/* * i386 memory mapping * * Copyright Fujitsu, Corp. 2011, 2012 * * Authors: * Wen Congyang <wency@cn.fujitsu.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "cpu.h" #include "exec/cpu-all.h" #include "sysemu/dump.h" #include "elf.h" #include "sysemu/memory_mapping.h" #ifdef TARGET_X86_64 typedef struct { target_ulong r15, r14, r13, r12, rbp, rbx, r11, r10; target_ulong r9, r8, rax, rcx, rdx, rsi, rdi, orig_rax; target_ulong rip, cs, eflags; target_ulong rsp, ss; target_ulong fs_base, gs_base; target_ulong ds, es, fs, gs; } x86_64_user_regs_struct; typedef struct { char pad1[32]; uint32_t pid; char pad2[76]; x86_64_user_regs_struct regs; char pad3[8]; } x86_64_elf_prstatus; static int x86_64_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env, int id, void *opaque) { x86_64_user_regs_struct regs; Elf64_Nhdr *note; char *buf; int descsz, note_size, name_size = 5; const char *name = "CORE"; int ret; regs.r15 = env->regs[15]; regs.r14 = env->regs[14]; regs.r13 = env->regs[13]; regs.r12 = env->regs[12]; regs.r11 = env->regs[11]; regs.r10 = env->regs[10]; regs.r9 = env->regs[9]; regs.r8 = env->regs[8]; regs.rbp = env->regs[R_EBP]; regs.rsp = env->regs[R_ESP]; regs.rdi = env->regs[R_EDI]; regs.rsi = env->regs[R_ESI]; regs.rdx = env->regs[R_EDX]; regs.rcx = env->regs[R_ECX]; regs.rbx = env->regs[R_EBX]; regs.rax = env->regs[R_EAX]; regs.rip = env->eip; regs.eflags = env->eflags; regs.orig_rax = 0; /* FIXME */ regs.cs = env->segs[R_CS].selector; regs.ss = env->segs[R_SS].selector; regs.fs_base = env->segs[R_FS].base; regs.gs_base = env->segs[R_GS].base; regs.ds = env->segs[R_DS].selector; regs.es = env->segs[R_ES].selector; regs.fs = env->segs[R_FS].selector; regs.gs = env->segs[R_GS].selector; descsz = sizeof(x86_64_elf_prstatus); note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + (descsz + 3) / 4) * 4; note = g_malloc(note_size); memset(note, 0, note_size); note->n_namesz = cpu_to_le32(name_size); note->n_descsz = cpu_to_le32(descsz); note->n_type = cpu_to_le32(NT_PRSTATUS); buf = (char *)note; buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; memcpy(buf, name, name_size); buf += ((name_size + 3) / 4) * 4; memcpy(buf + 32, &id, 4); /* pr_pid */ buf += descsz - sizeof(x86_64_user_regs_struct)-sizeof(target_ulong); memcpy(buf, ®s, sizeof(x86_64_user_regs_struct)); ret = f(note, note_size, opaque); g_free(note); if (ret < 0) { return -1; } return 0; } #endif typedef struct { uint32_t ebx, ecx, edx, esi, edi, ebp, eax; unsigned short ds, __ds, es, __es; unsigned short fs, __fs, gs, __gs; uint32_t orig_eax, eip; unsigned short cs, __cs; uint32_t eflags, esp; unsigned short ss, __ss; } x86_user_regs_struct; typedef struct { char pad1[24]; uint32_t pid; char pad2[44]; x86_user_regs_struct regs; char pad3[4]; } x86_elf_prstatus; static void x86_fill_elf_prstatus(x86_elf_prstatus *prstatus, CPUX86State *env, int id) { memset(prstatus, 0, sizeof(x86_elf_prstatus)); prstatus->regs.ebp = env->regs[R_EBP] & 0xffffffff; prstatus->regs.esp = env->regs[R_ESP] & 0xffffffff; prstatus->regs.edi = env->regs[R_EDI] & 0xffffffff; prstatus->regs.esi = env->regs[R_ESI] & 0xffffffff; prstatus->regs.edx = env->regs[R_EDX] & 0xffffffff; prstatus->regs.ecx = env->regs[R_ECX] & 0xffffffff; prstatus->regs.ebx = env->regs[R_EBX] & 0xffffffff; prstatus->regs.eax = env->regs[R_EAX] & 0xffffffff; prstatus->regs.eip = env->eip & 0xffffffff; prstatus->regs.eflags = env->eflags & 0xffffffff; prstatus->regs.cs = env->segs[R_CS].selector; prstatus->regs.ss = env->segs[R_SS].selector; prstatus->regs.ds = env->segs[R_DS].selector; prstatus->regs.es = env->segs[R_ES].selector; prstatus->regs.fs = env->segs[R_FS].selector; prstatus->regs.gs = env->segs[R_GS].selector; prstatus->pid = id; } static int x86_write_elf64_note(WriteCoreDumpFunction f, CPUX86State *env, int id, void *opaque) { x86_elf_prstatus prstatus; Elf64_Nhdr *note; char *buf; int descsz, note_size, name_size = 5; const char *name = "CORE"; int ret; x86_fill_elf_prstatus(&prstatus, env, id); descsz = sizeof(x86_elf_prstatus); note_size = ((sizeof(Elf64_Nhdr) + 3) / 4 + (name_size + 3) / 4 + (descsz + 3) / 4) * 4; note = g_malloc(note_size); memset(note, 0, note_size); note->n_namesz = cpu_to_le32(name_size); note->n_descsz = cpu_to_le32(descsz); note->n_type = cpu_to_le32(NT_PRSTATUS); buf = (char *)note; buf += ((sizeof(Elf64_Nhdr) + 3) / 4) * 4; memcpy(buf, name, name_size); buf += ((name_size + 3) / 4) * 4; memcpy(buf, &prstatus, sizeof(prstatus)); ret = f(note, note_size, opaque); g_free(note); if (ret < 0) { return -1; } return 0; } int x86_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, int cpuid, void *opaque) { X86CPU *cpu = X86_CPU(cs); int ret; #ifdef TARGET_X86_64 X86CPU *first_x86_cpu = X86_CPU(first_cpu); bool lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); if (lma) { ret = x86_64_write_elf64_note(f, &cpu->env, cpuid, opaque); } else { #endif ret = x86_write_elf64_note(f, &cpu->env, cpuid, opaque); #ifdef TARGET_X86_64 } #endif return ret; } int x86_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, int cpuid, void *opaque) { X86CPU *cpu = X86_CPU(cs); x86_elf_prstatus prstatus; Elf32_Nhdr *note; char *buf; int descsz, note_size, name_size = 5; const char *name = "CORE"; int ret; x86_fill_elf_prstatus(&prstatus, &cpu->env, cpuid); descsz = sizeof(x86_elf_prstatus); note_size = ((sizeof(Elf32_Nhdr) + 3) / 4 + (name_size + 3) / 4 + (descsz + 3) / 4) * 4; note = g_malloc(note_size); memset(note, 0, note_size); note->n_namesz = cpu_to_le32(name_size); note->n_descsz = cpu_to_le32(descsz); note->n_type = cpu_to_le32(NT_PRSTATUS); buf = (char *)note; buf += ((sizeof(Elf32_Nhdr) + 3) / 4) * 4; memcpy(buf, name, name_size); buf += ((name_size + 3) / 4) * 4; memcpy(buf, &prstatus, sizeof(prstatus)); ret = f(note, note_size, opaque); g_free(note); if (ret < 0) { return -1; } return 0; } /* * please count up QEMUCPUSTATE_VERSION if you have changed definition of * QEMUCPUState, and modify the tools using this information accordingly. */ #define QEMUCPUSTATE_VERSION (1) struct QEMUCPUSegment { uint32_t selector; uint32_t limit; uint32_t flags; uint32_t pad; uint64_t base; }; typedef struct QEMUCPUSegment QEMUCPUSegment; struct QEMUCPUState { uint32_t version; uint32_t size; uint64_t rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp; uint64_t r8, r9, r10, r11, r12, r13, r14, r15; uint64_t rip, rflags; QEMUCPUSegment cs, ds, es, fs, gs, ss; QEMUCPUSegment ldt, tr, gdt, idt; uint64_t cr[5]; }; typedef struct QEMUCPUState QEMUCPUState; static void copy_segment(QEMUCPUSegment *d, SegmentCache *s) { d->pad = 0; d->selector = s->selector; d->limit = s->limit; d->flags = s->flags; d->base = s->base; } static void qemu_get_cpustate(QEMUCPUState *s, CPUX86State *env) { memset(s, 0, sizeof(QEMUCPUState)); s->version = QEMUCPUSTATE_VERSION; s->size = sizeof(QEMUCPUState); s->rax = env->regs[R_EAX]; s->rbx = env->regs[R_EBX]; s->rcx = env->regs[R_ECX]; s->rdx = env->regs[R_EDX]; s->rsi = env->regs[R_ESI]; s->rdi = env->regs[R_EDI]; s->rsp = env->regs[R_ESP]; s->rbp = env->regs[R_EBP]; #ifdef TARGET_X86_64 s->r8 = env->regs[8]; s->r9 = env->regs[9]; s->r10 = env->regs[10]; s->r11 = env->regs[11]; s->r12 = env->regs[12]; s->r13 = env->regs[13]; s->r14 = env->regs[14]; s->r15 = env->regs[15]; #endif s->rip = env->eip; s->rflags = env->eflags; copy_segment(&s->cs, &env->segs[R_CS]); copy_segment(&s->ds, &env->segs[R_DS]); copy_segment(&s->es, &env->segs[R_ES]); copy_segment(&s->fs, &env->segs[R_FS]); copy_segment(&s->gs, &env->segs[R_GS]); copy_segment(&s->ss, &env->segs[R_SS]); copy_segment(&s->ldt, &env->ldt); copy_segment(&s->tr, &env->tr); copy_segment(&s->gdt, &env->gdt); copy_segment(&s->idt, &env->idt); s->cr[0] = env->cr[0]; s->cr[1] = env->cr[1]; s->cr[2] = env->cr[2]; s->cr[3] = env->cr[3]; s->cr[4] = env->cr[4]; } static inline int cpu_write_qemu_note(WriteCoreDumpFunction f, CPUX86State *env, void *opaque, int type) { QEMUCPUState state; Elf64_Nhdr *note64; Elf32_Nhdr *note32; void *note; char *buf; int descsz, note_size, name_size = 5, note_head_size; const char *name = "QEMU"; int ret; qemu_get_cpustate(&state, env); descsz = sizeof(state); if (type == 0) { note_head_size = sizeof(Elf32_Nhdr); } else { note_head_size = sizeof(Elf64_Nhdr); } note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + (descsz + 3) / 4) * 4; note = g_malloc(note_size); memset(note, 0, note_size); if (type == 0) { note32 = note; note32->n_namesz = cpu_to_le32(name_size); note32->n_descsz = cpu_to_le32(descsz); note32->n_type = 0; } else { note64 = note; note64->n_namesz = cpu_to_le32(name_size); note64->n_descsz = cpu_to_le32(descsz); note64->n_type = 0; } buf = note; buf += ((note_head_size + 3) / 4) * 4; memcpy(buf, name, name_size); buf += ((name_size + 3) / 4) * 4; memcpy(buf, &state, sizeof(state)); ret = f(note, note_size, opaque); g_free(note); if (ret < 0) { return -1; } return 0; } int x86_cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cs, void *opaque) { X86CPU *cpu = X86_CPU(cs); return cpu_write_qemu_note(f, &cpu->env, opaque, 1); } int x86_cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cs, void *opaque) { X86CPU *cpu = X86_CPU(cs); return cpu_write_qemu_note(f, &cpu->env, opaque, 0); } int cpu_get_dump_info(ArchDumpInfo *info, const GuestPhysBlockList *guest_phys_blocks) { bool lma = false; GuestPhysBlock *block; #ifdef TARGET_X86_64 X86CPU *first_x86_cpu = X86_CPU(first_cpu); lma = !!(first_x86_cpu->env.hflags & HF_LMA_MASK); #endif if (lma) { info->d_machine = EM_X86_64; } else { info->d_machine = EM_386; } info->d_endian = ELFDATA2LSB; if (lma) { info->d_class = ELFCLASS64; } else { info->d_class = ELFCLASS32; QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) { if (block->target_end > UINT_MAX) { /* The memory size is greater than 4G */ info->d_class = ELFCLASS64; break; } } } return 0; } ssize_t cpu_get_note_size(int class, int machine, int nr_cpus) { int name_size = 5; /* "CORE" or "QEMU" */ size_t elf_note_size = 0; size_t qemu_note_size = 0; int elf_desc_size = 0; int qemu_desc_size = 0; int note_head_size; if (class == ELFCLASS32) { note_head_size = sizeof(Elf32_Nhdr); } else { note_head_size = sizeof(Elf64_Nhdr); } if (machine == EM_386) { elf_desc_size = sizeof(x86_elf_prstatus); } #ifdef TARGET_X86_64 else { elf_desc_size = sizeof(x86_64_elf_prstatus); } #endif qemu_desc_size = sizeof(QEMUCPUState); elf_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + (elf_desc_size + 3) / 4) * 4; qemu_note_size = ((note_head_size + 3) / 4 + (name_size + 3) / 4 + (qemu_desc_size + 3) / 4) * 4; return (elf_note_size + qemu_note_size) * nr_cpus; }