/* * i386 CPUID helper functions * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include #include #include #include #include "cpu.h" #include "sysemu/kvm.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qapi/qmp/qerror.h" #include "qapi/visitor.h" #include "sysemu/arch_init.h" #include "hyperv.h" #include "hw/hw.h" #if defined(CONFIG_KVM) #include #endif #include "sysemu/sysemu.h" #ifndef CONFIG_USER_ONLY #include "hw/xen.h" #include "hw/sysbus.h" #include "hw/apic_internal.h" #endif /* feature flags taken from "Intel Processor Identification and the CPUID * Instruction" and AMD's "CPUID Specification". In cases of disagreement * between feature naming conventions, aliases may be added. */ static const char *feature_name[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe", }; static const char *ext_feature_name[] = { "pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor", "ds_cpl", "vmx", "smx", "est", "tm2", "ssse3", "cid", NULL, "fma", "cx16", "xtpr", "pdcm", NULL, "pcid", "dca", "sse4.1|sse4_1", "sse4.2|sse4_2", "x2apic", "movbe", "popcnt", "tsc-deadline", "aes", "xsave", "osxsave", "avx", "f16c", "rdrand", "hypervisor", }; /* Feature names that are already defined on feature_name[] but are set on * CPUID[8000_0001].EDX on AMD CPUs don't have their names on * ext2_feature_name[]. They are copied automatically to cpuid_ext2_features * if and only if CPU vendor is AMD. */ static const char *ext2_feature_name[] = { NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */, NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */, NULL /* cx8 */ /* AMD CMPXCHG8B */, NULL /* apic */, NULL, "syscall", NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */, NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */, "nx|xd", NULL, "mmxext", NULL /* mmx */, NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm|i64", "3dnowext", "3dnow", }; static const char *ext3_feature_name[] = { "lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", "ibs", "xop", "skinit", "wdt", NULL, "lwp", "fma4", "tce", NULL, "nodeid_msr", NULL, "tbm", "topoext", "perfctr_core", "perfctr_nb", NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *ext4_feature_name[] = { NULL, NULL, "xstore", "xstore-en", NULL, NULL, "xcrypt", "xcrypt-en", "ace2", "ace2-en", "phe", "phe-en", "pmm", "pmm-en", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *kvm_feature_name[] = { "kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock", "kvm_asyncpf", "kvm_steal_time", "kvm_pv_eoi", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *svm_feature_name[] = { "npt", "lbrv", "svm_lock", "nrip_save", "tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists", NULL, NULL, "pause_filter", NULL, "pfthreshold", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *cpuid_7_0_ebx_feature_name[] = { "fsgsbase", NULL, NULL, "bmi1", "hle", "avx2", NULL, "smep", "bmi2", "erms", "invpcid", "rtm", NULL, NULL, NULL, NULL, NULL, NULL, "rdseed", "adx", "smap", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; typedef struct FeatureWordInfo { const char **feat_names; uint32_t cpuid_eax; /* Input EAX for CPUID */ int cpuid_reg; /* R_* register constant */ } FeatureWordInfo; static FeatureWordInfo feature_word_info[FEATURE_WORDS] = { [FEAT_1_EDX] = { .feat_names = feature_name, .cpuid_eax = 1, .cpuid_reg = R_EDX, }, [FEAT_1_ECX] = { .feat_names = ext_feature_name, .cpuid_eax = 1, .cpuid_reg = R_ECX, }, [FEAT_8000_0001_EDX] = { .feat_names = ext2_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_EDX, }, [FEAT_8000_0001_ECX] = { .feat_names = ext3_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_ECX, }, [FEAT_C000_0001_EDX] = { .feat_names = ext4_feature_name, .cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX, }, [FEAT_KVM] = { .feat_names = kvm_feature_name, .cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX, }, [FEAT_SVM] = { .feat_names = svm_feature_name, .cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX, }, [FEAT_7_0_EBX] = { .feat_names = cpuid_7_0_ebx_feature_name, .cpuid_eax = 7, .cpuid_reg = R_EBX, }, }; const char *get_register_name_32(unsigned int reg) { static const char *reg_names[CPU_NB_REGS32] = { [R_EAX] = "EAX", [R_ECX] = "ECX", [R_EDX] = "EDX", [R_EBX] = "EBX", [R_ESP] = "ESP", [R_EBP] = "EBP", [R_ESI] = "ESI", [R_EDI] = "EDI", }; if (reg > CPU_NB_REGS32) { return NULL; } return reg_names[reg]; } /* collects per-function cpuid data */ typedef struct model_features_t { uint32_t *guest_feat; uint32_t *host_feat; FeatureWord feat_word; } model_features_t; int check_cpuid = 0; int enforce_cpuid = 0; #if defined(CONFIG_KVM) static uint32_t kvm_default_features = (1 << KVM_FEATURE_CLOCKSOURCE) | (1 << KVM_FEATURE_NOP_IO_DELAY) | (1 << KVM_FEATURE_CLOCKSOURCE2) | (1 << KVM_FEATURE_ASYNC_PF) | (1 << KVM_FEATURE_STEAL_TIME) | (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT); static const uint32_t kvm_pv_eoi_features = (0x1 << KVM_FEATURE_PV_EOI); #else static uint32_t kvm_default_features = 0; static const uint32_t kvm_pv_eoi_features = 0; #endif void enable_kvm_pv_eoi(void) { kvm_default_features |= kvm_pv_eoi_features; } void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { #if defined(CONFIG_KVM) uint32_t vec[4]; #ifdef __x86_64__ asm volatile("cpuid" : "=a"(vec[0]), "=b"(vec[1]), "=c"(vec[2]), "=d"(vec[3]) : "0"(function), "c"(count) : "cc"); #else asm volatile("pusha \n\t" "cpuid \n\t" "mov %%eax, 0(%2) \n\t" "mov %%ebx, 4(%2) \n\t" "mov %%ecx, 8(%2) \n\t" "mov %%edx, 12(%2) \n\t" "popa" : : "a"(function), "c"(count), "S"(vec) : "memory", "cc"); #endif if (eax) *eax = vec[0]; if (ebx) *ebx = vec[1]; if (ecx) *ecx = vec[2]; if (edx) *edx = vec[3]; #endif } #define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c))) /* general substring compare of *[s1..e1) and *[s2..e2). sx is start of * a substring. ex if !NULL points to the first char after a substring, * otherwise the string is assumed to sized by a terminating nul. * Return lexical ordering of *s1:*s2. */ static int sstrcmp(const char *s1, const char *e1, const char *s2, const char *e2) { for (;;) { if (!*s1 || !*s2 || *s1 != *s2) return (*s1 - *s2); ++s1, ++s2; if (s1 == e1 && s2 == e2) return (0); else if (s1 == e1) return (*s2); else if (s2 == e2) return (*s1); } } /* compare *[s..e) to *altstr. *altstr may be a simple string or multiple * '|' delimited (possibly empty) strings in which case search for a match * within the alternatives proceeds left to right. Return 0 for success, * non-zero otherwise. */ static int altcmp(const char *s, const char *e, const char *altstr) { const char *p, *q; for (q = p = altstr; ; ) { while (*p && *p != '|') ++p; if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p))) return (0); if (!*p) return (1); else q = ++p; } } /* search featureset for flag *[s..e), if found set corresponding bit in * *pval and return true, otherwise return false */ static bool lookup_feature(uint32_t *pval, const char *s, const char *e, const char **featureset) { uint32_t mask; const char **ppc; bool found = false; for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) { if (*ppc && !altcmp(s, e, *ppc)) { *pval |= mask; found = true; } } return found; } static void add_flagname_to_bitmaps(const char *flagname, FeatureWordArray words) { FeatureWord w; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; if (wi->feat_names && lookup_feature(&words[w], flagname, NULL, wi->feat_names)) { break; } } if (w == FEATURE_WORDS) { fprintf(stderr, "CPU feature %s not found\n", flagname); } } typedef struct x86_def_t { struct x86_def_t *next; const char *name; uint32_t level; uint32_t vendor1, vendor2, vendor3; int family; int model; int stepping; int tsc_khz; uint32_t features, ext_features, ext2_features, ext3_features; uint32_t kvm_features, svm_features; uint32_t xlevel; char model_id[48]; int vendor_override; /* Store the results of Centaur's CPUID instructions */ uint32_t ext4_features; uint32_t xlevel2; /* The feature bits on CPUID[EAX=7,ECX=0].EBX */ uint32_t cpuid_7_0_ebx_features; } x86_def_t; #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE) #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC) #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_FXSR) #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE) #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \ CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \ CPUID_PAE | CPUID_SEP | CPUID_APIC) #define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \ CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \ CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS) /* partly implemented: CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) CPUID_PSE36 (needed for Solaris) */ /* missing: CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ #define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | \ CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT | \ CPUID_EXT_HYPERVISOR) /* missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_XSAVE */ #define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \ CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \ CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT) /* missing: CPUID_EXT2_PDPE1GB */ #define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \ CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A) #define TCG_SVM_FEATURES 0 #define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP) /* maintains list of cpu model definitions */ static x86_def_t *x86_defs = {NULL}; /* built-in cpu model definitions (deprecated) */ static x86_def_t builtin_x86_defs[] = { { .name = "qemu64", .level = 4, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 6, .model = 2, .stepping = 3, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, .ext2_features = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .ext3_features = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, .xlevel = 0x8000000A, }, { .name = "phenom", .level = 5, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 16, .model = 2, .stepping = 3, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_HT, .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, .ext2_features = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT | CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP, /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS */ .ext3_features = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, .svm_features = CPUID_SVM_NPT | CPUID_SVM_LBRV, .xlevel = 0x8000001A, .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor" }, { .name = "core2duo", .level = 10, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 15, .stepping = 11, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_DTES64 | CPUID_EXT_DSCPL | CPUID_EXT_VMX | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_CX16 | CPUID_EXT_XTPR | CPUID_EXT_PDCM, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz", }, { .name = "kvm64", .level = 5, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 15, .model = 6, .stepping = 1, /* Missing: CPUID_VME, CPUID_HT */ .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */ .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_CX16, /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */ .ext2_features = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */ .ext3_features = 0, .xlevel = 0x80000008, .model_id = "Common KVM processor" }, { .name = "qemu32", .level = 4, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 3, .stepping = 3, .features = PPRO_FEATURES, .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_POPCNT, .xlevel = 0x80000004, }, { .name = "kvm32", .level = 5, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 15, .model = 6, .stepping = 1, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .ext_features = CPUID_EXT_SSE3, .ext2_features = PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES, .ext3_features = 0, .xlevel = 0x80000008, .model_id = "Common 32-bit KVM processor" }, { .name = "coreduo", .level = 10, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 14, .stepping = 8, .features = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_VMX | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR | CPUID_EXT_PDCM, .ext2_features = CPUID_EXT2_NX, .xlevel = 0x80000008, .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz", }, { .name = "486", .level = 1, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 4, .model = 0, .stepping = 0, .features = I486_FEATURES, .xlevel = 0, }, { .name = "pentium", .level = 1, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 5, .model = 4, .stepping = 3, .features = PENTIUM_FEATURES, .xlevel = 0, }, { .name = "pentium2", .level = 2, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 5, .stepping = 2, .features = PENTIUM2_FEATURES, .xlevel = 0, }, { .name = "pentium3", .level = 2, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 7, .stepping = 3, .features = PENTIUM3_FEATURES, .xlevel = 0, }, { .name = "athlon", .level = 2, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 6, .model = 2, .stepping = 3, .features = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA, .ext2_features = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, .xlevel = 0x80000008, }, { .name = "n270", /* original is on level 10 */ .level = 5, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 28, .stepping = 2, .features = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, /* Some CPUs got no CPUID_SEP */ .ext_features = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_DSCPL | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR, .ext2_features = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_NX, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz", }, { .name = "Conroe", .level = 2, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 2, .stepping = 3, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)", }, { .name = "Penryn", .level = 2, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 2, .stepping = 3, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)", }, { .name = "Nehalem", .level = 2, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 2, .stepping = 3, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Core i7 9xx (Nehalem Class Core i7)", }, { .name = "Westmere", .level = 11, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 44, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)", }, { .name = "SandyBridge", .level = 0xd, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 42, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .ext3_features = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Xeon E312xx (Sandy Bridge)", }, { .name = "Haswell", .level = 0xd, .vendor1 = CPUID_VENDOR_INTEL_1, .vendor2 = CPUID_VENDOR_INTEL_2, .vendor3 = CPUID_VENDOR_INTEL_3, .family = 6, .model = 60, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .ext3_features = CPUID_EXT3_LAHF_LM, .cpuid_7_0_ebx_features = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM, .xlevel = 0x8000000A, .model_id = "Intel Core Processor (Haswell)", }, { .name = "Opteron_G1", .level = 5, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 15, .model = 6, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .xlevel = 0x80000008, .model_id = "AMD Opteron 240 (Gen 1 Class Opteron)", }, { .name = "Opteron_G2", .level = 5, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 15, .model = 6, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_CX16 | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .ext3_features = CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)", }, { .name = "Opteron_G3", .level = 5, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 15, .model = 6, .stepping = 1, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .ext3_features = CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)", }, { .name = "Opteron_G4", .level = 0xd, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 21, .model = 1, .stepping = 2, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .ext3_features = CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x8000001A, .model_id = "AMD Opteron 62xx class CPU", }, { .name = "Opteron_G5", .level = 0xd, .vendor1 = CPUID_VENDOR_AMD_1, .vendor2 = CPUID_VENDOR_AMD_2, .vendor3 = CPUID_VENDOR_AMD_3, .family = 21, .model = 2, .stepping = 0, .features = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .ext_features = CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .ext2_features = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .ext3_features = CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x8000001A, .model_id = "AMD Opteron 63xx class CPU", }, }; #ifdef CONFIG_KVM static int cpu_x86_fill_model_id(char *str) { uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; int i; for (i = 0; i < 3; i++) { host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx); memcpy(str + i * 16 + 0, &eax, 4); memcpy(str + i * 16 + 4, &ebx, 4); memcpy(str + i * 16 + 8, &ecx, 4); memcpy(str + i * 16 + 12, &edx, 4); } return 0; } #endif /* Fill a x86_def_t struct with information about the host CPU, and * the CPU features supported by the host hardware + host kernel * * This function may be called only if KVM is enabled. */ static void kvm_cpu_fill_host(x86_def_t *x86_cpu_def) { #ifdef CONFIG_KVM KVMState *s = kvm_state; uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; assert(kvm_enabled()); x86_cpu_def->name = "host"; host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx); x86_cpu_def->vendor1 = ebx; x86_cpu_def->vendor2 = edx; x86_cpu_def->vendor3 = ecx; host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx); x86_cpu_def->family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF); x86_cpu_def->model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12); x86_cpu_def->stepping = eax & 0x0F; x86_cpu_def->level = kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX); x86_cpu_def->features = kvm_arch_get_supported_cpuid(s, 0x1, 0, R_EDX); x86_cpu_def->ext_features = kvm_arch_get_supported_cpuid(s, 0x1, 0, R_ECX); if (x86_cpu_def->level >= 7) { x86_cpu_def->cpuid_7_0_ebx_features = kvm_arch_get_supported_cpuid(s, 0x7, 0, R_EBX); } else { x86_cpu_def->cpuid_7_0_ebx_features = 0; } x86_cpu_def->xlevel = kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX); x86_cpu_def->ext2_features = kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX); x86_cpu_def->ext3_features = kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_ECX); cpu_x86_fill_model_id(x86_cpu_def->model_id); x86_cpu_def->vendor_override = 0; /* Call Centaur's CPUID instruction. */ if (x86_cpu_def->vendor1 == CPUID_VENDOR_VIA_1 && x86_cpu_def->vendor2 == CPUID_VENDOR_VIA_2 && x86_cpu_def->vendor3 == CPUID_VENDOR_VIA_3) { host_cpuid(0xC0000000, 0, &eax, &ebx, &ecx, &edx); eax = kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX); if (eax >= 0xC0000001) { /* Support VIA max extended level */ x86_cpu_def->xlevel2 = eax; host_cpuid(0xC0000001, 0, &eax, &ebx, &ecx, &edx); x86_cpu_def->ext4_features = kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX); } } /* Other KVM-specific feature fields: */ x86_cpu_def->svm_features = kvm_arch_get_supported_cpuid(s, 0x8000000A, 0, R_EDX); x86_cpu_def->kvm_features = kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX); #endif /* CONFIG_KVM */ } static int unavailable_host_feature(FeatureWordInfo *f, uint32_t mask) { int i; for (i = 0; i < 32; ++i) if (1 << i & mask) { const char *reg = get_register_name_32(f->cpuid_reg); assert(reg); fprintf(stderr, "warning: host doesn't support requested feature: " "CPUID.%02XH:%s%s%s [bit %d]\n", f->cpuid_eax, reg, f->feat_names[i] ? "." : "", f->feat_names[i] ? f->feat_names[i] : "", i); break; } return 0; } /* Check if all requested cpu flags are making their way to the guest * * Returns 0 if all flags are supported by the host, non-zero otherwise. * * This function may be called only if KVM is enabled. */ static int kvm_check_features_against_host(X86CPU *cpu) { CPUX86State *env = &cpu->env; x86_def_t host_def; uint32_t mask; int rv, i; struct model_features_t ft[] = { {&env->cpuid_features, &host_def.features, FEAT_1_EDX }, {&env->cpuid_ext_features, &host_def.ext_features, FEAT_1_ECX }, {&env->cpuid_ext2_features, &host_def.ext2_features, FEAT_8000_0001_EDX }, {&env->cpuid_ext3_features, &host_def.ext3_features, FEAT_8000_0001_ECX }, {&env->cpuid_ext4_features, &host_def.ext4_features, FEAT_C000_0001_EDX }, {&env->cpuid_7_0_ebx_features, &host_def.cpuid_7_0_ebx_features, FEAT_7_0_EBX }, {&env->cpuid_svm_features, &host_def.svm_features, FEAT_SVM }, {&env->cpuid_kvm_features, &host_def.kvm_features, FEAT_KVM }, }; assert(kvm_enabled()); kvm_cpu_fill_host(&host_def); for (rv = 0, i = 0; i < ARRAY_SIZE(ft); ++i) { FeatureWord w = ft[i].feat_word; FeatureWordInfo *wi = &feature_word_info[w]; for (mask = 1; mask; mask <<= 1) { if (*ft[i].guest_feat & mask && !(*ft[i].host_feat & mask)) { unavailable_host_feature(wi, mask); rv = 1; } } } return rv; } static void x86_cpuid_version_get_family(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 8) & 0xf; if (value == 0xf) { value += (env->cpuid_version >> 20) & 0xff; } visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_family(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff + 0xf; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xff00f00; if (value > 0x0f) { env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20); } else { env->cpuid_version |= value << 8; } } static void x86_cpuid_version_get_model(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 4) & 0xf; value |= ((env->cpuid_version >> 16) & 0xf) << 4; visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_model(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf00f0; env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16); } static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = env->cpuid_version & 0xf; visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xf; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf; env->cpuid_version |= value & 0xf; } static void x86_cpuid_get_level(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_level, name, errp); } static void x86_cpuid_set_level(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_level, name, errp); } static void x86_cpuid_get_xlevel(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp); } static void x86_cpuid_set_xlevel(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp); } static char *x86_cpuid_get_vendor(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; int i; value = (char *)g_malloc(CPUID_VENDOR_SZ + 1); for (i = 0; i < 4; i++) { value[i ] = env->cpuid_vendor1 >> (8 * i); value[i + 4] = env->cpuid_vendor2 >> (8 * i); value[i + 8] = env->cpuid_vendor3 >> (8 * i); } value[CPUID_VENDOR_SZ] = '\0'; return value; } static void x86_cpuid_set_vendor(Object *obj, const char *value, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int i; if (strlen(value) != CPUID_VENDOR_SZ) { error_set(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value); return; } env->cpuid_vendor1 = 0; env->cpuid_vendor2 = 0; env->cpuid_vendor3 = 0; for (i = 0; i < 4; i++) { env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i); env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i); env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i); } env->cpuid_vendor_override = 1; } static char *x86_cpuid_get_model_id(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; int i; value = g_malloc(48 + 1); for (i = 0; i < 48; i++) { value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3)); } value[48] = '\0'; return value; } static void x86_cpuid_set_model_id(Object *obj, const char *model_id, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int c, len, i; if (model_id == NULL) { model_id = ""; } len = strlen(model_id); memset(env->cpuid_model, 0, 48); for (i = 0; i < 48; i++) { if (i >= len) { c = '\0'; } else { c = (uint8_t)model_id[i]; } env->cpuid_model[i >> 2] |= c << (8 * (i & 3)); } } static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); int64_t value; value = cpu->env.tsc_khz * 1000; visit_type_int(v, &value, name, errp); } static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); const int64_t min = 0; const int64_t max = INT64_MAX; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } cpu->env.tsc_khz = value / 1000; } static int cpu_x86_find_by_name(x86_def_t *x86_cpu_def, const char *name) { x86_def_t *def; for (def = x86_defs; def; def = def->next) { if (name && !strcmp(name, def->name)) { break; } } if (kvm_enabled() && name && strcmp(name, "host") == 0) { kvm_cpu_fill_host(x86_cpu_def); } else if (!def) { return -1; } else { memcpy(x86_cpu_def, def, sizeof(*def)); } return 0; } /* Parse "+feature,-feature,feature=foo" CPU feature string */ static int cpu_x86_parse_featurestr(x86_def_t *x86_cpu_def, char *features) { unsigned int i; char *featurestr; /* Single 'key=value" string being parsed */ /* Features to be added */ FeatureWordArray plus_features = { 0 }; /* Features to be removed */ FeatureWordArray minus_features = { 0 }; uint32_t numvalue; featurestr = features ? strtok(features, ",") : NULL; while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, plus_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, minus_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; if (!strcmp(featurestr, "family")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err || numvalue > 0xff + 0xf) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->family = numvalue; } else if (!strcmp(featurestr, "model")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err || numvalue > 0xff) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->model = numvalue; } else if (!strcmp(featurestr, "stepping")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err || numvalue > 0xf) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->stepping = numvalue ; } else if (!strcmp(featurestr, "level")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->level = numvalue; } else if (!strcmp(featurestr, "xlevel")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } if (numvalue < 0x80000000) { numvalue += 0x80000000; } x86_cpu_def->xlevel = numvalue; } else if (!strcmp(featurestr, "vendor")) { if (strlen(val) != 12) { fprintf(stderr, "vendor string must be 12 chars long\n"); goto error; } x86_cpu_def->vendor1 = 0; x86_cpu_def->vendor2 = 0; x86_cpu_def->vendor3 = 0; for(i = 0; i < 4; i++) { x86_cpu_def->vendor1 |= ((uint8_t)val[i ]) << (8 * i); x86_cpu_def->vendor2 |= ((uint8_t)val[i + 4]) << (8 * i); x86_cpu_def->vendor3 |= ((uint8_t)val[i + 8]) << (8 * i); } x86_cpu_def->vendor_override = 1; } else if (!strcmp(featurestr, "model_id")) { pstrcpy(x86_cpu_def->model_id, sizeof(x86_cpu_def->model_id), val); } else if (!strcmp(featurestr, "tsc_freq")) { int64_t tsc_freq; char *err; tsc_freq = strtosz_suffix_unit(val, &err, STRTOSZ_DEFSUFFIX_B, 1000); if (tsc_freq < 0 || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } x86_cpu_def->tsc_khz = tsc_freq / 1000; } else if (!strcmp(featurestr, "hv_spinlocks")) { char *err; numvalue = strtoul(val, &err, 0); if (!*val || *err) { fprintf(stderr, "bad numerical value %s\n", val); goto error; } hyperv_set_spinlock_retries(numvalue); } else { fprintf(stderr, "unrecognized feature %s\n", featurestr); goto error; } } else if (!strcmp(featurestr, "check")) { check_cpuid = 1; } else if (!strcmp(featurestr, "enforce")) { check_cpuid = enforce_cpuid = 1; } else if (!strcmp(featurestr, "hv_relaxed")) { hyperv_enable_relaxed_timing(true); } else if (!strcmp(featurestr, "hv_vapic")) { hyperv_enable_vapic_recommended(true); } else { fprintf(stderr, "feature string `%s' not in format (+feature|-feature|feature=xyz)\n", featurestr); goto error; } featurestr = strtok(NULL, ","); } x86_cpu_def->features |= plus_features[FEAT_1_EDX]; x86_cpu_def->ext_features |= plus_features[FEAT_1_ECX]; x86_cpu_def->ext2_features |= plus_features[FEAT_8000_0001_EDX]; x86_cpu_def->ext3_features |= plus_features[FEAT_8000_0001_ECX]; x86_cpu_def->ext4_features |= plus_features[FEAT_C000_0001_EDX]; x86_cpu_def->kvm_features |= plus_features[FEAT_KVM]; x86_cpu_def->svm_features |= plus_features[FEAT_SVM]; x86_cpu_def->cpuid_7_0_ebx_features |= plus_features[FEAT_7_0_EBX]; x86_cpu_def->features &= ~minus_features[FEAT_1_EDX]; x86_cpu_def->ext_features &= ~minus_features[FEAT_1_ECX]; x86_cpu_def->ext2_features &= ~minus_features[FEAT_8000_0001_EDX]; x86_cpu_def->ext3_features &= ~minus_features[FEAT_8000_0001_ECX]; x86_cpu_def->ext4_features &= ~minus_features[FEAT_C000_0001_EDX]; x86_cpu_def->kvm_features &= ~minus_features[FEAT_KVM]; x86_cpu_def->svm_features &= ~minus_features[FEAT_SVM]; x86_cpu_def->cpuid_7_0_ebx_features &= ~minus_features[FEAT_7_0_EBX]; return 0; error: return -1; } /* generate a composite string into buf of all cpuid names in featureset * selected by fbits. indicate truncation at bufsize in the event of overflow. * if flags, suppress names undefined in featureset. */ static void listflags(char *buf, int bufsize, uint32_t fbits, const char **featureset, uint32_t flags) { const char **p = &featureset[31]; char *q, *b, bit; int nc; b = 4 <= bufsize ? buf + (bufsize -= 3) - 1 : NULL; *buf = '\0'; for (q = buf, bit = 31; fbits && bufsize; --p, fbits &= ~(1 << bit), --bit) if (fbits & 1 << bit && (*p || !flags)) { if (*p) nc = snprintf(q, bufsize, "%s%s", q == buf ? "" : " ", *p); else nc = snprintf(q, bufsize, "%s[%d]", q == buf ? "" : " ", bit); if (bufsize <= nc) { if (b) { memcpy(b, "...", sizeof("...")); } return; } q += nc; bufsize -= nc; } } /* generate CPU information. */ void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf) { x86_def_t *def; char buf[256]; for (def = x86_defs; def; def = def->next) { snprintf(buf, sizeof(buf), "%s", def->name); (*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id); } if (kvm_enabled()) { (*cpu_fprintf)(f, "x86 %16s\n", "[host]"); } (*cpu_fprintf)(f, "\nRecognized CPUID flags:\n"); listflags(buf, sizeof(buf), (uint32_t)~0, feature_name, 1); (*cpu_fprintf)(f, " %s\n", buf); listflags(buf, sizeof(buf), (uint32_t)~0, ext_feature_name, 1); (*cpu_fprintf)(f, " %s\n", buf); listflags(buf, sizeof(buf), (uint32_t)~0, ext2_feature_name, 1); (*cpu_fprintf)(f, " %s\n", buf); listflags(buf, sizeof(buf), (uint32_t)~0, ext3_feature_name, 1); (*cpu_fprintf)(f, " %s\n", buf); } CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; x86_def_t *def; for (def = x86_defs; def; def = def->next) { CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; info = g_malloc0(sizeof(*info)); info->name = g_strdup(def->name); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = cpu_list; cpu_list = entry; } return cpu_list; } #ifdef CONFIG_KVM static void filter_features_for_kvm(X86CPU *cpu) { CPUX86State *env = &cpu->env; KVMState *s = kvm_state; env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX); env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX); env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_ECX); env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A, 0, R_EDX); env->cpuid_7_0_ebx_features &= kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX); env->cpuid_kvm_features &= kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX); env->cpuid_ext4_features &= kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX); } #endif int cpu_x86_register(X86CPU *cpu, const char *cpu_model) { CPUX86State *env = &cpu->env; x86_def_t def1, *def = &def1; Error *error = NULL; char *name, *features; gchar **model_pieces; memset(def, 0, sizeof(*def)); model_pieces = g_strsplit(cpu_model, ",", 2); if (!model_pieces[0]) { error_setg(&error, "Invalid/empty CPU model name"); goto out; } name = model_pieces[0]; features = model_pieces[1]; if (cpu_x86_find_by_name(def, name) < 0) { error_setg(&error, "Unable to find CPU definition: %s", name); goto out; } def->kvm_features |= kvm_default_features; def->ext_features |= CPUID_EXT_HYPERVISOR; if (cpu_x86_parse_featurestr(def, features) < 0) { error_setg(&error, "Invalid cpu_model string format: %s", cpu_model); goto out; } assert(def->vendor1); env->cpuid_vendor1 = def->vendor1; env->cpuid_vendor2 = def->vendor2; env->cpuid_vendor3 = def->vendor3; env->cpuid_vendor_override = def->vendor_override; object_property_set_int(OBJECT(cpu), def->level, "level", &error); object_property_set_int(OBJECT(cpu), def->family, "family", &error); object_property_set_int(OBJECT(cpu), def->model, "model", &error); object_property_set_int(OBJECT(cpu), def->stepping, "stepping", &error); env->cpuid_features = def->features; env->cpuid_ext_features = def->ext_features; env->cpuid_ext2_features = def->ext2_features; env->cpuid_ext3_features = def->ext3_features; object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", &error); env->cpuid_kvm_features = def->kvm_features; env->cpuid_svm_features = def->svm_features; env->cpuid_ext4_features = def->ext4_features; env->cpuid_7_0_ebx_features = def->cpuid_7_0_ebx_features; env->cpuid_xlevel2 = def->xlevel2; object_property_set_int(OBJECT(cpu), (int64_t)def->tsc_khz * 1000, "tsc-frequency", &error); object_property_set_str(OBJECT(cpu), def->model_id, "model-id", &error); out: g_strfreev(model_pieces); if (error) { fprintf(stderr, "%s\n", error_get_pretty(error)); error_free(error); return -1; } return 0; } #if !defined(CONFIG_USER_ONLY) void cpu_clear_apic_feature(CPUX86State *env) { env->cpuid_features &= ~CPUID_APIC; } #endif /* !CONFIG_USER_ONLY */ /* Initialize list of CPU models, filling some non-static fields if necessary */ void x86_cpudef_setup(void) { int i, j; static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" }; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) { x86_def_t *def = &builtin_x86_defs[i]; def->next = x86_defs; /* Look for specific "cpudef" models that */ /* have the QEMU version in .model_id */ for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) { if (strcmp(model_with_versions[j], def->name) == 0) { pstrcpy(def->model_id, sizeof(def->model_id), "QEMU Virtual CPU version "); pstrcat(def->model_id, sizeof(def->model_id), qemu_get_version()); break; } } x86_defs = def; } } static void get_cpuid_vendor(CPUX86State *env, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; /* sysenter isn't supported on compatibility mode on AMD, syscall * isn't supported in compatibility mode on Intel. * Normally we advertise the actual cpu vendor, but you can override * this if you want to use KVM's sysenter/syscall emulation * in compatibility mode and when doing cross vendor migration */ if (kvm_enabled() && ! env->cpuid_vendor_override) { host_cpuid(0, 0, NULL, ebx, ecx, edx); } } void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); /* test if maximum index reached */ if (index & 0x80000000) { if (index > env->cpuid_xlevel) { if (env->cpuid_xlevel2 > 0) { /* Handle the Centaur's CPUID instruction. */ if (index > env->cpuid_xlevel2) { index = env->cpuid_xlevel2; } else if (index < 0xC0000000) { index = env->cpuid_xlevel; } } else { /* Intel documentation states that invalid EAX input will * return the same information as EAX=cpuid_level * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID) */ index = env->cpuid_level; } } } else { if (index > env->cpuid_level) index = env->cpuid_level; } switch(index) { case 0: *eax = env->cpuid_level; get_cpuid_vendor(env, ebx, ecx, edx); break; case 1: *eax = env->cpuid_version; *ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */ *ecx = env->cpuid_ext_features; *edx = env->cpuid_features; if (cs->nr_cores * cs->nr_threads > 1) { *ebx |= (cs->nr_cores * cs->nr_threads) << 16; *edx |= 1 << 28; /* HTT bit */ } break; case 2: /* cache info: needed for Pentium Pro compatibility */ *eax = 1; *ebx = 0; *ecx = 0; *edx = 0x2c307d; break; case 4: /* cache info: needed for Core compatibility */ if (cs->nr_cores > 1) { *eax = (cs->nr_cores - 1) << 26; } else { *eax = 0; } switch (count) { case 0: /* L1 dcache info */ *eax |= 0x0000121; *ebx = 0x1c0003f; *ecx = 0x000003f; *edx = 0x0000001; break; case 1: /* L1 icache info */ *eax |= 0x0000122; *ebx = 0x1c0003f; *ecx = 0x000003f; *edx = 0x0000001; break; case 2: /* L2 cache info */ *eax |= 0x0000143; if (cs->nr_threads > 1) { *eax |= (cs->nr_threads - 1) << 14; } *ebx = 0x3c0003f; *ecx = 0x0000fff; *edx = 0x0000001; break; default: /* end of info */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } break; case 5: /* mwait info: needed for Core compatibility */ *eax = 0; /* Smallest monitor-line size in bytes */ *ebx = 0; /* Largest monitor-line size in bytes */ *ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE; *edx = 0; break; case 6: /* Thermal and Power Leaf */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 7: /* Structured Extended Feature Flags Enumeration Leaf */ if (count == 0) { *eax = 0; /* Maximum ECX value for sub-leaves */ *ebx = env->cpuid_7_0_ebx_features; /* Feature flags */ *ecx = 0; /* Reserved */ *edx = 0; /* Reserved */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 9: /* Direct Cache Access Information Leaf */ *eax = 0; /* Bits 0-31 in DCA_CAP MSR */ *ebx = 0; *ecx = 0; *edx = 0; break; case 0xA: /* Architectural Performance Monitoring Leaf */ if (kvm_enabled()) { KVMState *s = cs->kvm_state; *eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX); *ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX); *ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX); *edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX); } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xD: /* Processor Extended State */ if (!(env->cpuid_ext_features & CPUID_EXT_XSAVE)) { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } if (kvm_enabled()) { KVMState *s = cs->kvm_state; *eax = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EAX); *ebx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EBX); *ecx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_ECX); *edx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EDX); } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0x80000000: *eax = env->cpuid_xlevel; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 0x80000001: *eax = env->cpuid_version; *ebx = 0; *ecx = env->cpuid_ext3_features; *edx = env->cpuid_ext2_features; /* The Linux kernel checks for the CMPLegacy bit and * discards multiple thread information if it is set. * So dont set it here for Intel to make Linux guests happy. */ if (cs->nr_cores * cs->nr_threads > 1) { uint32_t tebx, tecx, tedx; get_cpuid_vendor(env, &tebx, &tecx, &tedx); if (tebx != CPUID_VENDOR_INTEL_1 || tedx != CPUID_VENDOR_INTEL_2 || tecx != CPUID_VENDOR_INTEL_3) { *ecx |= 1 << 1; /* CmpLegacy bit */ } } break; case 0x80000002: case 0x80000003: case 0x80000004: *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0]; *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1]; *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2]; *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3]; break; case 0x80000005: /* cache info (L1 cache) */ *eax = 0x01ff01ff; *ebx = 0x01ff01ff; *ecx = 0x40020140; *edx = 0x40020140; break; case 0x80000006: /* cache info (L2 cache) */ *eax = 0; *ebx = 0x42004200; *ecx = 0x02008140; *edx = 0; break; case 0x80000008: /* virtual & phys address size in low 2 bytes. */ /* XXX: This value must match the one used in the MMU code. */ if (env->cpuid_ext2_features & CPUID_EXT2_LM) { /* 64 bit processor */ /* XXX: The physical address space is limited to 42 bits in exec.c. */ *eax = 0x00003028; /* 48 bits virtual, 40 bits physical */ } else { if (env->cpuid_features & CPUID_PSE36) *eax = 0x00000024; /* 36 bits physical */ else *eax = 0x00000020; /* 32 bits physical */ } *ebx = 0; *ecx = 0; *edx = 0; if (cs->nr_cores * cs->nr_threads > 1) { *ecx |= (cs->nr_cores * cs->nr_threads) - 1; } break; case 0x8000000A: if (env->cpuid_ext3_features & CPUID_EXT3_SVM) { *eax = 0x00000001; /* SVM Revision */ *ebx = 0x00000010; /* nr of ASIDs */ *ecx = 0; *edx = env->cpuid_svm_features; /* optional features */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xC0000000: *eax = env->cpuid_xlevel2; *ebx = 0; *ecx = 0; *edx = 0; break; case 0xC0000001: /* Support for VIA CPU's CPUID instruction */ *eax = env->cpuid_version; *ebx = 0; *ecx = 0; *edx = env->cpuid_ext4_features; break; case 0xC0000002: case 0xC0000003: case 0xC0000004: /* Reserved for the future, and now filled with zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; default: /* reserved values: zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } /* CPUClass::reset() */ static void x86_cpu_reset(CPUState *s) { X86CPU *cpu = X86_CPU(s); X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu); CPUX86State *env = &cpu->env; int i; if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", s->cpu_index); log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP); } xcc->parent_reset(s); memset(env, 0, offsetof(CPUX86State, breakpoints)); tlb_flush(env, 1); env->old_exception = -1; /* init to reset state */ #ifdef CONFIG_SOFTMMU env->hflags |= HF_SOFTMMU_MASK; #endif env->hflags2 |= HF2_GIF_MASK; cpu_x86_update_cr0(env, 0x60000010); env->a20_mask = ~0x0; env->smbase = 0x30000; env->idt.limit = 0xffff; env->gdt.limit = 0xffff; env->ldt.limit = 0xffff; env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT); env->tr.limit = 0xffff; env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT); cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eip = 0xfff0; env->regs[R_EDX] = env->cpuid_version; env->eflags = 0x2; /* FPU init */ for (i = 0; i < 8; i++) { env->fptags[i] = 1; } env->fpuc = 0x37f; env->mxcsr = 0x1f80; env->pat = 0x0007040600070406ULL; env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT; memset(env->dr, 0, sizeof(env->dr)); env->dr[6] = DR6_FIXED_1; env->dr[7] = DR7_FIXED_1; cpu_breakpoint_remove_all(env, BP_CPU); cpu_watchpoint_remove_all(env, BP_CPU); #if !defined(CONFIG_USER_ONLY) /* We hard-wire the BSP to the first CPU. */ if (s->cpu_index == 0) { apic_designate_bsp(env->apic_state); } env->halted = !cpu_is_bsp(cpu); #endif } #ifndef CONFIG_USER_ONLY bool cpu_is_bsp(X86CPU *cpu) { return cpu_get_apic_base(cpu->env.apic_state) & MSR_IA32_APICBASE_BSP; } /* TODO: remove me, when reset over QOM tree is implemented */ static void x86_cpu_machine_reset_cb(void *opaque) { X86CPU *cpu = opaque; cpu_reset(CPU(cpu)); } #endif static void mce_init(X86CPU *cpu) { CPUX86State *cenv = &cpu->env; unsigned int bank; if (((cenv->cpuid_version >> 8) & 0xf) >= 6 && (cenv->cpuid_features & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA)) { cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF; cenv->mcg_ctl = ~(uint64_t)0; for (bank = 0; bank < MCE_BANKS_DEF; bank++) { cenv->mce_banks[bank * 4] = ~(uint64_t)0; } } } #define MSI_ADDR_BASE 0xfee00000 #ifndef CONFIG_USER_ONLY static void x86_cpu_apic_init(X86CPU *cpu, Error **errp) { static int apic_mapped; CPUX86State *env = &cpu->env; APICCommonState *apic; const char *apic_type = "apic"; if (kvm_irqchip_in_kernel()) { apic_type = "kvm-apic"; } else if (xen_enabled()) { apic_type = "xen-apic"; } env->apic_state = qdev_try_create(NULL, apic_type); if (env->apic_state == NULL) { error_setg(errp, "APIC device '%s' could not be created", apic_type); return; } object_property_add_child(OBJECT(cpu), "apic", OBJECT(env->apic_state), NULL); qdev_prop_set_uint8(env->apic_state, "id", env->cpuid_apic_id); /* TODO: convert to link<> */ apic = APIC_COMMON(env->apic_state); apic->cpu = cpu; if (qdev_init(env->apic_state)) { error_setg(errp, "APIC device '%s' could not be initialized", object_get_typename(OBJECT(env->apic_state))); return; } /* XXX: mapping more APICs at the same memory location */ if (apic_mapped == 0) { /* NOTE: the APIC is directly connected to the CPU - it is not on the global memory bus. */ /* XXX: what if the base changes? */ sysbus_mmio_map(sysbus_from_qdev(env->apic_state), 0, MSI_ADDR_BASE); apic_mapped = 1; } } #endif void x86_cpu_realize(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; if (env->cpuid_7_0_ebx_features && env->cpuid_level < 7) { env->cpuid_level = 7; } /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on * CPUID[1].EDX. */ if (env->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && env->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && env->cpuid_vendor3 == CPUID_VENDOR_AMD_3) { env->cpuid_ext2_features &= ~CPUID_EXT2_AMD_ALIASES; env->cpuid_ext2_features |= (env->cpuid_features & CPUID_EXT2_AMD_ALIASES); } if (!kvm_enabled()) { env->cpuid_features &= TCG_FEATURES; env->cpuid_ext_features &= TCG_EXT_FEATURES; env->cpuid_ext2_features &= (TCG_EXT2_FEATURES #ifdef TARGET_X86_64 | CPUID_EXT2_SYSCALL | CPUID_EXT2_LM #endif ); env->cpuid_ext3_features &= TCG_EXT3_FEATURES; env->cpuid_svm_features &= TCG_SVM_FEATURES; } else { #ifdef CONFIG_KVM filter_features_for_kvm(cpu); #endif if (check_cpuid && kvm_check_features_against_host(cpu) && enforce_cpuid) { error_setg(errp, "Host's CPU doesn't support requested features"); return; } } #ifndef CONFIG_USER_ONLY qemu_register_reset(x86_cpu_machine_reset_cb, cpu); if (cpu->env.cpuid_features & CPUID_APIC || smp_cpus > 1) { x86_cpu_apic_init(cpu, errp); if (error_is_set(errp)) { return; } } #endif mce_init(cpu); qemu_init_vcpu(&cpu->env); cpu_reset(CPU(cpu)); } static void x86_cpu_initfn(Object *obj) { CPUState *cs = CPU(obj); X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; static int inited; cpu_exec_init(env); object_property_add(obj, "family", "int", x86_cpuid_version_get_family, x86_cpuid_version_set_family, NULL, NULL, NULL); object_property_add(obj, "model", "int", x86_cpuid_version_get_model, x86_cpuid_version_set_model, NULL, NULL, NULL); object_property_add(obj, "stepping", "int", x86_cpuid_version_get_stepping, x86_cpuid_version_set_stepping, NULL, NULL, NULL); object_property_add(obj, "level", "int", x86_cpuid_get_level, x86_cpuid_set_level, NULL, NULL, NULL); object_property_add(obj, "xlevel", "int", x86_cpuid_get_xlevel, x86_cpuid_set_xlevel, NULL, NULL, NULL); object_property_add_str(obj, "vendor", x86_cpuid_get_vendor, x86_cpuid_set_vendor, NULL); object_property_add_str(obj, "model-id", x86_cpuid_get_model_id, x86_cpuid_set_model_id, NULL); object_property_add(obj, "tsc-frequency", "int", x86_cpuid_get_tsc_freq, x86_cpuid_set_tsc_freq, NULL, NULL, NULL); env->cpuid_apic_id = cs->cpu_index; /* init various static tables used in TCG mode */ if (tcg_enabled() && !inited) { inited = 1; optimize_flags_init(); #ifndef CONFIG_USER_ONLY cpu_set_debug_excp_handler(breakpoint_handler); #endif } } static void x86_cpu_common_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); xcc->parent_reset = cc->reset; cc->reset = x86_cpu_reset; } static const TypeInfo x86_cpu_type_info = { .name = TYPE_X86_CPU, .parent = TYPE_CPU, .instance_size = sizeof(X86CPU), .instance_init = x86_cpu_initfn, .abstract = false, .class_size = sizeof(X86CPUClass), .class_init = x86_cpu_common_class_init, }; static void x86_cpu_register_types(void) { type_register_static(&x86_cpu_type_info); } type_init(x86_cpu_register_types)