/* * i386 CPUID helper functions * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <inttypes.h> #include "cpu.h" #include "sysemu/kvm.h" #include "sysemu/cpus.h" #include "topology.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "qapi/qmp/qerror.h" #include "qapi-types.h" #include "qapi-visit.h" #include "qapi/visitor.h" #include "sysemu/arch_init.h" #include "hw/hw.h" #if defined(CONFIG_KVM) #include <linux/kvm_para.h> #endif #include "sysemu/sysemu.h" #include "hw/qdev-properties.h" #include "hw/cpu/icc_bus.h" #ifndef CONFIG_USER_ONLY #include "hw/xen/xen.h" #include "hw/i386/apic_internal.h" #endif /* Cache topology CPUID constants: */ /* CPUID Leaf 2 Descriptors */ #define CPUID_2_L1D_32KB_8WAY_64B 0x2c #define CPUID_2_L1I_32KB_8WAY_64B 0x30 #define CPUID_2_L2_2MB_8WAY_64B 0x7d /* CPUID Leaf 4 constants: */ /* EAX: */ #define CPUID_4_TYPE_DCACHE 1 #define CPUID_4_TYPE_ICACHE 2 #define CPUID_4_TYPE_UNIFIED 3 #define CPUID_4_LEVEL(l) ((l) << 5) #define CPUID_4_SELF_INIT_LEVEL (1 << 8) #define CPUID_4_FULLY_ASSOC (1 << 9) /* EDX: */ #define CPUID_4_NO_INVD_SHARING (1 << 0) #define CPUID_4_INCLUSIVE (1 << 1) #define CPUID_4_COMPLEX_IDX (1 << 2) #define ASSOC_FULL 0xFF /* AMD associativity encoding used on CPUID Leaf 0x80000006: */ #define AMD_ENC_ASSOC(a) (a <= 1 ? a : \ a == 2 ? 0x2 : \ a == 4 ? 0x4 : \ a == 8 ? 0x6 : \ a == 16 ? 0x8 : \ a == 32 ? 0xA : \ a == 48 ? 0xB : \ a == 64 ? 0xC : \ a == 96 ? 0xD : \ a == 128 ? 0xE : \ a == ASSOC_FULL ? 0xF : \ 0 /* invalid value */) /* Definitions of the hardcoded cache entries we expose: */ /* L1 data cache: */ #define L1D_LINE_SIZE 64 #define L1D_ASSOCIATIVITY 8 #define L1D_SETS 64 #define L1D_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */ #define L1D_DESCRIPTOR CPUID_2_L1D_32KB_8WAY_64B /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ #define L1D_LINES_PER_TAG 1 #define L1D_SIZE_KB_AMD 64 #define L1D_ASSOCIATIVITY_AMD 2 /* L1 instruction cache: */ #define L1I_LINE_SIZE 64 #define L1I_ASSOCIATIVITY 8 #define L1I_SETS 64 #define L1I_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 32KiB */ #define L1I_DESCRIPTOR CPUID_2_L1I_32KB_8WAY_64B /*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */ #define L1I_LINES_PER_TAG 1 #define L1I_SIZE_KB_AMD 64 #define L1I_ASSOCIATIVITY_AMD 2 /* Level 2 unified cache: */ #define L2_LINE_SIZE 64 #define L2_ASSOCIATIVITY 16 #define L2_SETS 4096 #define L2_PARTITIONS 1 /* Size = LINE_SIZE*ASSOCIATIVITY*SETS*PARTITIONS = 4MiB */ /*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */ #define L2_DESCRIPTOR CPUID_2_L2_2MB_8WAY_64B /*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */ #define L2_LINES_PER_TAG 1 #define L2_SIZE_KB_AMD 512 /* No L3 cache: */ #define L3_SIZE_KB 0 /* disabled */ #define L3_ASSOCIATIVITY 0 /* disabled */ #define L3_LINES_PER_TAG 0 /* disabled */ #define L3_LINE_SIZE 0 /* disabled */ /* TLB definitions: */ #define L1_DTLB_2M_ASSOC 1 #define L1_DTLB_2M_ENTRIES 255 #define L1_DTLB_4K_ASSOC 1 #define L1_DTLB_4K_ENTRIES 255 #define L1_ITLB_2M_ASSOC 1 #define L1_ITLB_2M_ENTRIES 255 #define L1_ITLB_4K_ASSOC 1 #define L1_ITLB_4K_ENTRIES 255 #define L2_DTLB_2M_ASSOC 0 /* disabled */ #define L2_DTLB_2M_ENTRIES 0 /* disabled */ #define L2_DTLB_4K_ASSOC 4 #define L2_DTLB_4K_ENTRIES 512 #define L2_ITLB_2M_ASSOC 0 /* disabled */ #define L2_ITLB_2M_ENTRIES 0 /* disabled */ #define L2_ITLB_4K_ASSOC 4 #define L2_ITLB_4K_ENTRIES 512 static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1, uint32_t vendor2, uint32_t vendor3) { int i; for (i = 0; i < 4; i++) { dst[i] = vendor1 >> (8 * i); dst[i + 4] = vendor2 >> (8 * i); dst[i + 8] = vendor3 >> (8 * i); } dst[CPUID_VENDOR_SZ] = '\0'; } /* feature flags taken from "Intel Processor Identification and the CPUID * Instruction" and AMD's "CPUID Specification". In cases of disagreement * between feature naming conventions, aliases may be added. */ static const char *feature_name[] = { "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", "pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */, NULL, "ds" /* Intel dts */, "acpi", "mmx", "fxsr", "sse", "sse2", "ss", "ht" /* Intel htt */, "tm", "ia64", "pbe", }; static const char *ext_feature_name[] = { "pni|sse3" /* Intel,AMD sse3 */, "pclmulqdq|pclmuldq", "dtes64", "monitor", "ds_cpl", "vmx", "smx", "est", "tm2", "ssse3", "cid", NULL, "fma", "cx16", "xtpr", "pdcm", NULL, "pcid", "dca", "sse4.1|sse4_1", "sse4.2|sse4_2", "x2apic", "movbe", "popcnt", "tsc-deadline", "aes", "xsave", "osxsave", "avx", "f16c", "rdrand", "hypervisor", }; /* Feature names that are already defined on feature_name[] but are set on * CPUID[8000_0001].EDX on AMD CPUs don't have their names on * ext2_feature_name[]. They are copied automatically to cpuid_ext2_features * if and only if CPU vendor is AMD. */ static const char *ext2_feature_name[] = { NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */, NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */, NULL /* cx8 */ /* AMD CMPXCHG8B */, NULL /* apic */, NULL, "syscall", NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */, NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */, "nx|xd", NULL, "mmxext", NULL /* mmx */, NULL /* fxsr */, "fxsr_opt|ffxsr", "pdpe1gb" /* AMD Page1GB */, "rdtscp", NULL, "lm|i64", "3dnowext", "3dnow", }; static const char *ext3_feature_name[] = { "lahf_lm" /* AMD LahfSahf */, "cmp_legacy", "svm", "extapic" /* AMD ExtApicSpace */, "cr8legacy" /* AMD AltMovCr8 */, "abm", "sse4a", "misalignsse", "3dnowprefetch", "osvw", "ibs", "xop", "skinit", "wdt", NULL, "lwp", "fma4", "tce", NULL, "nodeid_msr", NULL, "tbm", "topoext", "perfctr_core", "perfctr_nb", NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *ext4_feature_name[] = { NULL, NULL, "xstore", "xstore-en", NULL, NULL, "xcrypt", "xcrypt-en", "ace2", "ace2-en", "phe", "phe-en", "pmm", "pmm-en", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *kvm_feature_name[] = { "kvmclock", "kvm_nopiodelay", "kvm_mmu", "kvmclock", "kvm_asyncpf", "kvm_steal_time", "kvm_pv_eoi", "kvm_pv_unhalt", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *svm_feature_name[] = { "npt", "lbrv", "svm_lock", "nrip_save", "tsc_scale", "vmcb_clean", "flushbyasid", "decodeassists", NULL, NULL, "pause_filter", NULL, "pfthreshold", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; static const char *cpuid_7_0_ebx_feature_name[] = { "fsgsbase", NULL, NULL, "bmi1", "hle", "avx2", NULL, "smep", "bmi2", "erms", "invpcid", "rtm", NULL, NULL, NULL, NULL, NULL, NULL, "rdseed", "adx", "smap", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }; typedef struct FeatureWordInfo { const char **feat_names; uint32_t cpuid_eax; /* Input EAX for CPUID */ bool cpuid_needs_ecx; /* CPUID instruction uses ECX as input */ uint32_t cpuid_ecx; /* Input ECX value for CPUID */ int cpuid_reg; /* output register (R_* constant) */ } FeatureWordInfo; static FeatureWordInfo feature_word_info[FEATURE_WORDS] = { [FEAT_1_EDX] = { .feat_names = feature_name, .cpuid_eax = 1, .cpuid_reg = R_EDX, }, [FEAT_1_ECX] = { .feat_names = ext_feature_name, .cpuid_eax = 1, .cpuid_reg = R_ECX, }, [FEAT_8000_0001_EDX] = { .feat_names = ext2_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_EDX, }, [FEAT_8000_0001_ECX] = { .feat_names = ext3_feature_name, .cpuid_eax = 0x80000001, .cpuid_reg = R_ECX, }, [FEAT_C000_0001_EDX] = { .feat_names = ext4_feature_name, .cpuid_eax = 0xC0000001, .cpuid_reg = R_EDX, }, [FEAT_KVM] = { .feat_names = kvm_feature_name, .cpuid_eax = KVM_CPUID_FEATURES, .cpuid_reg = R_EAX, }, [FEAT_SVM] = { .feat_names = svm_feature_name, .cpuid_eax = 0x8000000A, .cpuid_reg = R_EDX, }, [FEAT_7_0_EBX] = { .feat_names = cpuid_7_0_ebx_feature_name, .cpuid_eax = 7, .cpuid_needs_ecx = true, .cpuid_ecx = 0, .cpuid_reg = R_EBX, }, }; typedef struct X86RegisterInfo32 { /* Name of register */ const char *name; /* QAPI enum value register */ X86CPURegister32 qapi_enum; } X86RegisterInfo32; #define REGISTER(reg) \ [R_##reg] = { .name = #reg, .qapi_enum = X86_C_P_U_REGISTER32_##reg } X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = { REGISTER(EAX), REGISTER(ECX), REGISTER(EDX), REGISTER(EBX), REGISTER(ESP), REGISTER(EBP), REGISTER(ESI), REGISTER(EDI), }; #undef REGISTER const char *get_register_name_32(unsigned int reg) { if (reg >= CPU_NB_REGS32) { return NULL; } return x86_reg_info_32[reg].name; } /* collects per-function cpuid data */ typedef struct model_features_t { uint32_t *guest_feat; uint32_t *host_feat; FeatureWord feat_word; } model_features_t; int check_cpuid = 0; int enforce_cpuid = 0; static uint32_t kvm_default_features = (1 << KVM_FEATURE_CLOCKSOURCE) | (1 << KVM_FEATURE_NOP_IO_DELAY) | (1 << KVM_FEATURE_CLOCKSOURCE2) | (1 << KVM_FEATURE_ASYNC_PF) | (1 << KVM_FEATURE_STEAL_TIME) | (1 << KVM_FEATURE_PV_EOI) | (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT); void disable_kvm_pv_eoi(void) { kvm_default_features &= ~(1UL << KVM_FEATURE_PV_EOI); } void host_cpuid(uint32_t function, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { #if defined(CONFIG_KVM) uint32_t vec[4]; #ifdef __x86_64__ asm volatile("cpuid" : "=a"(vec[0]), "=b"(vec[1]), "=c"(vec[2]), "=d"(vec[3]) : "0"(function), "c"(count) : "cc"); #else asm volatile("pusha \n\t" "cpuid \n\t" "mov %%eax, 0(%2) \n\t" "mov %%ebx, 4(%2) \n\t" "mov %%ecx, 8(%2) \n\t" "mov %%edx, 12(%2) \n\t" "popa" : : "a"(function), "c"(count), "S"(vec) : "memory", "cc"); #endif if (eax) *eax = vec[0]; if (ebx) *ebx = vec[1]; if (ecx) *ecx = vec[2]; if (edx) *edx = vec[3]; #endif } #define iswhite(c) ((c) && ((c) <= ' ' || '~' < (c))) /* general substring compare of *[s1..e1) and *[s2..e2). sx is start of * a substring. ex if !NULL points to the first char after a substring, * otherwise the string is assumed to sized by a terminating nul. * Return lexical ordering of *s1:*s2. */ static int sstrcmp(const char *s1, const char *e1, const char *s2, const char *e2) { for (;;) { if (!*s1 || !*s2 || *s1 != *s2) return (*s1 - *s2); ++s1, ++s2; if (s1 == e1 && s2 == e2) return (0); else if (s1 == e1) return (*s2); else if (s2 == e2) return (*s1); } } /* compare *[s..e) to *altstr. *altstr may be a simple string or multiple * '|' delimited (possibly empty) strings in which case search for a match * within the alternatives proceeds left to right. Return 0 for success, * non-zero otherwise. */ static int altcmp(const char *s, const char *e, const char *altstr) { const char *p, *q; for (q = p = altstr; ; ) { while (*p && *p != '|') ++p; if ((q == p && !*s) || (q != p && !sstrcmp(s, e, q, p))) return (0); if (!*p) return (1); else q = ++p; } } /* search featureset for flag *[s..e), if found set corresponding bit in * *pval and return true, otherwise return false */ static bool lookup_feature(uint32_t *pval, const char *s, const char *e, const char **featureset) { uint32_t mask; const char **ppc; bool found = false; for (mask = 1, ppc = featureset; mask; mask <<= 1, ++ppc) { if (*ppc && !altcmp(s, e, *ppc)) { *pval |= mask; found = true; } } return found; } static void add_flagname_to_bitmaps(const char *flagname, FeatureWordArray words) { FeatureWord w; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; if (wi->feat_names && lookup_feature(&words[w], flagname, NULL, wi->feat_names)) { break; } } if (w == FEATURE_WORDS) { fprintf(stderr, "CPU feature %s not found\n", flagname); } } typedef struct x86_def_t { const char *name; uint32_t level; uint32_t xlevel; uint32_t xlevel2; /* vendor is zero-terminated, 12 character ASCII string */ char vendor[CPUID_VENDOR_SZ + 1]; int family; int model; int stepping; FeatureWordArray features; char model_id[48]; bool cache_info_passthrough; } x86_def_t; #define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE) #define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC) #define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_FXSR) #define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE) #define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \ CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \ CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \ CPUID_PAE | CPUID_SEP | CPUID_APIC) #define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \ CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \ CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \ CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \ CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS) /* partly implemented: CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) CPUID_PSE36 (needed for Solaris) */ /* missing: CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */ #define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \ CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \ CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \ CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR) /* missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX, CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA, CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_XSAVE, CPUID_EXT_OSXSAVE, CPUID_EXT_AVX, CPUID_EXT_F16C, CPUID_EXT_RDRAND */ #define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \ CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \ CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT) /* missing: CPUID_EXT2_PDPE1GB */ #define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \ CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A) #define TCG_SVM_FEATURES 0 #define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP \ CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX) /* missing: CPUID_7_0_EBX_FSGSBASE, CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2, CPUID_7_0_EBX_ERMS, CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM, CPUID_7_0_EBX_RDSEED */ /* built-in CPU model definitions */ static x86_def_t builtin_x86_defs[] = { { .name = "qemu64", .level = 4, .vendor = CPUID_VENDOR_AMD, .family = 6, .model = 6, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, .features[FEAT_8000_0001_EDX] = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, .xlevel = 0x8000000A, }, { .name = "phenom", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 16, .model = 2, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_HT, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 | CPUID_EXT_POPCNT, .features[FEAT_8000_0001_EDX] = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT | CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP, /* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS */ .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A, .features[FEAT_SVM] = CPUID_SVM_NPT | CPUID_SVM_LBRV, .xlevel = 0x8000001A, .model_id = "AMD Phenom(tm) 9550 Quad-Core Processor" }, { .name = "core2duo", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 15, .stepping = 11, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36 | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_DTES64 | CPUID_EXT_DSCPL | CPUID_EXT_VMX | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_CX16 | CPUID_EXT_XTPR | CPUID_EXT_PDCM, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz", }, { .name = "kvm64", .level = 5, .vendor = CPUID_VENDOR_INTEL, .family = 15, .model = 6, .stepping = 1, /* Missing: CPUID_VME, CPUID_HT */ .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, /* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_CX16, /* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */ .features[FEAT_8000_0001_EDX] = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, /* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC, CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A, CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH, CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */ .features[FEAT_8000_0001_ECX] = 0, .xlevel = 0x80000008, .model_id = "Common KVM processor" }, { .name = "qemu32", .level = 4, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 6, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_POPCNT, .xlevel = 0x80000004, }, { .name = "kvm32", .level = 5, .vendor = CPUID_VENDOR_INTEL, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36, .features[FEAT_1_ECX] = CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES, .features[FEAT_8000_0001_ECX] = 0, .xlevel = 0x80000008, .model_id = "Common 32-bit KVM processor" }, { .name = "coreduo", .level = 10, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 14, .stepping = 8, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_VME | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_VMX | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR | CPUID_EXT_PDCM, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_NX, .xlevel = 0x80000008, .model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz", }, { .name = "486", .level = 1, .vendor = CPUID_VENDOR_INTEL, .family = 4, .model = 8, .stepping = 0, .features[FEAT_1_EDX] = I486_FEATURES, .xlevel = 0, }, { .name = "pentium", .level = 1, .vendor = CPUID_VENDOR_INTEL, .family = 5, .model = 4, .stepping = 3, .features[FEAT_1_EDX] = PENTIUM_FEATURES, .xlevel = 0, }, { .name = "pentium2", .level = 2, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 5, .stepping = 2, .features[FEAT_1_EDX] = PENTIUM2_FEATURES, .xlevel = 0, }, { .name = "pentium3", .level = 2, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 7, .stepping = 3, .features[FEAT_1_EDX] = PENTIUM3_FEATURES, .xlevel = 0, }, { .name = "athlon", .level = 2, .vendor = CPUID_VENDOR_AMD, .family = 6, .model = 2, .stepping = 3, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR | CPUID_MCA, .features[FEAT_8000_0001_EDX] = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT, .xlevel = 0x80000008, }, { .name = "n270", /* original is on level 10 */ .level = 5, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 28, .stepping = 2, .features[FEAT_1_EDX] = PPRO_FEATURES | CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME | CPUID_DTS | CPUID_ACPI | CPUID_SS | CPUID_HT | CPUID_TM | CPUID_PBE, /* Some CPUs got no CPUID_SEP */ .features[FEAT_1_ECX] = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_DSCPL | CPUID_EXT_EST | CPUID_EXT_TM2 | CPUID_EXT_XTPR | CPUID_EXT_MOVBE, .features[FEAT_8000_0001_EDX] = (PPRO_FEATURES & CPUID_EXT2_AMD_ALIASES) | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz", }, { .name = "Conroe", .level = 4, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 15, .stepping = 3, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)", }, { .name = "Penryn", .level = 4, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 23, .stepping = 3, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)", }, { .name = "Nehalem", .level = 4, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 26, .stepping = 3, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Core i7 9xx (Nehalem Class Core i7)", }, { .name = "Westmere", .level = 11, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 44, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)", }, { .name = "SandyBridge", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 42, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .xlevel = 0x8000000A, .model_id = "Intel Xeon E312xx (Sandy Bridge)", }, { .name = "Haswell", .level = 0xd, .vendor = CPUID_VENDOR_INTEL, .family = 6, .model = 60, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 | CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE | CPUID_EXT_PCID, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_LAHF_LM, .features[FEAT_7_0_EBX] = CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID | CPUID_7_0_EBX_RTM, .xlevel = 0x8000000A, .model_id = "Intel Core Processor (Haswell)", }, { .name = "Opteron_G1", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .xlevel = 0x80000008, .model_id = "AMD Opteron 240 (Gen 1 Class Opteron)", }, { .name = "Opteron_G2", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_CX16 | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)", }, { .name = "Opteron_G3", .level = 5, .vendor = CPUID_VENDOR_AMD, .family = 15, .model = 6, .stepping = 1, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x80000008, .model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)", }, { .name = "Opteron_G4", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 21, .model = 1, .stepping = 2, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x8000001A, .model_id = "AMD Opteron 62xx class CPU", }, { .name = "Opteron_G5", .level = 0xd, .vendor = CPUID_VENDOR_AMD, .family = 21, .model = 2, .stepping = 0, .features[FEAT_1_EDX] = CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE | CPUID_FP87, .features[FEAT_1_ECX] = CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3, .features[FEAT_8000_0001_EDX] = CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB | CPUID_EXT2_FXSR | CPUID_EXT2_MMX | CPUID_EXT2_NX | CPUID_EXT2_PSE36 | CPUID_EXT2_PAT | CPUID_EXT2_CMOV | CPUID_EXT2_MCA | CPUID_EXT2_PGE | CPUID_EXT2_MTRR | CPUID_EXT2_SYSCALL | CPUID_EXT2_APIC | CPUID_EXT2_CX8 | CPUID_EXT2_MCE | CPUID_EXT2_PAE | CPUID_EXT2_MSR | CPUID_EXT2_TSC | CPUID_EXT2_PSE | CPUID_EXT2_DE | CPUID_EXT2_FPU, .features[FEAT_8000_0001_ECX] = CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP | CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM, .xlevel = 0x8000001A, .model_id = "AMD Opteron 63xx class CPU", }, }; /** * x86_cpu_compat_set_features: * @cpu_model: CPU model name to be changed. If NULL, all CPU models are changed * @w: Identifies the feature word to be changed. * @feat_add: Feature bits to be added to feature word * @feat_remove: Feature bits to be removed from feature word * * Change CPU model feature bits for compatibility. * * This function may be used by machine-type compatibility functions * to enable or disable feature bits on specific CPU models. */ void x86_cpu_compat_set_features(const char *cpu_model, FeatureWord w, uint32_t feat_add, uint32_t feat_remove) { x86_def_t *def; int i; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { def = &builtin_x86_defs[i]; if (!cpu_model || !strcmp(cpu_model, def->name)) { def->features[w] |= feat_add; def->features[w] &= ~feat_remove; } } } #ifdef CONFIG_KVM static int cpu_x86_fill_model_id(char *str) { uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; int i; for (i = 0; i < 3; i++) { host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx); memcpy(str + i * 16 + 0, &eax, 4); memcpy(str + i * 16 + 4, &ebx, 4); memcpy(str + i * 16 + 8, &ecx, 4); memcpy(str + i * 16 + 12, &edx, 4); } return 0; } #endif /* Fill a x86_def_t struct with information about the host CPU, and * the CPU features supported by the host hardware + host kernel * * This function may be called only if KVM is enabled. */ static void kvm_cpu_fill_host(x86_def_t *x86_cpu_def) { #ifdef CONFIG_KVM KVMState *s = kvm_state; uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0; assert(kvm_enabled()); x86_cpu_def->name = "host"; x86_cpu_def->cache_info_passthrough = true; host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx); x86_cpu_vendor_words2str(x86_cpu_def->vendor, ebx, edx, ecx); host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx); x86_cpu_def->family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF); x86_cpu_def->model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12); x86_cpu_def->stepping = eax & 0x0F; x86_cpu_def->level = kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX); x86_cpu_def->features[FEAT_1_EDX] = kvm_arch_get_supported_cpuid(s, 0x1, 0, R_EDX); x86_cpu_def->features[FEAT_1_ECX] = kvm_arch_get_supported_cpuid(s, 0x1, 0, R_ECX); if (x86_cpu_def->level >= 7) { x86_cpu_def->features[FEAT_7_0_EBX] = kvm_arch_get_supported_cpuid(s, 0x7, 0, R_EBX); } else { x86_cpu_def->features[FEAT_7_0_EBX] = 0; } x86_cpu_def->xlevel = kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX); x86_cpu_def->features[FEAT_8000_0001_EDX] = kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX); x86_cpu_def->features[FEAT_8000_0001_ECX] = kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_ECX); cpu_x86_fill_model_id(x86_cpu_def->model_id); /* Call Centaur's CPUID instruction. */ if (!strcmp(x86_cpu_def->vendor, CPUID_VENDOR_VIA)) { host_cpuid(0xC0000000, 0, &eax, &ebx, &ecx, &edx); eax = kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX); if (eax >= 0xC0000001) { /* Support VIA max extended level */ x86_cpu_def->xlevel2 = eax; host_cpuid(0xC0000001, 0, &eax, &ebx, &ecx, &edx); x86_cpu_def->features[FEAT_C000_0001_EDX] = kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX); } } /* Other KVM-specific feature fields: */ x86_cpu_def->features[FEAT_SVM] = kvm_arch_get_supported_cpuid(s, 0x8000000A, 0, R_EDX); x86_cpu_def->features[FEAT_KVM] = kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX); #endif /* CONFIG_KVM */ } static int unavailable_host_feature(FeatureWordInfo *f, uint32_t mask) { int i; for (i = 0; i < 32; ++i) if (1 << i & mask) { const char *reg = get_register_name_32(f->cpuid_reg); assert(reg); fprintf(stderr, "warning: host doesn't support requested feature: " "CPUID.%02XH:%s%s%s [bit %d]\n", f->cpuid_eax, reg, f->feat_names[i] ? "." : "", f->feat_names[i] ? f->feat_names[i] : "", i); break; } return 0; } /* Check if all requested cpu flags are making their way to the guest * * Returns 0 if all flags are supported by the host, non-zero otherwise. * * This function may be called only if KVM is enabled. */ static int kvm_check_features_against_host(X86CPU *cpu) { CPUX86State *env = &cpu->env; x86_def_t host_def; uint32_t mask; int rv, i; struct model_features_t ft[] = { {&env->features[FEAT_1_EDX], &host_def.features[FEAT_1_EDX], FEAT_1_EDX }, {&env->features[FEAT_1_ECX], &host_def.features[FEAT_1_ECX], FEAT_1_ECX }, {&env->features[FEAT_8000_0001_EDX], &host_def.features[FEAT_8000_0001_EDX], FEAT_8000_0001_EDX }, {&env->features[FEAT_8000_0001_ECX], &host_def.features[FEAT_8000_0001_ECX], FEAT_8000_0001_ECX }, {&env->features[FEAT_C000_0001_EDX], &host_def.features[FEAT_C000_0001_EDX], FEAT_C000_0001_EDX }, {&env->features[FEAT_7_0_EBX], &host_def.features[FEAT_7_0_EBX], FEAT_7_0_EBX }, {&env->features[FEAT_SVM], &host_def.features[FEAT_SVM], FEAT_SVM }, {&env->features[FEAT_KVM], &host_def.features[FEAT_KVM], FEAT_KVM }, }; assert(kvm_enabled()); kvm_cpu_fill_host(&host_def); for (rv = 0, i = 0; i < ARRAY_SIZE(ft); ++i) { FeatureWord w = ft[i].feat_word; FeatureWordInfo *wi = &feature_word_info[w]; for (mask = 1; mask; mask <<= 1) { if (*ft[i].guest_feat & mask && !(*ft[i].host_feat & mask)) { unavailable_host_feature(wi, mask); rv = 1; } } } return rv; } static void x86_cpuid_version_get_family(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 8) & 0xf; if (value == 0xf) { value += (env->cpuid_version >> 20) & 0xff; } visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_family(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff + 0xf; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xff00f00; if (value > 0x0f) { env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20); } else { env->cpuid_version |= value << 8; } } static void x86_cpuid_version_get_model(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = (env->cpuid_version >> 4) & 0xf; value |= ((env->cpuid_version >> 16) & 0xf) << 4; visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_model(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xff; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf00f0; env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16); } static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int64_t value; value = env->cpuid_version & 0xf; visit_type_int(v, &value, name, errp); } static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; const int64_t min = 0; const int64_t max = 0xf; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } env->cpuid_version &= ~0xf; env->cpuid_version |= value & 0xf; } static void x86_cpuid_get_level(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_level, name, errp); } static void x86_cpuid_set_level(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_level, name, errp); } static void x86_cpuid_get_xlevel(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp); } static void x86_cpuid_set_xlevel(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); visit_type_uint32(v, &cpu->env.cpuid_xlevel, name, errp); } static char *x86_cpuid_get_vendor(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; value = (char *)g_malloc(CPUID_VENDOR_SZ + 1); x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2, env->cpuid_vendor3); return value; } static void x86_cpuid_set_vendor(Object *obj, const char *value, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int i; if (strlen(value) != CPUID_VENDOR_SZ) { error_set(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value); return; } env->cpuid_vendor1 = 0; env->cpuid_vendor2 = 0; env->cpuid_vendor3 = 0; for (i = 0; i < 4; i++) { env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i); env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i); env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i); } } static char *x86_cpuid_get_model_id(Object *obj, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; char *value; int i; value = g_malloc(48 + 1); for (i = 0; i < 48; i++) { value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3)); } value[48] = '\0'; return value; } static void x86_cpuid_set_model_id(Object *obj, const char *model_id, Error **errp) { X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; int c, len, i; if (model_id == NULL) { model_id = ""; } len = strlen(model_id); memset(env->cpuid_model, 0, 48); for (i = 0; i < 48; i++) { if (i >= len) { c = '\0'; } else { c = (uint8_t)model_id[i]; } env->cpuid_model[i >> 2] |= c << (8 * (i & 3)); } } static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); int64_t value; value = cpu->env.tsc_khz * 1000; visit_type_int(v, &value, name, errp); } static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); const int64_t min = 0; const int64_t max = INT64_MAX; int64_t value; visit_type_int(v, &value, name, errp); if (error_is_set(errp)) { return; } if (value < min || value > max) { error_set(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "", name ? name : "null", value, min, max); return; } cpu->env.tsc_khz = value / 1000; } static void x86_cpuid_get_apic_id(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); int64_t value = cpu->env.cpuid_apic_id; visit_type_int(v, &value, name, errp); } static void x86_cpuid_set_apic_id(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { X86CPU *cpu = X86_CPU(obj); DeviceState *dev = DEVICE(obj); const int64_t min = 0; const int64_t max = UINT32_MAX; Error *error = NULL; int64_t value; if (dev->realized) { error_setg(errp, "Attempt to set property '%s' on '%s' after " "it was realized", name, object_get_typename(obj)); return; } visit_type_int(v, &value, name, &error); if (error) { error_propagate(errp, error); return; } if (value < min || value > max) { error_setg(errp, "Property %s.%s doesn't take value %" PRId64 " (minimum: %" PRId64 ", maximum: %" PRId64 ")" , object_get_typename(obj), name, value, min, max); return; } if ((value != cpu->env.cpuid_apic_id) && cpu_exists(value)) { error_setg(errp, "CPU with APIC ID %" PRIi64 " exists", value); return; } cpu->env.cpuid_apic_id = value; } /* Generic getter for "feature-words" and "filtered-features" properties */ static void x86_cpu_get_feature_words(Object *obj, Visitor *v, void *opaque, const char *name, Error **errp) { uint32_t *array = (uint32_t *)opaque; FeatureWord w; Error *err = NULL; X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { }; X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { }; X86CPUFeatureWordInfoList *list = NULL; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; X86CPUFeatureWordInfo *qwi = &word_infos[w]; qwi->cpuid_input_eax = wi->cpuid_eax; qwi->has_cpuid_input_ecx = wi->cpuid_needs_ecx; qwi->cpuid_input_ecx = wi->cpuid_ecx; qwi->cpuid_register = x86_reg_info_32[wi->cpuid_reg].qapi_enum; qwi->features = array[w]; /* List will be in reverse order, but order shouldn't matter */ list_entries[w].next = list; list_entries[w].value = &word_infos[w]; list = &list_entries[w]; } visit_type_X86CPUFeatureWordInfoList(v, &list, "feature-words", &err); error_propagate(errp, err); } static int cpu_x86_find_by_name(X86CPU *cpu, x86_def_t *x86_cpu_def, const char *name) { x86_def_t *def; Error *err = NULL; int i; if (name == NULL) { return -1; } if (kvm_enabled() && strcmp(name, "host") == 0) { kvm_cpu_fill_host(x86_cpu_def); object_property_set_bool(OBJECT(cpu), true, "pmu", &err); assert_no_error(err); return 0; } for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { def = &builtin_x86_defs[i]; if (strcmp(name, def->name) == 0) { memcpy(x86_cpu_def, def, sizeof(*def)); /* sysenter isn't supported in compatibility mode on AMD, * syscall isn't supported in compatibility mode on Intel. * Normally we advertise the actual CPU vendor, but you can * override this using the 'vendor' property if you want to use * KVM's sysenter/syscall emulation in compatibility mode and * when doing cross vendor migration */ if (kvm_enabled()) { uint32_t ebx = 0, ecx = 0, edx = 0; host_cpuid(0, 0, NULL, &ebx, &ecx, &edx); x86_cpu_vendor_words2str(x86_cpu_def->vendor, ebx, edx, ecx); } return 0; } } return -1; } /* Convert all '_' in a feature string option name to '-', to make feature * name conform to QOM property naming rule, which uses '-' instead of '_'. */ static inline void feat2prop(char *s) { while ((s = strchr(s, '_'))) { *s = '-'; } } /* Parse "+feature,-feature,feature=foo" CPU feature string */ static void cpu_x86_parse_featurestr(X86CPU *cpu, char *features, Error **errp) { char *featurestr; /* Single 'key=value" string being parsed */ /* Features to be added */ FeatureWordArray plus_features = { 0 }; /* Features to be removed */ FeatureWordArray minus_features = { 0 }; uint32_t numvalue; CPUX86State *env = &cpu->env; featurestr = features ? strtok(features, ",") : NULL; while (featurestr) { char *val; if (featurestr[0] == '+') { add_flagname_to_bitmaps(featurestr + 1, plus_features); } else if (featurestr[0] == '-') { add_flagname_to_bitmaps(featurestr + 1, minus_features); } else if ((val = strchr(featurestr, '='))) { *val = 0; val++; feat2prop(featurestr); if (!strcmp(featurestr, "family")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "model")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "stepping")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "level")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "xlevel")) { char *err; char num[32]; numvalue = strtoul(val, &err, 0); if (!*val || *err) { error_setg(errp, "bad numerical value %s", val); goto out; } if (numvalue < 0x80000000) { fprintf(stderr, "xlevel value shall always be >= 0x80000000" ", fixup will be removed in future versions\n"); numvalue += 0x80000000; } snprintf(num, sizeof(num), "%" PRIu32, numvalue); object_property_parse(OBJECT(cpu), num, featurestr, errp); } else if (!strcmp(featurestr, "vendor")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "model-id")) { object_property_parse(OBJECT(cpu), val, featurestr, errp); } else if (!strcmp(featurestr, "tsc-freq")) { int64_t tsc_freq; char *err; char num[32]; tsc_freq = strtosz_suffix_unit(val, &err, STRTOSZ_DEFSUFFIX_B, 1000); if (tsc_freq < 0 || *err) { error_setg(errp, "bad numerical value %s", val); goto out; } snprintf(num, sizeof(num), "%" PRId64, tsc_freq); object_property_parse(OBJECT(cpu), num, "tsc-frequency", errp); } else if (!strcmp(featurestr, "hv-spinlocks")) { char *err; const int min = 0xFFF; numvalue = strtoul(val, &err, 0); if (!*val || *err) { error_setg(errp, "bad numerical value %s", val); goto out; } if (numvalue < min) { fprintf(stderr, "hv-spinlocks value shall always be >= 0x%x" ", fixup will be removed in future versions\n", min); numvalue = min; } cpu->hyperv_spinlock_attempts = numvalue; } else { error_setg(errp, "unrecognized feature %s", featurestr); goto out; } } else if (!strcmp(featurestr, "check")) { check_cpuid = 1; } else if (!strcmp(featurestr, "enforce")) { check_cpuid = enforce_cpuid = 1; } else if (!strcmp(featurestr, "hv_relaxed")) { cpu->hyperv_relaxed_timing = true; } else if (!strcmp(featurestr, "hv_vapic")) { cpu->hyperv_vapic = true; } else { error_setg(errp, "feature string `%s' not in format (+feature|" "-feature|feature=xyz)", featurestr); goto out; } if (error_is_set(errp)) { goto out; } featurestr = strtok(NULL, ","); } env->features[FEAT_1_EDX] |= plus_features[FEAT_1_EDX]; env->features[FEAT_1_ECX] |= plus_features[FEAT_1_ECX]; env->features[FEAT_8000_0001_EDX] |= plus_features[FEAT_8000_0001_EDX]; env->features[FEAT_8000_0001_ECX] |= plus_features[FEAT_8000_0001_ECX]; env->features[FEAT_C000_0001_EDX] |= plus_features[FEAT_C000_0001_EDX]; env->features[FEAT_KVM] |= plus_features[FEAT_KVM]; env->features[FEAT_SVM] |= plus_features[FEAT_SVM]; env->features[FEAT_7_0_EBX] |= plus_features[FEAT_7_0_EBX]; env->features[FEAT_1_EDX] &= ~minus_features[FEAT_1_EDX]; env->features[FEAT_1_ECX] &= ~minus_features[FEAT_1_ECX]; env->features[FEAT_8000_0001_EDX] &= ~minus_features[FEAT_8000_0001_EDX]; env->features[FEAT_8000_0001_ECX] &= ~minus_features[FEAT_8000_0001_ECX]; env->features[FEAT_C000_0001_EDX] &= ~minus_features[FEAT_C000_0001_EDX]; env->features[FEAT_KVM] &= ~minus_features[FEAT_KVM]; env->features[FEAT_SVM] &= ~minus_features[FEAT_SVM]; env->features[FEAT_7_0_EBX] &= ~minus_features[FEAT_7_0_EBX]; out: return; } /* generate a composite string into buf of all cpuid names in featureset * selected by fbits. indicate truncation at bufsize in the event of overflow. * if flags, suppress names undefined in featureset. */ static void listflags(char *buf, int bufsize, uint32_t fbits, const char **featureset, uint32_t flags) { const char **p = &featureset[31]; char *q, *b, bit; int nc; b = 4 <= bufsize ? buf + (bufsize -= 3) - 1 : NULL; *buf = '\0'; for (q = buf, bit = 31; fbits && bufsize; --p, fbits &= ~(1 << bit), --bit) if (fbits & 1 << bit && (*p || !flags)) { if (*p) nc = snprintf(q, bufsize, "%s%s", q == buf ? "" : " ", *p); else nc = snprintf(q, bufsize, "%s[%d]", q == buf ? "" : " ", bit); if (bufsize <= nc) { if (b) { memcpy(b, "...", sizeof("...")); } return; } q += nc; bufsize -= nc; } } /* generate CPU information. */ void x86_cpu_list(FILE *f, fprintf_function cpu_fprintf) { x86_def_t *def; char buf[256]; int i; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { def = &builtin_x86_defs[i]; snprintf(buf, sizeof(buf), "%s", def->name); (*cpu_fprintf)(f, "x86 %16s %-48s\n", buf, def->model_id); } #ifdef CONFIG_KVM (*cpu_fprintf)(f, "x86 %16s %-48s\n", "host", "KVM processor with all supported host features " "(only available in KVM mode)"); #endif (*cpu_fprintf)(f, "\nRecognized CPUID flags:\n"); for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) { FeatureWordInfo *fw = &feature_word_info[i]; listflags(buf, sizeof(buf), (uint32_t)~0, fw->feat_names, 1); (*cpu_fprintf)(f, " %s\n", buf); } } CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) { CpuDefinitionInfoList *cpu_list = NULL; x86_def_t *def; int i; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) { CpuDefinitionInfoList *entry; CpuDefinitionInfo *info; def = &builtin_x86_defs[i]; info = g_malloc0(sizeof(*info)); info->name = g_strdup(def->name); entry = g_malloc0(sizeof(*entry)); entry->value = info; entry->next = cpu_list; cpu_list = entry; } return cpu_list; } #ifdef CONFIG_KVM static void filter_features_for_kvm(X86CPU *cpu) { CPUX86State *env = &cpu->env; KVMState *s = kvm_state; FeatureWord w; for (w = 0; w < FEATURE_WORDS; w++) { FeatureWordInfo *wi = &feature_word_info[w]; uint32_t host_feat = kvm_arch_get_supported_cpuid(s, wi->cpuid_eax, wi->cpuid_ecx, wi->cpuid_reg); uint32_t requested_features = env->features[w]; env->features[w] &= host_feat; cpu->filtered_features[w] = requested_features & ~env->features[w]; } } #endif static void cpu_x86_register(X86CPU *cpu, const char *name, Error **errp) { CPUX86State *env = &cpu->env; x86_def_t def1, *def = &def1; memset(def, 0, sizeof(*def)); if (cpu_x86_find_by_name(cpu, def, name) < 0) { error_setg(errp, "Unable to find CPU definition: %s", name); return; } if (kvm_enabled()) { def->features[FEAT_KVM] |= kvm_default_features; } def->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR; object_property_set_str(OBJECT(cpu), def->vendor, "vendor", errp); object_property_set_int(OBJECT(cpu), def->level, "level", errp); object_property_set_int(OBJECT(cpu), def->family, "family", errp); object_property_set_int(OBJECT(cpu), def->model, "model", errp); object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp); env->features[FEAT_1_EDX] = def->features[FEAT_1_EDX]; env->features[FEAT_1_ECX] = def->features[FEAT_1_ECX]; env->features[FEAT_8000_0001_EDX] = def->features[FEAT_8000_0001_EDX]; env->features[FEAT_8000_0001_ECX] = def->features[FEAT_8000_0001_ECX]; object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", errp); env->features[FEAT_KVM] = def->features[FEAT_KVM]; env->features[FEAT_SVM] = def->features[FEAT_SVM]; env->features[FEAT_C000_0001_EDX] = def->features[FEAT_C000_0001_EDX]; env->features[FEAT_7_0_EBX] = def->features[FEAT_7_0_EBX]; env->cpuid_xlevel2 = def->xlevel2; cpu->cache_info_passthrough = def->cache_info_passthrough; object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp); } X86CPU *cpu_x86_create(const char *cpu_model, DeviceState *icc_bridge, Error **errp) { X86CPU *cpu = NULL; gchar **model_pieces; char *name, *features; char *typename; Error *error = NULL; model_pieces = g_strsplit(cpu_model, ",", 2); if (!model_pieces[0]) { error_setg(&error, "Invalid/empty CPU model name"); goto out; } name = model_pieces[0]; features = model_pieces[1]; cpu = X86_CPU(object_new(TYPE_X86_CPU)); #ifndef CONFIG_USER_ONLY if (icc_bridge == NULL) { error_setg(&error, "Invalid icc-bridge value"); goto out; } qdev_set_parent_bus(DEVICE(cpu), qdev_get_child_bus(icc_bridge, "icc")); object_unref(OBJECT(cpu)); #endif cpu_x86_register(cpu, name, &error); if (error) { goto out; } /* Emulate per-model subclasses for global properties */ typename = g_strdup_printf("%s-" TYPE_X86_CPU, name); qdev_prop_set_globals_for_type(DEVICE(cpu), typename, &error); g_free(typename); if (error) { goto out; } cpu_x86_parse_featurestr(cpu, features, &error); if (error) { goto out; } out: if (error != NULL) { error_propagate(errp, error); object_unref(OBJECT(cpu)); cpu = NULL; } g_strfreev(model_pieces); return cpu; } X86CPU *cpu_x86_init(const char *cpu_model) { Error *error = NULL; X86CPU *cpu; cpu = cpu_x86_create(cpu_model, NULL, &error); if (error) { goto out; } object_property_set_bool(OBJECT(cpu), true, "realized", &error); out: if (error) { error_report("%s", error_get_pretty(error)); error_free(error); if (cpu != NULL) { object_unref(OBJECT(cpu)); cpu = NULL; } } return cpu; } #if !defined(CONFIG_USER_ONLY) void cpu_clear_apic_feature(CPUX86State *env) { env->features[FEAT_1_EDX] &= ~CPUID_APIC; } #endif /* !CONFIG_USER_ONLY */ /* Initialize list of CPU models, filling some non-static fields if necessary */ void x86_cpudef_setup(void) { int i, j; static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" }; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) { x86_def_t *def = &builtin_x86_defs[i]; /* Look for specific "cpudef" models that */ /* have the QEMU version in .model_id */ for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) { if (strcmp(model_with_versions[j], def->name) == 0) { pstrcpy(def->model_id, sizeof(def->model_id), "QEMU Virtual CPU version "); pstrcat(def->model_id, sizeof(def->model_id), qemu_get_version()); break; } } } } static void get_cpuid_vendor(CPUX86State *env, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; } void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { X86CPU *cpu = x86_env_get_cpu(env); CPUState *cs = CPU(cpu); /* test if maximum index reached */ if (index & 0x80000000) { if (index > env->cpuid_xlevel) { if (env->cpuid_xlevel2 > 0) { /* Handle the Centaur's CPUID instruction. */ if (index > env->cpuid_xlevel2) { index = env->cpuid_xlevel2; } else if (index < 0xC0000000) { index = env->cpuid_xlevel; } } else { /* Intel documentation states that invalid EAX input will * return the same information as EAX=cpuid_level * (Intel SDM Vol. 2A - Instruction Set Reference - CPUID) */ index = env->cpuid_level; } } } else { if (index > env->cpuid_level) index = env->cpuid_level; } switch(index) { case 0: *eax = env->cpuid_level; get_cpuid_vendor(env, ebx, ecx, edx); break; case 1: *eax = env->cpuid_version; *ebx = (env->cpuid_apic_id << 24) | 8 << 8; /* CLFLUSH size in quad words, Linux wants it. */ *ecx = env->features[FEAT_1_ECX]; *edx = env->features[FEAT_1_EDX]; if (cs->nr_cores * cs->nr_threads > 1) { *ebx |= (cs->nr_cores * cs->nr_threads) << 16; *edx |= 1 << 28; /* HTT bit */ } break; case 2: /* cache info: needed for Pentium Pro compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = 1; /* Number of CPUID[EAX=2] calls required */ *ebx = 0; *ecx = 0; *edx = (L1D_DESCRIPTOR << 16) | \ (L1I_DESCRIPTOR << 8) | \ (L2_DESCRIPTOR); break; case 4: /* cache info: needed for Core compatibility */ if (cpu->cache_info_passthrough) { host_cpuid(index, count, eax, ebx, ecx, edx); break; } if (cs->nr_cores > 1) { *eax = (cs->nr_cores - 1) << 26; } else { *eax = 0; } switch (count) { case 0: /* L1 dcache info */ *eax |= CPUID_4_TYPE_DCACHE | \ CPUID_4_LEVEL(1) | \ CPUID_4_SELF_INIT_LEVEL; *ebx = (L1D_LINE_SIZE - 1) | \ ((L1D_PARTITIONS - 1) << 12) | \ ((L1D_ASSOCIATIVITY - 1) << 22); *ecx = L1D_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; case 1: /* L1 icache info */ *eax |= CPUID_4_TYPE_ICACHE | \ CPUID_4_LEVEL(1) | \ CPUID_4_SELF_INIT_LEVEL; *ebx = (L1I_LINE_SIZE - 1) | \ ((L1I_PARTITIONS - 1) << 12) | \ ((L1I_ASSOCIATIVITY - 1) << 22); *ecx = L1I_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; case 2: /* L2 cache info */ *eax |= CPUID_4_TYPE_UNIFIED | \ CPUID_4_LEVEL(2) | \ CPUID_4_SELF_INIT_LEVEL; if (cs->nr_threads > 1) { *eax |= (cs->nr_threads - 1) << 14; } *ebx = (L2_LINE_SIZE - 1) | \ ((L2_PARTITIONS - 1) << 12) | \ ((L2_ASSOCIATIVITY - 1) << 22); *ecx = L2_SETS - 1; *edx = CPUID_4_NO_INVD_SHARING; break; default: /* end of info */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } break; case 5: /* mwait info: needed for Core compatibility */ *eax = 0; /* Smallest monitor-line size in bytes */ *ebx = 0; /* Largest monitor-line size in bytes */ *ecx = CPUID_MWAIT_EMX | CPUID_MWAIT_IBE; *edx = 0; break; case 6: /* Thermal and Power Leaf */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; case 7: /* Structured Extended Feature Flags Enumeration Leaf */ if (count == 0) { *eax = 0; /* Maximum ECX value for sub-leaves */ *ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */ *ecx = 0; /* Reserved */ *edx = 0; /* Reserved */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 9: /* Direct Cache Access Information Leaf */ *eax = 0; /* Bits 0-31 in DCA_CAP MSR */ *ebx = 0; *ecx = 0; *edx = 0; break; case 0xA: /* Architectural Performance Monitoring Leaf */ if (kvm_enabled() && cpu->enable_pmu) { KVMState *s = cs->kvm_state; *eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX); *ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX); *ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX); *edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX); } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xD: /* Processor Extended State */ if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } if (kvm_enabled()) { KVMState *s = cs->kvm_state; *eax = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EAX); *ebx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EBX); *ecx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_ECX); *edx = kvm_arch_get_supported_cpuid(s, 0xd, count, R_EDX); } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0x80000000: *eax = env->cpuid_xlevel; *ebx = env->cpuid_vendor1; *edx = env->cpuid_vendor2; *ecx = env->cpuid_vendor3; break; case 0x80000001: *eax = env->cpuid_version; *ebx = 0; *ecx = env->features[FEAT_8000_0001_ECX]; *edx = env->features[FEAT_8000_0001_EDX]; /* The Linux kernel checks for the CMPLegacy bit and * discards multiple thread information if it is set. * So dont set it here for Intel to make Linux guests happy. */ if (cs->nr_cores * cs->nr_threads > 1) { uint32_t tebx, tecx, tedx; get_cpuid_vendor(env, &tebx, &tecx, &tedx); if (tebx != CPUID_VENDOR_INTEL_1 || tedx != CPUID_VENDOR_INTEL_2 || tecx != CPUID_VENDOR_INTEL_3) { *ecx |= 1 << 1; /* CmpLegacy bit */ } } break; case 0x80000002: case 0x80000003: case 0x80000004: *eax = env->cpuid_model[(index - 0x80000002) * 4 + 0]; *ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1]; *ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2]; *edx = env->cpuid_model[(index - 0x80000002) * 4 + 3]; break; case 0x80000005: /* cache info (L1 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \ (L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES); *ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \ (L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES); *ecx = (L1D_SIZE_KB_AMD << 24) | (L1D_ASSOCIATIVITY_AMD << 16) | \ (L1D_LINES_PER_TAG << 8) | (L1D_LINE_SIZE); *edx = (L1I_SIZE_KB_AMD << 24) | (L1I_ASSOCIATIVITY_AMD << 16) | \ (L1I_LINES_PER_TAG << 8) | (L1I_LINE_SIZE); break; case 0x80000006: /* cache info (L2 cache) */ if (cpu->cache_info_passthrough) { host_cpuid(index, 0, eax, ebx, ecx, edx); break; } *eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \ (L2_DTLB_2M_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \ (L2_ITLB_2M_ENTRIES); *ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \ (L2_DTLB_4K_ENTRIES << 16) | \ (AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \ (L2_ITLB_4K_ENTRIES); *ecx = (L2_SIZE_KB_AMD << 16) | \ (AMD_ENC_ASSOC(L2_ASSOCIATIVITY) << 12) | \ (L2_LINES_PER_TAG << 8) | (L2_LINE_SIZE); *edx = ((L3_SIZE_KB/512) << 18) | \ (AMD_ENC_ASSOC(L3_ASSOCIATIVITY) << 12) | \ (L3_LINES_PER_TAG << 8) | (L3_LINE_SIZE); break; case 0x80000008: /* virtual & phys address size in low 2 bytes. */ /* XXX: This value must match the one used in the MMU code. */ if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) { /* 64 bit processor */ /* XXX: The physical address space is limited to 42 bits in exec.c. */ *eax = 0x00003028; /* 48 bits virtual, 40 bits physical */ } else { if (env->features[FEAT_1_EDX] & CPUID_PSE36) { *eax = 0x00000024; /* 36 bits physical */ } else { *eax = 0x00000020; /* 32 bits physical */ } } *ebx = 0; *ecx = 0; *edx = 0; if (cs->nr_cores * cs->nr_threads > 1) { *ecx |= (cs->nr_cores * cs->nr_threads) - 1; } break; case 0x8000000A: if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) { *eax = 0x00000001; /* SVM Revision */ *ebx = 0x00000010; /* nr of ASIDs */ *ecx = 0; *edx = env->features[FEAT_SVM]; /* optional features */ } else { *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; } break; case 0xC0000000: *eax = env->cpuid_xlevel2; *ebx = 0; *ecx = 0; *edx = 0; break; case 0xC0000001: /* Support for VIA CPU's CPUID instruction */ *eax = env->cpuid_version; *ebx = 0; *ecx = 0; *edx = env->features[FEAT_C000_0001_EDX]; break; case 0xC0000002: case 0xC0000003: case 0xC0000004: /* Reserved for the future, and now filled with zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; default: /* reserved values: zero */ *eax = 0; *ebx = 0; *ecx = 0; *edx = 0; break; } } /* CPUClass::reset() */ static void x86_cpu_reset(CPUState *s) { X86CPU *cpu = X86_CPU(s); X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu); CPUX86State *env = &cpu->env; int i; xcc->parent_reset(s); memset(env, 0, offsetof(CPUX86State, breakpoints)); tlb_flush(env, 1); env->old_exception = -1; /* init to reset state */ #ifdef CONFIG_SOFTMMU env->hflags |= HF_SOFTMMU_MASK; #endif env->hflags2 |= HF2_GIF_MASK; cpu_x86_update_cr0(env, 0x60000010); env->a20_mask = ~0x0; env->smbase = 0x30000; env->idt.limit = 0xffff; env->gdt.limit = 0xffff; env->ldt.limit = 0xffff; env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT); env->tr.limit = 0xffff; env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT); cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, DESC_P_MASK | DESC_S_MASK | DESC_W_MASK | DESC_A_MASK); env->eip = 0xfff0; env->regs[R_EDX] = env->cpuid_version; env->eflags = 0x2; /* FPU init */ for (i = 0; i < 8; i++) { env->fptags[i] = 1; } env->fpuc = 0x37f; env->mxcsr = 0x1f80; env->pat = 0x0007040600070406ULL; env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT; memset(env->dr, 0, sizeof(env->dr)); env->dr[6] = DR6_FIXED_1; env->dr[7] = DR7_FIXED_1; cpu_breakpoint_remove_all(env, BP_CPU); cpu_watchpoint_remove_all(env, BP_CPU); #if !defined(CONFIG_USER_ONLY) /* We hard-wire the BSP to the first CPU. */ if (s->cpu_index == 0) { apic_designate_bsp(env->apic_state); } s->halted = !cpu_is_bsp(cpu); #endif } #ifndef CONFIG_USER_ONLY bool cpu_is_bsp(X86CPU *cpu) { return cpu_get_apic_base(cpu->env.apic_state) & MSR_IA32_APICBASE_BSP; } /* TODO: remove me, when reset over QOM tree is implemented */ static void x86_cpu_machine_reset_cb(void *opaque) { X86CPU *cpu = opaque; cpu_reset(CPU(cpu)); } #endif static void mce_init(X86CPU *cpu) { CPUX86State *cenv = &cpu->env; unsigned int bank; if (((cenv->cpuid_version >> 8) & 0xf) >= 6 && (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == (CPUID_MCE | CPUID_MCA)) { cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF; cenv->mcg_ctl = ~(uint64_t)0; for (bank = 0; bank < MCE_BANKS_DEF; bank++) { cenv->mce_banks[bank * 4] = ~(uint64_t)0; } } } #ifndef CONFIG_USER_ONLY static void x86_cpu_apic_create(X86CPU *cpu, Error **errp) { CPUX86State *env = &cpu->env; DeviceState *dev = DEVICE(cpu); APICCommonState *apic; const char *apic_type = "apic"; if (kvm_irqchip_in_kernel()) { apic_type = "kvm-apic"; } else if (xen_enabled()) { apic_type = "xen-apic"; } env->apic_state = qdev_try_create(qdev_get_parent_bus(dev), apic_type); if (env->apic_state == NULL) { error_setg(errp, "APIC device '%s' could not be created", apic_type); return; } object_property_add_child(OBJECT(cpu), "apic", OBJECT(env->apic_state), NULL); qdev_prop_set_uint8(env->apic_state, "id", env->cpuid_apic_id); /* TODO: convert to link<> */ apic = APIC_COMMON(env->apic_state); apic->cpu = cpu; } static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { CPUX86State *env = &cpu->env; if (env->apic_state == NULL) { return; } if (qdev_init(env->apic_state)) { error_setg(errp, "APIC device '%s' could not be initialized", object_get_typename(OBJECT(env->apic_state))); return; } } #else static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp) { } #endif static void x86_cpu_realizefn(DeviceState *dev, Error **errp) { CPUState *cs = CPU(dev); X86CPU *cpu = X86_CPU(dev); X86CPUClass *xcc = X86_CPU_GET_CLASS(dev); CPUX86State *env = &cpu->env; Error *local_err = NULL; if (env->features[FEAT_7_0_EBX] && env->cpuid_level < 7) { env->cpuid_level = 7; } /* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on * CPUID[1].EDX. */ if (env->cpuid_vendor1 == CPUID_VENDOR_AMD_1 && env->cpuid_vendor2 == CPUID_VENDOR_AMD_2 && env->cpuid_vendor3 == CPUID_VENDOR_AMD_3) { env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES; env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX] & CPUID_EXT2_AMD_ALIASES); } if (!kvm_enabled()) { env->features[FEAT_1_EDX] &= TCG_FEATURES; env->features[FEAT_1_ECX] &= TCG_EXT_FEATURES; env->features[FEAT_8000_0001_EDX] &= (TCG_EXT2_FEATURES #ifdef TARGET_X86_64 | CPUID_EXT2_SYSCALL | CPUID_EXT2_LM #endif ); env->features[FEAT_8000_0001_ECX] &= TCG_EXT3_FEATURES; env->features[FEAT_SVM] &= TCG_SVM_FEATURES; } else { if (check_cpuid && kvm_check_features_against_host(cpu) && enforce_cpuid) { error_setg(&local_err, "Host's CPU doesn't support requested features"); goto out; } #ifdef CONFIG_KVM filter_features_for_kvm(cpu); #endif } #ifndef CONFIG_USER_ONLY qemu_register_reset(x86_cpu_machine_reset_cb, cpu); if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || smp_cpus > 1) { x86_cpu_apic_create(cpu, &local_err); if (local_err != NULL) { goto out; } } #endif mce_init(cpu); qemu_init_vcpu(cs); x86_cpu_apic_realize(cpu, &local_err); if (local_err != NULL) { goto out; } cpu_reset(cs); xcc->parent_realize(dev, &local_err); out: if (local_err != NULL) { error_propagate(errp, local_err); return; } } /* Enables contiguous-apic-ID mode, for compatibility */ static bool compat_apic_id_mode; void enable_compat_apic_id_mode(void) { compat_apic_id_mode = true; } /* Calculates initial APIC ID for a specific CPU index * * Currently we need to be able to calculate the APIC ID from the CPU index * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of * all CPUs up to max_cpus. */ uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) { uint32_t correct_id; static bool warned; correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); if (compat_apic_id_mode) { if (cpu_index != correct_id && !warned) { error_report("APIC IDs set in compatibility mode, " "CPU topology won't match the configuration"); warned = true; } return cpu_index; } else { return correct_id; } } static void x86_cpu_initfn(Object *obj) { CPUState *cs = CPU(obj); X86CPU *cpu = X86_CPU(obj); CPUX86State *env = &cpu->env; static int inited; cs->env_ptr = env; cpu_exec_init(env); object_property_add(obj, "family", "int", x86_cpuid_version_get_family, x86_cpuid_version_set_family, NULL, NULL, NULL); object_property_add(obj, "model", "int", x86_cpuid_version_get_model, x86_cpuid_version_set_model, NULL, NULL, NULL); object_property_add(obj, "stepping", "int", x86_cpuid_version_get_stepping, x86_cpuid_version_set_stepping, NULL, NULL, NULL); object_property_add(obj, "level", "int", x86_cpuid_get_level, x86_cpuid_set_level, NULL, NULL, NULL); object_property_add(obj, "xlevel", "int", x86_cpuid_get_xlevel, x86_cpuid_set_xlevel, NULL, NULL, NULL); object_property_add_str(obj, "vendor", x86_cpuid_get_vendor, x86_cpuid_set_vendor, NULL); object_property_add_str(obj, "model-id", x86_cpuid_get_model_id, x86_cpuid_set_model_id, NULL); object_property_add(obj, "tsc-frequency", "int", x86_cpuid_get_tsc_freq, x86_cpuid_set_tsc_freq, NULL, NULL, NULL); object_property_add(obj, "apic-id", "int", x86_cpuid_get_apic_id, x86_cpuid_set_apic_id, NULL, NULL, NULL); object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)env->features, NULL); object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo", x86_cpu_get_feature_words, NULL, NULL, (void *)cpu->filtered_features, NULL); cpu->hyperv_spinlock_attempts = HYPERV_SPINLOCK_NEVER_RETRY; env->cpuid_apic_id = x86_cpu_apic_id_from_index(cs->cpu_index); /* init various static tables used in TCG mode */ if (tcg_enabled() && !inited) { inited = 1; optimize_flags_init(); #ifndef CONFIG_USER_ONLY cpu_set_debug_excp_handler(breakpoint_handler); #endif } } static int64_t x86_cpu_get_arch_id(CPUState *cs) { X86CPU *cpu = X86_CPU(cs); CPUX86State *env = &cpu->env; return env->cpuid_apic_id; } static bool x86_cpu_get_paging_enabled(const CPUState *cs) { X86CPU *cpu = X86_CPU(cs); return cpu->env.cr[0] & CR0_PG_MASK; } static void x86_cpu_set_pc(CPUState *cs, vaddr value) { X86CPU *cpu = X86_CPU(cs); cpu->env.eip = value; } static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb) { X86CPU *cpu = X86_CPU(cs); cpu->env.eip = tb->pc - tb->cs_base; } static Property x86_cpu_properties[] = { DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false), DEFINE_PROP_END_OF_LIST() }; static void x86_cpu_common_class_init(ObjectClass *oc, void *data) { X86CPUClass *xcc = X86_CPU_CLASS(oc); CPUClass *cc = CPU_CLASS(oc); DeviceClass *dc = DEVICE_CLASS(oc); xcc->parent_realize = dc->realize; dc->realize = x86_cpu_realizefn; dc->bus_type = TYPE_ICC_BUS; dc->props = x86_cpu_properties; xcc->parent_reset = cc->reset; cc->reset = x86_cpu_reset; cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP; cc->do_interrupt = x86_cpu_do_interrupt; cc->dump_state = x86_cpu_dump_state; cc->set_pc = x86_cpu_set_pc; cc->synchronize_from_tb = x86_cpu_synchronize_from_tb; cc->gdb_read_register = x86_cpu_gdb_read_register; cc->gdb_write_register = x86_cpu_gdb_write_register; cc->get_arch_id = x86_cpu_get_arch_id; cc->get_paging_enabled = x86_cpu_get_paging_enabled; #ifndef CONFIG_USER_ONLY cc->get_memory_mapping = x86_cpu_get_memory_mapping; cc->get_phys_page_debug = x86_cpu_get_phys_page_debug; cc->write_elf64_note = x86_cpu_write_elf64_note; cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote; cc->write_elf32_note = x86_cpu_write_elf32_note; cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote; cc->vmsd = &vmstate_x86_cpu; #endif cc->gdb_num_core_regs = CPU_NB_REGS * 2 + 25; } static const TypeInfo x86_cpu_type_info = { .name = TYPE_X86_CPU, .parent = TYPE_CPU, .instance_size = sizeof(X86CPU), .instance_init = x86_cpu_initfn, .abstract = false, .class_size = sizeof(X86CPUClass), .class_init = x86_cpu_common_class_init, }; static void x86_cpu_register_types(void) { type_register_static(&x86_cpu_type_info); } type_init(x86_cpu_register_types)