubleU; /* the following deal with IEEE double-precision numbers */ #define MAXEXPD 0x7ff #define EXPBIAS 1023 #define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF) #define SIGND(fp) ((fp.l.upper) & 0x80000000) #ifdef __arm__ #define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32)) #else #define MANTD(fp) (fp.ll & ((1LL << 52) - 1)) #endif #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20) #endif static inline void fpush(void) { env->fpstt = (env->fpstt - 1) & 7; env->fptags[env->fpstt] = 0; /* validate stack entry */ } static inline void fpop(void) { env->fptags[env->fpstt] = 1; /* invvalidate stack entry */ env->fpstt = (env->fpstt + 1) & 7; } #ifndef USE_X86LDOUBLE static inline CPU86_LDouble helper_fldt(target_ulong ptr) { CPU86_LDoubleU temp; int upper, e; uint64_t ll; /* mantissa */ upper = lduw(ptr + 8); /* XXX: handle overflow ? */ e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */ e |= (upper >> 4) & 0x800; /* sign */ ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1); #ifdef __arm__ temp.l.upper = (e << 20) | (ll >> 32); temp.l.lower = ll; #else temp.ll = ll | ((uint64_t)e << 52); #endif return temp.d; } static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr) { CPU86_LDoubleU temp; int e; temp.d = f; /* mantissa */ stq(ptr, (MANTD(temp) << 11) | (1LL << 63)); /* exponent + sign */ e = EXPD(temp) - EXPBIAS + 16383; e |= SIGND(temp) >> 16; stw(ptr + 8, e); } #else /* we use memory access macros */ static inline CPU86_LDouble helper_fldt(target_ulong ptr) { CPU86_LDoubleU temp; temp.l.lower = ldq(ptr); temp.l.upper = lduw(ptr + 8); return temp.d; } static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr) { CPU86_LDoubleU temp; temp.d = f; stq(ptr, temp.l.lower); stw(ptr + 8, temp.l.upper); } #endif /* USE_X86LDOUBLE */ #define FPUS_IE (1 << 0) #define FPUS_DE (1 << 1) #define FPUS_ZE (1 << 2) #define FPUS_OE (1 << 3) #define FPUS_UE (1 << 4) #define FPUS_PE (1 << 5) #define FPUS_SF (1 << 6) #define FPUS_SE (1 << 7) #define FPUS_B (1 << 15) #define FPUC_EM 0x3f static inline uint32_t compute_eflags(void) { return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK); } /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */ static inline void load_eflags(int eflags, int update_mask) { CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); DF = 1 - (2 * ((eflags >> 10) & 1)); env->eflags = (env->eflags & ~update_mask) | (eflags & update_mask) | 0x2; } static inline int cpu_has_work(CPUState *env) { return ((env->interrupt_request & CPU_INTERRUPT_HARD) && (env->eflags & IF_MASK)) || (env->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_INIT | CPU_INTERRUPT_SIPI | CPU_INTERRUPT_MCE)); } /* load efer and update the corresponding hflags. XXX: do consistency checks with cpuid bits ? */ static inline void cpu_load_efer(CPUState *env, uint64_t val) { env->efer = val; env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK); if (env->efer & MSR_EFER_LMA) env->hflags |= HF_LMA_MASK; if (env->efer & MSR_EFER_SVME) env->hflags |= HF_SVME_MASK; } static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb) { env->eip = tb->pc - tb->cs_base; }