/* * CRIS emulation for qemu: main translation routines. * * Copyright (c) 2008 AXIS Communications AB * Written by Edgar E. Iglesias. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ /* * FIXME: * The condition code translation is in need of attention. */ #include <stdarg.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include <inttypes.h> #include "cpu.h" #include "exec-all.h" #include "disas.h" #include "tcg-op.h" #include "helper.h" #include "mmu.h" #include "crisv32-decode.h" #include "qemu-common.h" #define GEN_HELPER 1 #include "helper.h" #define DISAS_CRIS 0 #if DISAS_CRIS # define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__) #else # define LOG_DIS(...) do { } while (0) #endif #define D(x) #define BUG() (gen_BUG(dc, __FILE__, __LINE__)) #define BUG_ON(x) ({if (x) BUG();}) #define DISAS_SWI 5 /* Used by the decoder. */ #define EXTRACT_FIELD(src, start, end) \ (((src) >> start) & ((1 << (end - start + 1)) - 1)) #define CC_MASK_NZ 0xc #define CC_MASK_NZV 0xe #define CC_MASK_NZVC 0xf #define CC_MASK_RNZV 0x10e static TCGv_ptr cpu_env; static TCGv cpu_R[16]; static TCGv cpu_PR[16]; static TCGv cc_x; static TCGv cc_src; static TCGv cc_dest; static TCGv cc_result; static TCGv cc_op; static TCGv cc_size; static TCGv cc_mask; static TCGv env_btaken; static TCGv env_btarget; static TCGv env_pc; #include "gen-icount.h" /* This is the state at translation time. */ typedef struct DisasContext { CPUState *env; target_ulong pc, ppc; /* Decoder. */ unsigned int (*decoder)(struct DisasContext *dc); uint32_t ir; uint32_t opcode; unsigned int op1; unsigned int op2; unsigned int zsize, zzsize; unsigned int mode; unsigned int postinc; unsigned int size; unsigned int src; unsigned int dst; unsigned int cond; int update_cc; int cc_op; int cc_size; uint32_t cc_mask; int cc_size_uptodate; /* -1 invalid or last written value. */ int cc_x_uptodate; /* 1 - ccs, 2 - known | X_FLAG. 0 not uptodate. */ int flags_uptodate; /* Wether or not $ccs is uptodate. */ int flagx_known; /* Wether or not flags_x has the x flag known at translation time. */ int flags_x; int clear_x; /* Clear x after this insn? */ int clear_prefix; /* Clear prefix after this insn? */ int clear_locked_irq; /* Clear the irq lockout. */ int cpustate_changed; unsigned int tb_flags; /* tb dependent flags. */ int is_jmp; #define JMP_NOJMP 0 #define JMP_DIRECT 1 #define JMP_INDIRECT 2 int jmp; /* 0=nojmp, 1=direct, 2=indirect. */ uint32_t jmp_pc; int delayed_branch; struct TranslationBlock *tb; int singlestep_enabled; } DisasContext; static void gen_BUG(DisasContext *dc, const char *file, int line) { printf ("BUG: pc=%x %s %d\n", dc->pc, file, line); qemu_log("BUG: pc=%x %s %d\n", dc->pc, file, line); cpu_abort(dc->env, "%s:%d\n", file, line); } static const char *regnames[] = { "$r0", "$r1", "$r2", "$r3", "$r4", "$r5", "$r6", "$r7", "$r8", "$r9", "$r10", "$r11", "$r12", "$r13", "$sp", "$acr", }; static const char *pregnames[] = { "$bz", "$vr", "$pid", "$srs", "$wz", "$exs", "$eda", "$mof", "$dz", "$ebp", "$erp", "$srp", "$nrp", "$ccs", "$usp", "$spc", }; /* We need this table to handle preg-moves with implicit width. */ static int preg_sizes[] = { 1, /* bz. */ 1, /* vr. */ 4, /* pid. */ 1, /* srs. */ 2, /* wz. */ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, }; #define t_gen_mov_TN_env(tn, member) \ _t_gen_mov_TN_env((tn), offsetof(CPUState, member)) #define t_gen_mov_env_TN(member, tn) \ _t_gen_mov_env_TN(offsetof(CPUState, member), (tn)) static inline void t_gen_mov_TN_reg(TCGv tn, int r) { if (r < 0 || r > 15) fprintf(stderr, "wrong register read $r%d\n", r); tcg_gen_mov_tl(tn, cpu_R[r]); } static inline void t_gen_mov_reg_TN(int r, TCGv tn) { if (r < 0 || r > 15) fprintf(stderr, "wrong register write $r%d\n", r); tcg_gen_mov_tl(cpu_R[r], tn); } static inline void _t_gen_mov_TN_env(TCGv tn, int offset) { if (offset > sizeof (CPUState)) fprintf(stderr, "wrong load from env from off=%d\n", offset); tcg_gen_ld_tl(tn, cpu_env, offset); } static inline void _t_gen_mov_env_TN(int offset, TCGv tn) { if (offset > sizeof (CPUState)) fprintf(stderr, "wrong store to env at off=%d\n", offset); tcg_gen_st_tl(tn, cpu_env, offset); } static inline void t_gen_mov_TN_preg(TCGv tn, int r) { if (r < 0 || r > 15) fprintf(stderr, "wrong register read $p%d\n", r); if (r == PR_BZ || r == PR_WZ || r == PR_DZ) tcg_gen_mov_tl(tn, tcg_const_tl(0)); else if (r == PR_VR) tcg_gen_mov_tl(tn, tcg_const_tl(32)); else tcg_gen_mov_tl(tn, cpu_PR[r]); } static inline void t_gen_mov_preg_TN(DisasContext *dc, int r, TCGv tn) { if (r < 0 || r > 15) fprintf(stderr, "wrong register write $p%d\n", r); if (r == PR_BZ || r == PR_WZ || r == PR_DZ) return; else if (r == PR_SRS) tcg_gen_andi_tl(cpu_PR[r], tn, 3); else { if (r == PR_PID) gen_helper_tlb_flush_pid(tn); if (dc->tb_flags & S_FLAG && r == PR_SPC) gen_helper_spc_write(tn); else if (r == PR_CCS) dc->cpustate_changed = 1; tcg_gen_mov_tl(cpu_PR[r], tn); } } /* Sign extend at translation time. */ static int sign_extend(unsigned int val, unsigned int width) { int sval; /* LSL. */ val <<= 31 - width; sval = val; /* ASR. */ sval >>= 31 - width; return sval; } static int cris_fetch(DisasContext *dc, uint32_t addr, unsigned int size, unsigned int sign) { int r; switch (size) { case 4: { r = ldl_code(addr); break; } case 2: { if (sign) { r = ldsw_code(addr); } else { r = lduw_code(addr); } break; } case 1: { if (sign) { r = ldsb_code(addr); } else { r = ldub_code(addr); } break; } default: cpu_abort(dc->env, "Invalid fetch size %d\n", size); break; } return r; } static void cris_lock_irq(DisasContext *dc) { dc->clear_locked_irq = 0; t_gen_mov_env_TN(locked_irq, tcg_const_tl(1)); } static inline void t_gen_raise_exception(uint32_t index) { TCGv_i32 tmp = tcg_const_i32(index); gen_helper_raise_exception(tmp); tcg_temp_free_i32(tmp); } static void t_gen_lsl(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_const_tl(31); tcg_gen_shl_tl(d, a, b); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_and_tl(t0, t0, d); tcg_gen_xor_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } static void t_gen_lsr(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_temp_new(); tcg_gen_shr_tl(d, a, b); tcg_gen_movi_tl(t_31, 31); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_and_tl(t0, t0, d); tcg_gen_xor_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } static void t_gen_asr(TCGv d, TCGv a, TCGv b) { TCGv t0, t_31; t0 = tcg_temp_new(); t_31 = tcg_temp_new(); tcg_gen_sar_tl(d, a, b); tcg_gen_movi_tl(t_31, 31); tcg_gen_sub_tl(t0, t_31, b); tcg_gen_sar_tl(t0, t0, t_31); tcg_gen_or_tl(d, d, t0); tcg_temp_free(t0); tcg_temp_free(t_31); } /* 64-bit signed mul, lower result in d and upper in d2. */ static void t_gen_muls(TCGv d, TCGv d2, TCGv a, TCGv b) { TCGv_i64 t0, t1; t0 = tcg_temp_new_i64(); t1 = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(t0, a); tcg_gen_ext_i32_i64(t1, b); tcg_gen_mul_i64(t0, t0, t1); tcg_gen_trunc_i64_i32(d, t0); tcg_gen_shri_i64(t0, t0, 32); tcg_gen_trunc_i64_i32(d2, t0); tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } /* 64-bit unsigned muls, lower result in d and upper in d2. */ static void t_gen_mulu(TCGv d, TCGv d2, TCGv a, TCGv b) { TCGv_i64 t0, t1; t0 = tcg_temp_new_i64(); t1 = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(t0, a); tcg_gen_extu_i32_i64(t1, b); tcg_gen_mul_i64(t0, t0, t1); tcg_gen_trunc_i64_i32(d, t0); tcg_gen_shri_i64(t0, t0, 32); tcg_gen_trunc_i64_i32(d2, t0); tcg_temp_free_i64(t0); tcg_temp_free_i64(t1); } static void t_gen_cris_dstep(TCGv d, TCGv a, TCGv b) { int l1; l1 = gen_new_label(); /* * d <<= 1 * if (d >= s) * d -= s; */ tcg_gen_shli_tl(d, a, 1); tcg_gen_brcond_tl(TCG_COND_LTU, d, b, l1); tcg_gen_sub_tl(d, d, b); gen_set_label(l1); } static void t_gen_cris_mstep(TCGv d, TCGv a, TCGv b, TCGv ccs) { TCGv t; /* * d <<= 1 * if (n) * d += s; */ t = tcg_temp_new(); tcg_gen_shli_tl(d, a, 1); tcg_gen_shli_tl(t, ccs, 31 - 3); tcg_gen_sari_tl(t, t, 31); tcg_gen_and_tl(t, t, b); tcg_gen_add_tl(d, d, t); tcg_temp_free(t); } /* Extended arithmetics on CRIS. */ static inline void t_gen_add_flag(TCGv d, int flag) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* Propagate carry into d. */ tcg_gen_andi_tl(c, c, 1 << flag); if (flag) tcg_gen_shri_tl(c, c, flag); tcg_gen_add_tl(d, d, c); tcg_temp_free(c); } static inline void t_gen_addx_carry(DisasContext *dc, TCGv d) { if (dc->flagx_known) { if (dc->flags_x) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* C flag is already at bit 0. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_add_tl(d, d, c); tcg_temp_free(c); } } else { TCGv x, c; x = tcg_temp_new(); c = tcg_temp_new(); t_gen_mov_TN_preg(x, PR_CCS); tcg_gen_mov_tl(c, x); /* Propagate carry into d if X is set. Branch free. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_andi_tl(x, x, X_FLAG); tcg_gen_shri_tl(x, x, 4); tcg_gen_and_tl(x, x, c); tcg_gen_add_tl(d, d, x); tcg_temp_free(x); tcg_temp_free(c); } } static inline void t_gen_subx_carry(DisasContext *dc, TCGv d) { if (dc->flagx_known) { if (dc->flags_x) { TCGv c; c = tcg_temp_new(); t_gen_mov_TN_preg(c, PR_CCS); /* C flag is already at bit 0. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_sub_tl(d, d, c); tcg_temp_free(c); } } else { TCGv x, c; x = tcg_temp_new(); c = tcg_temp_new(); t_gen_mov_TN_preg(x, PR_CCS); tcg_gen_mov_tl(c, x); /* Propagate carry into d if X is set. Branch free. */ tcg_gen_andi_tl(c, c, C_FLAG); tcg_gen_andi_tl(x, x, X_FLAG); tcg_gen_shri_tl(x, x, 4); tcg_gen_and_tl(x, x, c); tcg_gen_sub_tl(d, d, x); tcg_temp_free(x); tcg_temp_free(c); } } /* Swap the two bytes within each half word of the s operand. T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff) */ static inline void t_gen_swapb(TCGv d, TCGv s) { TCGv t, org_s; t = tcg_temp_new(); org_s = tcg_temp_new(); /* d and s may refer to the same object. */ tcg_gen_mov_tl(org_s, s); tcg_gen_shli_tl(t, org_s, 8); tcg_gen_andi_tl(d, t, 0xff00ff00); tcg_gen_shri_tl(t, org_s, 8); tcg_gen_andi_tl(t, t, 0x00ff00ff); tcg_gen_or_tl(d, d, t); tcg_temp_free(t); tcg_temp_free(org_s); } /* Swap the halfwords of the s operand. */ static inline void t_gen_swapw(TCGv d, TCGv s) { TCGv t; /* d and s refer the same object. */ t = tcg_temp_new(); tcg_gen_mov_tl(t, s); tcg_gen_shli_tl(d, t, 16); tcg_gen_shri_tl(t, t, 16); tcg_gen_or_tl(d, d, t); tcg_temp_free(t); } /* Reverse the within each byte. T0 = (((T0 << 7) & 0x80808080) | ((T0 << 5) & 0x40404040) | ((T0 << 3) & 0x20202020) | ((T0 << 1) & 0x10101010) | ((T0 >> 1) & 0x08080808) | ((T0 >> 3) & 0x04040404) | ((T0 >> 5) & 0x02020202) | ((T0 >> 7) & 0x01010101)); */ static inline void t_gen_swapr(TCGv d, TCGv s) { struct { int shift; /* LSL when positive, LSR when negative. */ uint32_t mask; } bitrev [] = { {7, 0x80808080}, {5, 0x40404040}, {3, 0x20202020}, {1, 0x10101010}, {-1, 0x08080808}, {-3, 0x04040404}, {-5, 0x02020202}, {-7, 0x01010101} }; int i; TCGv t, org_s; /* d and s refer the same object. */ t = tcg_temp_new(); org_s = tcg_temp_new(); tcg_gen_mov_tl(org_s, s); tcg_gen_shli_tl(t, org_s, bitrev[0].shift); tcg_gen_andi_tl(d, t, bitrev[0].mask); for (i = 1; i < ARRAY_SIZE(bitrev); i++) { if (bitrev[i].shift >= 0) { tcg_gen_shli_tl(t, org_s, bitrev[i].shift); } else { tcg_gen_shri_tl(t, org_s, -bitrev[i].shift); } tcg_gen_andi_tl(t, t, bitrev[i].mask); tcg_gen_or_tl(d, d, t); } tcg_temp_free(t); tcg_temp_free(org_s); } static void t_gen_cc_jmp(TCGv pc_true, TCGv pc_false) { TCGv btaken; int l1; l1 = gen_new_label(); btaken = tcg_temp_new(); /* Conditional jmp. */ tcg_gen_mov_tl(btaken, env_btaken); tcg_gen_mov_tl(env_pc, pc_false); tcg_gen_brcondi_tl(TCG_COND_EQ, btaken, 0, l1); tcg_gen_mov_tl(env_pc, pc_true); gen_set_label(l1); tcg_temp_free(btaken); } static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) { TranslationBlock *tb; tb = dc->tb; if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) { tcg_gen_goto_tb(n); tcg_gen_movi_tl(env_pc, dest); tcg_gen_exit_tb((long)tb + n); } else { tcg_gen_movi_tl(env_pc, dest); tcg_gen_exit_tb(0); } } static inline void cris_clear_x_flag(DisasContext *dc) { if (dc->flagx_known && dc->flags_x) dc->flags_uptodate = 0; dc->flagx_known = 1; dc->flags_x = 0; } static void cris_flush_cc_state(DisasContext *dc) { if (dc->cc_size_uptodate != dc->cc_size) { tcg_gen_movi_tl(cc_size, dc->cc_size); dc->cc_size_uptodate = dc->cc_size; } tcg_gen_movi_tl(cc_op, dc->cc_op); tcg_gen_movi_tl(cc_mask, dc->cc_mask); } static void cris_evaluate_flags(DisasContext *dc) { if (dc->flags_uptodate) return; cris_flush_cc_state(dc); switch (dc->cc_op) { case CC_OP_MCP: gen_helper_evaluate_flags_mcp(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); break; case CC_OP_MULS: gen_helper_evaluate_flags_muls(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_result, cpu_PR[PR_MOF]); break; case CC_OP_MULU: gen_helper_evaluate_flags_mulu(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_result, cpu_PR[PR_MOF]); break; case CC_OP_MOVE: case CC_OP_AND: case CC_OP_OR: case CC_OP_XOR: case CC_OP_ASR: case CC_OP_LSR: case CC_OP_LSL: switch (dc->cc_size) { case 4: gen_helper_evaluate_flags_move_4(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_result); break; case 2: gen_helper_evaluate_flags_move_2(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_result); break; default: gen_helper_evaluate_flags(); break; } break; case CC_OP_FLAGS: /* live. */ break; case CC_OP_SUB: case CC_OP_CMP: if (dc->cc_size == 4) gen_helper_evaluate_flags_sub_4(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); else gen_helper_evaluate_flags(); break; default: switch (dc->cc_size) { case 4: gen_helper_evaluate_flags_alu_4(cpu_PR[PR_CCS], cpu_PR[PR_CCS], cc_src, cc_dest, cc_result); break; default: gen_helper_evaluate_flags(); break; } break; } if (dc->flagx_known) { if (dc->flags_x) tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], X_FLAG); else if (dc->cc_op == CC_OP_FLAGS) tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~X_FLAG); } dc->flags_uptodate = 1; } static void cris_cc_mask(DisasContext *dc, unsigned int mask) { uint32_t ovl; if (!mask) { dc->update_cc = 0; return; } /* Check if we need to evaluate the condition codes due to CC overlaying. */ ovl = (dc->cc_mask ^ mask) & ~mask; if (ovl) { /* TODO: optimize this case. It trigs all the time. */ cris_evaluate_flags (dc); } dc->cc_mask = mask; dc->update_cc = 1; } static void cris_update_cc_op(DisasContext *dc, int op, int size) { dc->cc_op = op; dc->cc_size = size; dc->flags_uptodate = 0; } static inline void cris_update_cc_x(DisasContext *dc) { /* Save the x flag state at the time of the cc snapshot. */ if (dc->flagx_known) { if (dc->cc_x_uptodate == (2 | dc->flags_x)) return; tcg_gen_movi_tl(cc_x, dc->flags_x); dc->cc_x_uptodate = 2 | dc->flags_x; } else { tcg_gen_andi_tl(cc_x, cpu_PR[PR_CCS], X_FLAG); dc->cc_x_uptodate = 1; } } /* Update cc prior to executing ALU op. Needs source operands untouched. */ static void cris_pre_alu_update_cc(DisasContext *dc, int op, TCGv dst, TCGv src, int size) { if (dc->update_cc) { cris_update_cc_op(dc, op, size); tcg_gen_mov_tl(cc_src, src); if (op != CC_OP_MOVE && op != CC_OP_AND && op != CC_OP_OR && op != CC_OP_XOR && op != CC_OP_ASR && op != CC_OP_LSR && op != CC_OP_LSL) tcg_gen_mov_tl(cc_dest, dst); cris_update_cc_x(dc); } } /* Update cc after executing ALU op. needs the result. */ static inline void cris_update_result(DisasContext *dc, TCGv res) { if (dc->update_cc) tcg_gen_mov_tl(cc_result, res); } /* Returns one if the write back stage should execute. */ static void cris_alu_op_exec(DisasContext *dc, int op, TCGv dst, TCGv a, TCGv b, int size) { /* Emit the ALU insns. */ switch (op) { case CC_OP_ADD: tcg_gen_add_tl(dst, a, b); /* Extended arithmetics. */ t_gen_addx_carry(dc, dst); break; case CC_OP_ADDC: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 0); /* C_FLAG. */ break; case CC_OP_MCP: tcg_gen_add_tl(dst, a, b); t_gen_add_flag(dst, 8); /* R_FLAG. */ break; case CC_OP_SUB: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_MOVE: tcg_gen_mov_tl(dst, b); break; case CC_OP_OR: tcg_gen_or_tl(dst, a, b); break; case CC_OP_AND: tcg_gen_and_tl(dst, a, b); break; case CC_OP_XOR: tcg_gen_xor_tl(dst, a, b); break; case CC_OP_LSL: t_gen_lsl(dst, a, b); break; case CC_OP_LSR: t_gen_lsr(dst, a, b); break; case CC_OP_ASR: t_gen_asr(dst, a, b); break; case CC_OP_NEG: tcg_gen_neg_tl(dst, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; case CC_OP_LZ: gen_helper_lz(dst, b); break; case CC_OP_MULS: t_gen_muls(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_MULU: t_gen_mulu(dst, cpu_PR[PR_MOF], a, b); break; case CC_OP_DSTEP: t_gen_cris_dstep(dst, a, b); break; case CC_OP_MSTEP: t_gen_cris_mstep(dst, a, b, cpu_PR[PR_CCS]); break; case CC_OP_BOUND: { int l1; l1 = gen_new_label(); tcg_gen_mov_tl(dst, a); tcg_gen_brcond_tl(TCG_COND_LEU, a, b, l1); tcg_gen_mov_tl(dst, b); gen_set_label(l1); } break; case CC_OP_CMP: tcg_gen_sub_tl(dst, a, b); /* Extended arithmetics. */ t_gen_subx_carry(dc, dst); break; default: qemu_log("illegal ALU op.\n"); BUG(); break; } if (size == 1) tcg_gen_andi_tl(dst, dst, 0xff); else if (size == 2) tcg_gen_andi_tl(dst, dst, 0xffff); } static void cris_alu(DisasContext *dc, int op, TCGv d, TCGv op_a, TCGv op_b, int size) { TCGv tmp; int writeback; writeback = 1; if (op == CC_OP_CMP) { tmp = tcg_temp_new(); writeback = 0; } else if (size == 4) { tmp = d; writeback = 0; } else tmp = tcg_temp_new(); cris_pre_alu_update_cc(dc, op, op_a, op_b, size); cris_alu_op_exec(dc, op, tmp, op_a, op_b, size); cris_update_result(dc, tmp); /* Writeback. */ if (writeback) { if (size == 1) tcg_gen_andi_tl(d, d, ~0xff); else tcg_gen_andi_tl(d, d, ~0xffff); tcg_gen_or_tl(d, d, tmp); } if (!TCGV_EQUAL(tmp, d)) tcg_temp_free(tmp); } static int arith_cc(DisasContext *dc) { if (dc->update_cc) { switch (dc->cc_op) { case CC_OP_ADDC: return 1; case CC_OP_ADD: return 1; case CC_OP_SUB: return 1; case CC_OP_DSTEP: return 1; case CC_OP_LSL: return 1; case CC_OP_LSR: return 1; case CC_OP_ASR: return 1; case CC_OP_CMP: return 1; case CC_OP_NEG: return 1; case CC_OP_OR: return 1; case CC_OP_AND: return 1; case CC_OP_XOR: return 1; case CC_OP_MULU: return 1; case CC_OP_MULS: return 1; default: return 0; } } return 0; } static void gen_tst_cc (DisasContext *dc, TCGv cc, int cond) { int arith_opt, move_opt; /* TODO: optimize more condition codes. */ /* * If the flags are live, we've gotta look into the bits of CCS. * Otherwise, if we just did an arithmetic operation we try to * evaluate the condition code faster. * * When this function is done, T0 should be non-zero if the condition * code is true. */ arith_opt = arith_cc(dc) && !dc->flags_uptodate; move_opt = (dc->cc_op == CC_OP_MOVE); switch (cond) { case CC_EQ: if ((arith_opt || move_opt) && dc->cc_x_uptodate != (2 | X_FLAG)) { /* If cc_result is zero, T0 should be non-zero otherwise T0 should be zero. */ int l1; l1 = gen_new_label(); tcg_gen_movi_tl(cc, 0); tcg_gen_brcondi_tl(TCG_COND_NE, cc_result, 0, l1); tcg_gen_movi_tl(cc, 1); gen_set_label(l1); } else { cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], Z_FLAG); } break; case CC_NE: if ((arith_opt || move_opt) && dc->cc_x_uptodate != (2 | X_FLAG)) { tcg_gen_mov_tl(cc, cc_result); } else { cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], Z_FLAG); tcg_gen_andi_tl(cc, cc, Z_FLAG); } break; case CC_CS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG); break; case CC_CC: cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], C_FLAG); tcg_gen_andi_tl(cc, cc, C_FLAG); break; case CC_VS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], V_FLAG); break; case CC_VC: cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], V_FLAG); tcg_gen_andi_tl(cc, cc, V_FLAG); break; case CC_PL: if (arith_opt || move_opt) { int bits = 31; if (dc->cc_size == 1) bits = 7; else if (dc->cc_size == 2) bits = 15; tcg_gen_shri_tl(cc, cc_result, bits); tcg_gen_xori_tl(cc, cc, 1); } else { cris_evaluate_flags(dc); tcg_gen_xori_tl(cc, cpu_PR[PR_CCS], N_FLAG); tcg_gen_andi_tl(cc, cc, N_FLAG); } break; case CC_MI: if (arith_opt || move_opt) { int bits = 31; if (dc->cc_size == 1) bits = 7; else if (dc->cc_size == 2) bits = 15; tcg_gen_shri_tl(cc, cc_result, bits); tcg_gen_andi_tl(cc, cc, 1); } else { cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], N_FLAG); } break; case CC_LS: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], C_FLAG | Z_FLAG); break; case CC_HI: cris_evaluate_flags(dc); { TCGv tmp; tmp = tcg_temp_new(); tcg_gen_xori_tl(tmp, cpu_PR[PR_CCS], C_FLAG | Z_FLAG); /* Overlay the C flag on top of the Z. */ tcg_gen_shli_tl(cc, tmp, 2); tcg_gen_and_tl(cc, tmp, cc); tcg_gen_andi_tl(cc, cc, Z_FLAG); tcg_temp_free(tmp); } break; case CC_GE: cris_evaluate_flags(dc); /* Overlay the V flag on top of the N. */ tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2); tcg_gen_xor_tl(cc, cpu_PR[PR_CCS], cc); tcg_gen_andi_tl(cc, cc, N_FLAG); tcg_gen_xori_tl(cc, cc, N_FLAG); break; case CC_LT: cris_evaluate_flags(dc); /* Overlay the V flag on top of the N. */ tcg_gen_shli_tl(cc, cpu_PR[PR_CCS], 2); tcg_gen_xor_tl(cc, cpu_PR[PR_CCS], cc); tcg_gen_andi_tl(cc, cc, N_FLAG); break; case CC_GT: cris_evaluate_flags(dc); { TCGv n, z; n = tcg_temp_new(); z = tcg_temp_new(); /* To avoid a shift we overlay everything on the V flag. */ tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2); tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1); /* invert Z. */ tcg_gen_xori_tl(z, z, 2); tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]); tcg_gen_xori_tl(n, n, 2); tcg_gen_and_tl(cc, z, n); tcg_gen_andi_tl(cc, cc, 2); tcg_temp_free(n); tcg_temp_free(z); } break; case CC_LE: cris_evaluate_flags(dc); { TCGv n, z; n = tcg_temp_new(); z = tcg_temp_new(); /* To avoid a shift we overlay everything on the V flag. */ tcg_gen_shri_tl(n, cpu_PR[PR_CCS], 2); tcg_gen_shri_tl(z, cpu_PR[PR_CCS], 1); tcg_gen_xor_tl(n, n, cpu_PR[PR_CCS]); tcg_gen_or_tl(cc, z, n); tcg_gen_andi_tl(cc, cc, 2); tcg_temp_free(n); tcg_temp_free(z); } break; case CC_P: cris_evaluate_flags(dc); tcg_gen_andi_tl(cc, cpu_PR[PR_CCS], P_FLAG); break; case CC_A: tcg_gen_movi_tl(cc, 1); break; default: BUG(); break; }; } static void cris_store_direct_jmp(DisasContext *dc) { /* Store the direct jmp state into the cpu-state. */ if (dc->jmp == JMP_DIRECT) { tcg_gen_movi_tl(env_btarget, dc->jmp_pc); tcg_gen_movi_tl(env_btaken, 1); } } static void cris_prepare_cc_branch (DisasContext *dc, int offset, int cond) { /* This helps us re-schedule the micro-code to insns in delay-slots before the actual jump. */ dc->delayed_branch = 2; dc->jmp_pc = dc->pc + offset; if (cond != CC_A) { dc->jmp = JMP_INDIRECT; gen_tst_cc (dc, env_btaken, cond); tcg_gen_movi_tl(env_btarget, dc->jmp_pc); } else { /* Allow chaining. */ dc->jmp = JMP_DIRECT; } } /* jumps, when the dest is in a live reg for example. Direct should be set when the dest addr is constant to allow tb chaining. */ static inline void cris_prepare_jmp (DisasContext *dc, unsigned int type) { /* This helps us re-schedule the micro-code to insns in delay-slots before the actual jump. */ dc->delayed_branch = 2; dc->jmp = type; if (type == JMP_INDIRECT) tcg_gen_movi_tl(env_btaken, 1); } static void gen_load64(DisasContext *dc, TCGv_i64 dst, TCGv addr) { int mem_index = cpu_mmu_index(dc->env); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) cris_store_direct_jmp(dc); tcg_gen_qemu_ld64(dst, addr, mem_index); } static void gen_load(DisasContext *dc, TCGv dst, TCGv addr, unsigned int size, int sign) { int mem_index = cpu_mmu_index(dc->env); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) cris_store_direct_jmp(dc); if (size == 1) { if (sign) tcg_gen_qemu_ld8s(dst, addr, mem_index); else tcg_gen_qemu_ld8u(dst, addr, mem_index); } else if (size == 2) { if (sign) tcg_gen_qemu_ld16s(dst, addr, mem_index); else tcg_gen_qemu_ld16u(dst, addr, mem_index); } else if (size == 4) { tcg_gen_qemu_ld32u(dst, addr, mem_index); } else { abort(); } } static void gen_store (DisasContext *dc, TCGv addr, TCGv val, unsigned int size) { int mem_index = cpu_mmu_index(dc->env); /* If we get a fault on a delayslot we must keep the jmp state in the cpu-state to be able to re-execute the jmp. */ if (dc->delayed_branch == 1) cris_store_direct_jmp(dc); /* Conditional writes. We only support the kind were X and P are known at translation time. */ if (dc->flagx_known && dc->flags_x && (dc->tb_flags & P_FLAG)) { dc->postinc = 0; cris_evaluate_flags(dc); tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], C_FLAG); return; } if (size == 1) tcg_gen_qemu_st8(val, addr, mem_index); else if (size == 2) tcg_gen_qemu_st16(val, addr, mem_index); else tcg_gen_qemu_st32(val, addr, mem_index); if (dc->flagx_known && dc->flags_x) { cris_evaluate_flags(dc); tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~C_FLAG); } } static inline void t_gen_sext(TCGv d, TCGv s, int size) { if (size == 1) tcg_gen_ext8s_i32(d, s); else if (size == 2) tcg_gen_ext16s_i32(d, s); else if(!TCGV_EQUAL(d, s)) tcg_gen_mov_tl(d, s); } static inline void t_gen_zext(TCGv d, TCGv s, int size) { if (size == 1) tcg_gen_ext8u_i32(d, s); else if (size == 2) tcg_gen_ext16u_i32(d, s); else if (!TCGV_EQUAL(d, s)) tcg_gen_mov_tl(d, s); } #if DISAS_CRIS static char memsize_char(int size) { switch (size) { case 1: return 'b'; break; case 2: return 'w'; break; case 4: return 'd'; break; default: return 'x'; break; } } #endif static inline unsigned int memsize_z(DisasContext *dc) { return dc->zsize + 1; } static inline unsigned int memsize_zz(DisasContext *dc) { switch (dc->zzsize) { case 0: return 1; case 1: return 2; default: return 4; } } static inline void do_postinc (DisasContext *dc, int size) { if (dc->postinc) tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], size); } static inline void dec_prep_move_r(DisasContext *dc, int rs, int rd, int size, int s_ext, TCGv dst) { if (s_ext) t_gen_sext(dst, cpu_R[rs], size); else t_gen_zext(dst, cpu_R[rs], size); } /* Prepare T0 and T1 for a register alu operation. s_ext decides if the operand1 should be sign-extended or zero-extended when needed. */ static void dec_prep_alu_r(DisasContext *dc, int rs, int rd, int size, int s_ext, TCGv dst, TCGv src) { dec_prep_move_r(dc, rs, rd, size, s_ext, src); if (s_ext) t_gen_sext(dst, cpu_R[rd], size); else t_gen_zext(dst, cpu_R[rd], size); } static int dec_prep_move_m(DisasContext *dc, int s_ext, int memsize, TCGv dst) { unsigned int rs; uint32_t imm; int is_imm; int insn_len = 2; rs = dc->op1; is_imm = rs == 15 && dc->postinc; /* Load [$rs] onto T1. */ if (is_imm) { insn_len = 2 + memsize; if (memsize == 1) insn_len++; imm = cris_fetch(dc, dc->pc + 2, memsize, s_ext); tcg_gen_movi_tl(dst, imm); dc->postinc = 0; } else { cris_flush_cc_state(dc); gen_load(dc, dst, cpu_R[rs], memsize, 0); if (s_ext) t_gen_sext(dst, dst, memsize); else t_gen_zext(dst, dst, memsize); } return insn_len; } /* Prepare T0 and T1 for a memory + alu operation. s_ext decides if the operand1 should be sign-extended or zero-extended when needed. */ static int dec_prep_alu_m(DisasContext *dc, int s_ext, int memsize, TCGv dst, TCGv src) { int insn_len; insn_len = dec_prep_move_m(dc, s_ext, memsize, src); tcg_gen_mov_tl(dst, cpu_R[dc->op2]); return insn_len; } #if DISAS_CRIS static const char *cc_name(int cc) { static const char *cc_names[16] = { "cc", "cs", "ne", "eq", "vc", "vs", "pl", "mi", "ls", "hi", "ge", "lt", "gt", "le", "a", "p" }; assert(cc < 16); return cc_names[cc]; } #endif /* Start of insn decoders. */ static int dec_bccq(DisasContext *dc) { int32_t offset; int sign; uint32_t cond = dc->op2; offset = EXTRACT_FIELD (dc->ir, 1, 7); sign = EXTRACT_FIELD(dc->ir, 0, 0); offset *= 2; offset |= sign << 8; offset = sign_extend(offset, 8); LOG_DIS("b%s %x\n", cc_name(cond), dc->pc + offset); /* op2 holds the condition-code. */ cris_cc_mask(dc, 0); cris_prepare_cc_branch (dc, offset, cond); return 2; } static int dec_addoq(DisasContext *dc) { int32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 7); imm = sign_extend(dc->op1, 7); LOG_DIS("addoq %d, $r%u\n", imm, dc->op2); cris_cc_mask(dc, 0); /* Fetch register operand, */ tcg_gen_addi_tl(cpu_R[R_ACR], cpu_R[dc->op2], imm); return 2; } static int dec_addq(DisasContext *dc) { LOG_DIS("addq %u, $r%u\n", dc->op1, dc->op2); dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4); return 2; } static int dec_moveq(DisasContext *dc) { uint32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("moveq %d, $r%u\n", imm, dc->op2); tcg_gen_movi_tl(cpu_R[dc->op2], imm); return 2; } static int dec_subq(DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); LOG_DIS("subq %u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(dc->op1), 4); return 2; } static int dec_cmpq(DisasContext *dc) { uint32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("cmpq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4); return 2; } static int dec_andq(DisasContext *dc) { uint32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("andq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4); return 2; } static int dec_orq(DisasContext *dc) { uint32_t imm; dc->op1 = EXTRACT_FIELD(dc->ir, 0, 5); imm = sign_extend(dc->op1, 5); LOG_DIS("orq %d, $r%d\n", imm, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], cpu_R[dc->op2], tcg_const_tl(imm), 4); return 2; } static int dec_btstq(DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("btstq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_evaluate_flags(dc); gen_helper_btst(cpu_PR[PR_CCS], cpu_R[dc->op2], tcg_const_tl(dc->op1), cpu_PR[PR_CCS]); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; return 2; } static int dec_asrq(DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("asrq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_sari_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_lslq(DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("lslq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_shli_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_lsrq(DisasContext *dc) { dc->op1 = EXTRACT_FIELD(dc->ir, 0, 4); LOG_DIS("lsrq %u, $r%d\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_shri_tl(cpu_R[dc->op2], cpu_R[dc->op2], dc->op1); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_move_r(DisasContext *dc) { int size = memsize_zz(dc); LOG_DIS("move.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); if (size == 4) { dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, cpu_R[dc->op2]); cris_cc_mask(dc, CC_MASK_NZ); cris_update_cc_op(dc, CC_OP_MOVE, 4); cris_update_cc_x(dc); cris_update_result(dc, cpu_R[dc->op2]); } else { TCGv t0; t0 = tcg_temp_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, size); tcg_temp_free(t0); } return 2; } static int dec_scc_r(DisasContext *dc) { int cond = dc->op2; LOG_DIS("s%s $r%u\n", cc_name(cond), dc->op1); if (cond != CC_A) { int l1; gen_tst_cc (dc, cpu_R[dc->op1], cond); l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_EQ, cpu_R[dc->op1], 0, l1); tcg_gen_movi_tl(cpu_R[dc->op1], 1); gen_set_label(l1); } else tcg_gen_movi_tl(cpu_R[dc->op1], 1); cris_cc_mask(dc, 0); return 2; } static inline void cris_alu_alloc_temps(DisasContext *dc, int size, TCGv *t) { if (size == 4) { t[0] = cpu_R[dc->op2]; t[1] = cpu_R[dc->op1]; } else { t[0] = tcg_temp_new(); t[1] = tcg_temp_new(); } } static inline void cris_alu_free_temps(DisasContext *dc, int size, TCGv *t) { if (size != 4) { tcg_temp_free(t[0]); tcg_temp_free(t[1]); } } static int dec_and_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("and.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_lz_r(DisasContext *dc) { TCGv t0; LOG_DIS("lz $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); dec_prep_alu_r(dc, dc->op1, dc->op2, 4, 0, cpu_R[dc->op2], t0); cris_alu(dc, CC_OP_LZ, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } static int dec_lsl_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("lsl.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_LSL, cpu_R[dc->op2], t[0], t[1], size); cris_alu_alloc_temps(dc, size, t); return 2; } static int dec_lsr_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("lsr.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_LSR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_asr_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("asr.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]); tcg_gen_andi_tl(t[1], t[1], 63); cris_alu(dc, CC_OP_ASR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_muls_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("muls.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZV); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 1, t[0], t[1]); cris_alu(dc, CC_OP_MULS, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_free_temps(dc, size, t); return 2; } static int dec_mulu_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("mulu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZV); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_MULU, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_alloc_temps(dc, size, t); return 2; } static int dec_dstep_r(DisasContext *dc) { LOG_DIS("dstep $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_DSTEP, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4); return 2; } static int dec_xor_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("xor.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); BUG_ON(size != 4); /* xor is dword. */ cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_XOR, cpu_R[dc->op2], t[0], t[1], 4); cris_alu_free_temps(dc, size, t); return 2; } static int dec_bound_r(DisasContext *dc) { TCGv l0; int size = memsize_zz(dc); LOG_DIS("bound.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); l0 = tcg_temp_local_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, l0); cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], cpu_R[dc->op2], l0, 4); tcg_temp_free(l0); return 2; } static int dec_cmp_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("cmp.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_abs_r(DisasContext *dc) { TCGv t0; LOG_DIS("abs $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); tcg_gen_sari_tl(t0, cpu_R[dc->op1], 31); tcg_gen_xor_tl(cpu_R[dc->op2], cpu_R[dc->op1], t0); tcg_gen_sub_tl(cpu_R[dc->op2], cpu_R[dc->op2], t0); tcg_temp_free(t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); return 2; } static int dec_add_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("add.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_addc_r(DisasContext *dc) { LOG_DIS("addc $r%u, $r%u\n", dc->op1, dc->op2); cris_evaluate_flags(dc); /* Set for this insn. */ dc->flagx_known = 1; dc->flags_x = X_FLAG; cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op1], 4); return 2; } static int dec_mcp_r(DisasContext *dc) { LOG_DIS("mcp $p%u, $r%u\n", dc->op2, dc->op1); cris_evaluate_flags(dc); cris_cc_mask(dc, CC_MASK_RNZV); cris_alu(dc, CC_OP_MCP, cpu_R[dc->op1], cpu_R[dc->op1], cpu_PR[dc->op2], 4); return 2; } #if DISAS_CRIS static char * swapmode_name(int mode, char *modename) { int i = 0; if (mode & 8) modename[i++] = 'n'; if (mode & 4) modename[i++] = 'w'; if (mode & 2) modename[i++] = 'b'; if (mode & 1) modename[i++] = 'r'; modename[i++] = 0; return modename; } #endif static int dec_swap_r(DisasContext *dc) { TCGv t0; #if DISAS_CRIS char modename[4]; #endif LOG_DIS("swap%s $r%u\n", swapmode_name(dc->op2, modename), dc->op1); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); t_gen_mov_TN_reg(t0, dc->op1); if (dc->op2 & 8) tcg_gen_not_tl(t0, t0); if (dc->op2 & 4) t_gen_swapw(t0, t0); if (dc->op2 & 2) t_gen_swapb(t0, t0); if (dc->op2 & 1) t_gen_swapr(t0, t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, 4); tcg_temp_free(t0); return 2; } static int dec_or_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("or.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_addi_r(DisasContext *dc) { TCGv t0; LOG_DIS("addi.%c $r%u, $r%u\n", memsize_char(memsize_zz(dc)), dc->op2, dc->op1); cris_cc_mask(dc, 0); t0 = tcg_temp_new(); tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize)); tcg_gen_add_tl(cpu_R[dc->op1], cpu_R[dc->op1], t0); tcg_temp_free(t0); return 2; } static int dec_addi_acr(DisasContext *dc) { TCGv t0; LOG_DIS("addi.%c $r%u, $r%u, $acr\n", memsize_char(memsize_zz(dc)), dc->op2, dc->op1); cris_cc_mask(dc, 0); t0 = tcg_temp_new(); tcg_gen_shl_tl(t0, cpu_R[dc->op2], tcg_const_tl(dc->zzsize)); tcg_gen_add_tl(cpu_R[R_ACR], cpu_R[dc->op1], t0); tcg_temp_free(t0); return 2; } static int dec_neg_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("neg.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_NEG, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } static int dec_btst_r(DisasContext *dc) { LOG_DIS("btst $r%u, $r%u\n", dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); cris_evaluate_flags(dc); gen_helper_btst(cpu_PR[PR_CCS], cpu_R[dc->op2], cpu_R[dc->op1], cpu_PR[PR_CCS]); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], cpu_R[dc->op2], 4); cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; return 2; } static int dec_sub_r(DisasContext *dc) { TCGv t[2]; int size = memsize_zz(dc); LOG_DIS("sub.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu_alloc_temps(dc, size, t); dec_prep_alu_r(dc, dc->op1, dc->op2, size, 0, t[0], t[1]); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], size); cris_alu_free_temps(dc, size, t); return 2; } /* Zero extension. From size to dword. */ static int dec_movu_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("movu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); dec_prep_move_r(dc, dc->op1, dc->op2, size, 0, t0); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_movs_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("movs.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZ); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op1], t0, 4); tcg_temp_free(t0); return 2; } /* zero extension. From size to dword. */ static int dec_addu_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("addu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_zext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_adds_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("adds.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Zero extension. From size to dword. */ static int dec_subu_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("subu.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_zext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } /* Sign extension. From size to dword. */ static int dec_subs_r(DisasContext *dc) { TCGv t0; int size = memsize_z(dc); LOG_DIS("subs.%c $r%u, $r%u\n", memsize_char(size), dc->op1, dc->op2); cris_cc_mask(dc, CC_MASK_NZVC); t0 = tcg_temp_new(); /* Size can only be qi or hi. */ t_gen_sext(t0, cpu_R[dc->op1], size); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t0, 4); tcg_temp_free(t0); return 2; } static int dec_setclrf(DisasContext *dc) { uint32_t flags; int set = (~dc->opcode >> 2) & 1; flags = (EXTRACT_FIELD(dc->ir, 12, 15) << 4) | EXTRACT_FIELD(dc->ir, 0, 3); if (set && flags == 0) { LOG_DIS("nop\n"); return 2; } else if (!set && (flags & 0x20)) { LOG_DIS("di\n"); } else { LOG_DIS("%sf %x\n", set ? "set" : "clr", flags); } /* User space is not allowed to touch these. Silently ignore. */ if (dc->tb_flags & U_FLAG) { flags &= ~(S_FLAG | I_FLAG | U_FLAG); } if (flags & X_FLAG) { dc->flagx_known = 1; if (set) dc->flags_x = X_FLAG; else dc->flags_x = 0; } /* Break the TB if any of the SPI flag changes. */ if (flags & (P_FLAG | S_FLAG)) { tcg_gen_movi_tl(env_pc, dc->pc + 2); dc->is_jmp = DISAS_UPDATE; dc->cpustate_changed = 1; } /* For the I flag, only act on posedge. */ if ((flags & I_FLAG)) { tcg_gen_movi_tl(env_pc, dc->pc + 2); dc->is_jmp = DISAS_UPDATE; dc->cpustate_changed = 1; } /* Simply decode the flags. */ cris_evaluate_flags (dc); cris_update_cc_op(dc, CC_OP_FLAGS, 4); cris_update_cc_x(dc); tcg_gen_movi_tl(cc_op, dc->cc_op); if (set) { if (!(dc->tb_flags & U_FLAG) && (flags & U_FLAG)) { /* Enter user mode. */ t_gen_mov_env_TN(ksp, cpu_R[R_SP]); tcg_gen_mov_tl(cpu_R[R_SP], cpu_PR[PR_USP]); dc->cpustate_changed = 1; } tcg_gen_ori_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], flags); } else tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~flags); dc->flags_uptodate = 1; dc->clear_x = 0; return 2; } static int dec_move_rs(DisasContext *dc) { LOG_DIS("move $r%u, $s%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); gen_helper_movl_sreg_reg(tcg_const_tl(dc->op2), tcg_const_tl(dc->op1)); return 2; } static int dec_move_sr(DisasContext *dc) { LOG_DIS("move $s%u, $r%u\n", dc->op2, dc->op1); cris_cc_mask(dc, 0); gen_helper_movl_reg_sreg(tcg_const_tl(dc->op1), tcg_const_tl(dc->op2)); return 2; } static int dec_move_rp(DisasContext *dc) { TCGv t[2]; LOG_DIS("move $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); t[0] = tcg_temp_new(); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); t_gen_mov_TN_reg(t[0], dc->op1); if (dc->tb_flags & U_FLAG) { t[1] = tcg_temp_new(); /* User space is not allowed to touch all flags. */ tcg_gen_andi_tl(t[0], t[0], 0x39f); tcg_gen_andi_tl(t[1], cpu_PR[PR_CCS], ~0x39f); tcg_gen_or_tl(t[0], t[1], t[0]); tcg_temp_free(t[1]); } } else t_gen_mov_TN_reg(t[0], dc->op1); t_gen_mov_preg_TN(dc, dc->op2, t[0]); if (dc->op2 == PR_CCS) { cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->flags_uptodate = 1; } tcg_temp_free(t[0]); return 2; } static int dec_move_pr(DisasContext *dc) { TCGv t0; LOG_DIS("move $p%u, $r%u\n", dc->op2, dc->op1); cris_cc_mask(dc, 0); if (dc->op2 == PR_CCS) cris_evaluate_flags(dc); if (dc->op2 == PR_DZ) { tcg_gen_movi_tl(cpu_R[dc->op1], 0); } else { t0 = tcg_temp_new(); t_gen_mov_TN_preg(t0, dc->op2); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op1], cpu_R[dc->op1], t0, preg_sizes[dc->op2]); tcg_temp_free(t0); } return 2; } static int dec_move_mr(DisasContext *dc) { int memsize = memsize_zz(dc); int insn_len; LOG_DIS("move.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); if (memsize == 4) { insn_len = dec_prep_move_m(dc, 0, 4, cpu_R[dc->op2]); cris_cc_mask(dc, CC_MASK_NZ); cris_update_cc_op(dc, CC_OP_MOVE, 4); cris_update_cc_x(dc); cris_update_result(dc, cpu_R[dc->op2]); } else { TCGv t0; t0 = tcg_temp_new(); insn_len = dec_prep_move_m(dc, 0, memsize, t0); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t0, memsize); tcg_temp_free(t0); } do_postinc(dc, memsize); return insn_len; } static inline void cris_alu_m_alloc_temps(TCGv *t) { t[0] = tcg_temp_new(); t[1] = tcg_temp_new(); } static inline void cris_alu_m_free_temps(TCGv *t) { tcg_temp_free(t[0]); tcg_temp_free(t[1]); } static int dec_movs_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("movs.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_addu_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("addu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_adds_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("adds.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_subu_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("subu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_subs_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("subs.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); /* sign extend. */ insn_len = dec_prep_alu_m(dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_movu_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("movu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_MOVE, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmpu_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("cmpu.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmps_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_z(dc); int insn_len; LOG_DIS("cmps.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_cmp_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("cmp.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], cpu_R[dc->op2], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_test_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("test.%c [$r%u%s] op2=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_evaluate_flags(dc); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); tcg_gen_andi_tl(cpu_PR[PR_CCS], cpu_PR[PR_CCS], ~3); cris_alu(dc, CC_OP_CMP, cpu_R[dc->op2], t[1], tcg_const_tl(0), memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_and_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("and.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_AND, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_add_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("add.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADD, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_addo_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("add.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 1, memsize, t[0], t[1]); cris_cc_mask(dc, 0); cris_alu(dc, CC_OP_ADD, cpu_R[R_ACR], t[0], t[1], 4); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_bound_m(DisasContext *dc) { TCGv l[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("bound.%c [$r%u%s, $r%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); l[0] = tcg_temp_local_new(); l[1] = tcg_temp_local_new(); insn_len = dec_prep_alu_m(dc, 0, memsize, l[0], l[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_BOUND, cpu_R[dc->op2], l[0], l[1], 4); do_postinc(dc, memsize); tcg_temp_free(l[0]); tcg_temp_free(l[1]); return insn_len; } static int dec_addc_mr(DisasContext *dc) { TCGv t[2]; int insn_len = 2; LOG_DIS("addc [$r%u%s, $r%u\n", dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_evaluate_flags(dc); /* Set for this insn. */ dc->flagx_known = 1; dc->flags_x = X_FLAG; cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, 4, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_ADDC, cpu_R[dc->op2], t[0], t[1], 4); do_postinc(dc, 4); cris_alu_m_free_temps(t); return insn_len; } static int dec_sub_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("sub.%c [$r%u%s, $r%u ir=%x zz=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2, dc->ir, dc->zzsize); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZVC); cris_alu(dc, CC_OP_SUB, cpu_R[dc->op2], t[0], t[1], memsize); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_or_m(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len; LOG_DIS("or.%c [$r%u%s, $r%u pc=%x\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2, dc->pc); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, CC_MASK_NZ); cris_alu(dc, CC_OP_OR, cpu_R[dc->op2], t[0], t[1], memsize_zz(dc)); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_move_mp(DisasContext *dc) { TCGv t[2]; int memsize = memsize_zz(dc); int insn_len = 2; LOG_DIS("move.%c [$r%u%s, $p%u\n", memsize_char(memsize), dc->op1, dc->postinc ? "+]" : "]", dc->op2); cris_alu_m_alloc_temps(t); insn_len = dec_prep_alu_m(dc, 0, memsize, t[0], t[1]); cris_cc_mask(dc, 0); if (dc->op2 == PR_CCS) { cris_evaluate_flags(dc); if (dc->tb_flags & U_FLAG) { /* User space is not allowed to touch all flags. */ tcg_gen_andi_tl(t[1], t[1], 0x39f); tcg_gen_andi_tl(t[0], cpu_PR[PR_CCS], ~0x39f); tcg_gen_or_tl(t[1], t[0], t[1]); } } t_gen_mov_preg_TN(dc, dc->op2, t[1]); do_postinc(dc, memsize); cris_alu_m_free_temps(t); return insn_len; } static int dec_move_pm(DisasContext *dc) { TCGv t0; int memsize; memsize = preg_sizes[dc->op2]; LOG_DIS("move.%c $p%u, [$r%u%s\n", memsize_char(memsize), dc->op2, dc->op1, dc->postinc ? "+]" : "]"); /* prepare store. Address in T0, value in T1. */ if (dc->op2 == PR_CCS) cris_evaluate_flags(dc); t0 = tcg_temp_new(); t_gen_mov_TN_preg(t0, dc->op2); cris_flush_cc_state(dc); gen_store(dc, cpu_R[dc->op1], t0, memsize); tcg_temp_free(t0); cris_cc_mask(dc, 0); if (dc->postinc) tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize); return 2; } static int dec_movem_mr(DisasContext *dc) { TCGv_i64 tmp[16]; TCGv tmp32; TCGv addr; int i; int nr = dc->op2 + 1; LOG_DIS("movem [$r%u%s, $r%u\n", dc->op1, dc->postinc ? "+]" : "]", dc->op2); addr = tcg_temp_new(); /* There are probably better ways of doing this. */ cris_flush_cc_state(dc); for (i = 0; i < (nr >> 1); i++) { tmp[i] = tcg_temp_new_i64(); tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8); gen_load64(dc, tmp[i], addr); } if (nr & 1) { tmp32 = tcg_temp_new_i32(); tcg_gen_addi_tl(addr, cpu_R[dc->op1], i * 8); gen_load(dc, tmp32, addr, 4, 0); } else TCGV_UNUSED(tmp32); tcg_temp_free(addr); for (i = 0; i < (nr >> 1); i++) { tcg_gen_trunc_i64_i32(cpu_R[i * 2], tmp[i]); tcg_gen_shri_i64(tmp[i], tmp[i], 32); tcg_gen_trunc_i64_i32(cpu_R[i * 2 + 1], tmp[i]); tcg_temp_free_i64(tmp[i]); } if (nr & 1) { tcg_gen_mov_tl(cpu_R[dc->op2], tmp32); tcg_temp_free(tmp32); } /* writeback the updated pointer value. */ if (dc->postinc) tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], nr * 4); /* gen_load might want to evaluate the previous insns flags. */ cris_cc_mask(dc, 0); return 2; } static int dec_movem_rm(DisasContext *dc) { TCGv tmp; TCGv addr; int i; LOG_DIS("movem $r%u, [$r%u%s\n", dc->op2, dc->op1, dc->postinc ? "+]" : "]"); cris_flush_cc_state(dc); tmp = tcg_temp_new(); addr = tcg_temp_new(); tcg_gen_movi_tl(tmp, 4); tcg_gen_mov_tl(addr, cpu_R[dc->op1]); for (i = 0; i <= dc->op2; i++) { /* Displace addr. */ /* Perform the store. */ gen_store(dc, addr, cpu_R[i], 4); tcg_gen_add_tl(addr, addr, tmp); } if (dc->postinc) tcg_gen_mov_tl(cpu_R[dc->op1], addr); cris_cc_mask(dc, 0); tcg_temp_free(tmp); tcg_temp_free(addr); return 2; } static int dec_move_rm(DisasContext *dc) { int memsize; memsize = memsize_zz(dc); LOG_DIS("move.%c $r%u, [$r%u]\n", memsize_char(memsize), dc->op2, dc->op1); /* prepare store. */ cris_flush_cc_state(dc); gen_store(dc, cpu_R[dc->op1], cpu_R[dc->op2], memsize); if (dc->postinc) tcg_gen_addi_tl(cpu_R[dc->op1], cpu_R[dc->op1], memsize); cris_cc_mask(dc, 0); return 2; } static int dec_lapcq(DisasContext *dc) { LOG_DIS("lapcq %x, $r%u\n", dc->pc + dc->op1*2, dc->op2); cris_cc_mask(dc, 0); tcg_gen_movi_tl(cpu_R[dc->op2], dc->pc + dc->op1 * 2); return 2; } static int dec_lapc_im(DisasContext *dc) { unsigned int rd; int32_t imm; int32_t pc; rd = dc->op2; cris_cc_mask(dc, 0); imm = cris_fetch(dc, dc->pc + 2, 4, 0); LOG_DIS("lapc 0x%x, $r%u\n", imm + dc->pc, dc->op2); pc = dc->pc; pc += imm; tcg_gen_movi_tl(cpu_R[rd], pc); return 6; } /* Jump to special reg. */ static int dec_jump_p(DisasContext *dc) { LOG_DIS("jump $p%u\n", dc->op2); if (dc->op2 == PR_CCS) cris_evaluate_flags(dc); t_gen_mov_TN_preg(env_btarget, dc->op2); /* rete will often have low bit set to indicate delayslot. */ tcg_gen_andi_tl(env_btarget, env_btarget, ~1); cris_cc_mask(dc, 0); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } /* Jump and save. */ static int dec_jas_r(DisasContext *dc) { LOG_DIS("jas $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]); if (dc->op2 > 15) abort(); t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4)); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } static int dec_jas_im(DisasContext *dc) { uint32_t imm; imm = cris_fetch(dc, dc->pc + 2, 4, 0); LOG_DIS("jas 0x%x\n", imm); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8)); dc->jmp_pc = imm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_jasc_im(DisasContext *dc) { uint32_t imm; imm = cris_fetch(dc, dc->pc + 2, 4, 0); LOG_DIS("jasc 0x%x\n", imm); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8 + 4)); dc->jmp_pc = imm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_jasc_r(DisasContext *dc) { LOG_DIS("jasc_r $r%u, $p%u\n", dc->op1, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ tcg_gen_mov_tl(env_btarget, cpu_R[dc->op1]); t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 4 + 4)); cris_prepare_jmp(dc, JMP_INDIRECT); return 2; } static int dec_bcc_im(DisasContext *dc) { int32_t offset; uint32_t cond = dc->op2; offset = cris_fetch(dc, dc->pc + 2, 2, 1); LOG_DIS("b%s %d pc=%x dst=%x\n", cc_name(cond), offset, dc->pc, dc->pc + offset); cris_cc_mask(dc, 0); /* op2 holds the condition-code. */ cris_prepare_cc_branch (dc, offset, cond); return 4; } static int dec_bas_im(DisasContext *dc) { int32_t simm; simm = cris_fetch(dc, dc->pc + 2, 4, 0); LOG_DIS("bas 0x%x, $p%u\n", dc->pc + simm, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 8)); dc->jmp_pc = dc->pc + simm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_basc_im(DisasContext *dc) { int32_t simm; simm = cris_fetch(dc, dc->pc + 2, 4, 0); LOG_DIS("basc 0x%x, $p%u\n", dc->pc + simm, dc->op2); cris_cc_mask(dc, 0); /* Store the return address in Pd. */ t_gen_mov_preg_TN(dc, dc->op2, tcg_const_tl(dc->pc + 12)); dc->jmp_pc = dc->pc + simm; cris_prepare_jmp(dc, JMP_DIRECT); return 6; } static int dec_rfe_etc(DisasContext *dc) { cris_cc_mask(dc, 0); if (dc->op2 == 15) { t_gen_mov_env_TN(halted, tcg_const_tl(1)); tcg_gen_movi_tl(env_pc, dc->pc + 2); t_gen_raise_exception(EXCP_HLT); return 2; } switch (dc->op2 & 7) { case 2: /* rfe. */ LOG_DIS("rfe\n"); cris_evaluate_flags(dc); gen_helper_rfe(); dc->is_jmp = DISAS_UPDATE; break; case 5: /* rfn. */ LOG_DIS("rfn\n"); cris_evaluate_flags(dc); gen_helper_rfn(); dc->is_jmp = DISAS_UPDATE; break; case 6: LOG_DIS("break %d\n", dc->op1); cris_evaluate_flags (dc); /* break. */ tcg_gen_movi_tl(env_pc, dc->pc + 2); /* Breaks start at 16 in the exception vector. */ t_gen_mov_env_TN(trap_vector, tcg_const_tl(dc->op1 + 16)); t_gen_raise_exception(EXCP_BREAK); dc->is_jmp = DISAS_UPDATE; break; default: printf ("op2=%x\n", dc->op2); BUG(); break; } return 2; } static int dec_ftag_fidx_d_m(DisasContext *dc) { return 2; } static int dec_ftag_fidx_i_m(DisasContext *dc) { return 2; } static int dec_null(DisasContext *dc) { printf ("unknown insn pc=%x opc=%x op1=%x op2=%x\n", dc->pc, dc->opcode, dc->op1, dc->op2); fflush(NULL); BUG(); return 2; } static struct decoder_info { struct { uint32_t bits; uint32_t mask; }; int (*dec)(DisasContext *dc); } decinfo[] = { /* Order matters here. */ {DEC_MOVEQ, dec_moveq}, {DEC_BTSTQ, dec_btstq}, {DEC_CMPQ, dec_cmpq}, {DEC_ADDOQ, dec_addoq}, {DEC_ADDQ, dec_addq}, {DEC_SUBQ, dec_subq}, {DEC_ANDQ, dec_andq}, {DEC_ORQ, dec_orq}, {DEC_ASRQ, dec_asrq}, {DEC_LSLQ, dec_lslq}, {DEC_LSRQ, dec_lsrq}, {DEC_BCCQ, dec_bccq}, {DEC_BCC_IM, dec_bcc_im}, {DEC_JAS_IM, dec_jas_im}, {DEC_JAS_R, dec_jas_r}, {DEC_JASC_IM, dec_jasc_im}, {DEC_JASC_R, dec_jasc_r}, {DEC_BAS_IM, dec_bas_im}, {DEC_BASC_IM, dec_basc_im}, {DEC_JUMP_P, dec_jump_p}, {DEC_LAPC_IM, dec_lapc_im}, {DEC_LAPCQ, dec_lapcq}, {DEC_RFE_ETC, dec_rfe_etc}, {DEC_ADDC_MR, dec_addc_mr}, {DEC_MOVE_MP, dec_move_mp}, {DEC_MOVE_PM, dec_move_pm}, {DEC_MOVEM_MR, dec_movem_mr}, {DEC_MOVEM_RM, dec_movem_rm}, {DEC_MOVE_PR, dec_move_pr}, {DEC_SCC_R, dec_scc_r}, {DEC_SETF, dec_setclrf}, {DEC_CLEARF, dec_setclrf}, {DEC_MOVE_SR, dec_move_sr}, {DEC_MOVE_RP, dec_move_rp}, {DEC_SWAP_R, dec_swap_r}, {DEC_ABS_R, dec_abs_r}, {DEC_LZ_R, dec_lz_r}, {DEC_MOVE_RS, dec_move_rs}, {DEC_BTST_R, dec_btst_r}, {DEC_ADDC_R, dec_addc_r}, {DEC_DSTEP_R, dec_dstep_r}, {DEC_XOR_R, dec_xor_r}, {DEC_MCP_R, dec_mcp_r}, {DEC_CMP_R, dec_cmp_r}, {DEC_ADDI_R, dec_addi_r}, {DEC_ADDI_ACR, dec_addi_acr}, {DEC_ADD_R, dec_add_r}, {DEC_SUB_R, dec_sub_r}, {DEC_ADDU_R, dec_addu_r}, {DEC_ADDS_R, dec_adds_r}, {DEC_SUBU_R, dec_subu_r}, {DEC_SUBS_R, dec_subs_r}, {DEC_LSL_R, dec_lsl_r}, {DEC_AND_R, dec_and_r}, {DEC_OR_R, dec_or_r}, {DEC_BOUND_R, dec_bound_r}, {DEC_ASR_R, dec_asr_r}, {DEC_LSR_R, dec_lsr_r}, {DEC_MOVU_R, dec_movu_r}, {DEC_MOVS_R, dec_movs_r}, {DEC_NEG_R, dec_neg_r}, {DEC_MOVE_R, dec_move_r}, {DEC_FTAG_FIDX_I_M, dec_ftag_fidx_i_m}, {DEC_FTAG_FIDX_D_M, dec_ftag_fidx_d_m}, {DEC_MULS_R, dec_muls_r}, {DEC_MULU_R, dec_mulu_r}, {DEC_ADDU_M, dec_addu_m}, {DEC_ADDS_M, dec_adds_m}, {DEC_SUBU_M, dec_subu_m}, {DEC_SUBS_M, dec_subs_m}, {DEC_CMPU_M, dec_cmpu_m}, {DEC_CMPS_M, dec_cmps_m}, {DEC_MOVU_M, dec_movu_m}, {DEC_MOVS_M, dec_movs_m}, {DEC_CMP_M, dec_cmp_m}, {DEC_ADDO_M, dec_addo_m}, {DEC_BOUND_M, dec_bound_m}, {DEC_ADD_M, dec_add_m}, {DEC_SUB_M, dec_sub_m}, {DEC_AND_M, dec_and_m}, {DEC_OR_M, dec_or_m}, {DEC_MOVE_RM, dec_move_rm}, {DEC_TEST_M, dec_test_m}, {DEC_MOVE_MR, dec_move_mr}, {{0, 0}, dec_null} }; static unsigned int crisv32_decoder(DisasContext *dc) { int insn_len = 2; int i; if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP))) tcg_gen_debug_insn_start(dc->pc); /* Load a halfword onto the instruction register. */ dc->ir = cris_fetch(dc, dc->pc, 2, 0); /* Now decode it. */ dc->opcode = EXTRACT_FIELD(dc->ir, 4, 11); dc->op1 = EXTRACT_FIELD(dc->ir, 0, 3); dc->op2 = EXTRACT_FIELD(dc->ir, 12, 15); dc->zsize = EXTRACT_FIELD(dc->ir, 4, 4); dc->zzsize = EXTRACT_FIELD(dc->ir, 4, 5); dc->postinc = EXTRACT_FIELD(dc->ir, 10, 10); /* Large switch for all insns. */ for (i = 0; i < ARRAY_SIZE(decinfo); i++) { if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) { insn_len = decinfo[i].dec(dc); break; } } #if !defined(CONFIG_USER_ONLY) /* Single-stepping ? */ if (dc->tb_flags & S_FLAG) { int l1; l1 = gen_new_label(); tcg_gen_brcondi_tl(TCG_COND_NE, cpu_PR[PR_SPC], dc->pc, l1); /* We treat SPC as a break with an odd trap vector. */ cris_evaluate_flags (dc); t_gen_mov_env_TN(trap_vector, tcg_const_tl(3)); tcg_gen_movi_tl(env_pc, dc->pc + insn_len); tcg_gen_movi_tl(cpu_PR[PR_SPC], dc->pc + insn_len); t_gen_raise_exception(EXCP_BREAK); gen_set_label(l1); } #endif return insn_len; } static void check_breakpoint(CPUState *env, DisasContext *dc) { CPUBreakpoint *bp; if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) { QTAILQ_FOREACH(bp, &env->breakpoints, entry) { if (bp->pc == dc->pc) { cris_evaluate_flags (dc); tcg_gen_movi_tl(env_pc, dc->pc); t_gen_raise_exception(EXCP_DEBUG); dc->is_jmp = DISAS_UPDATE; } } } } #include "translate_v10.c" /* * Delay slots on QEMU/CRIS. * * If an exception hits on a delayslot, the core will let ERP (the Exception * Return Pointer) point to the branch (the previous) insn and set the lsb to * to give SW a hint that the exception actually hit on the dslot. * * CRIS expects all PC addresses to be 16-bit aligned. The lsb is ignored by * the core and any jmp to an odd addresses will mask off that lsb. It is * simply there to let sw know there was an exception on a dslot. * * When the software returns from an exception, the branch will re-execute. * On QEMU care needs to be taken when a branch+delayslot sequence is broken * and the branch and delayslot dont share pages. * * The TB contaning the branch insn will set up env->btarget and evaluate * env->btaken. When the translation loop exits we will note that the branch * sequence is broken and let env->dslot be the size of the branch insn (those * vary in length). * * The TB contaning the delayslot will have the PC of its real insn (i.e no lsb * set). It will also expect to have env->dslot setup with the size of the * delay slot so that env->pc - env->dslot point to the branch insn. This TB * will execute the dslot and take the branch, either to btarget or just one * insn ahead. * * When exceptions occur, we check for env->dslot in do_interrupt to detect * broken branch sequences and setup $erp accordingly (i.e let it point to the * branch and set lsb). Then env->dslot gets cleared so that the exception * handler can enter. When returning from exceptions (jump $erp) the lsb gets * masked off and we will reexecute the branch insn. * */ /* generate intermediate code for basic block 'tb'. */ static void gen_intermediate_code_internal(CPUState *env, TranslationBlock *tb, int search_pc) { uint16_t *gen_opc_end; uint32_t pc_start; unsigned int insn_len, orig_flags; int j, lj; struct DisasContext ctx; struct DisasContext *dc = &ctx; uint32_t next_page_start; target_ulong npc; int num_insns; int max_insns; qemu_log_try_set_file(stderr); if (env->pregs[PR_VR] == 32) dc->decoder = crisv32_decoder; else dc->decoder = crisv10_decoder; /* Odd PC indicates that branch is rexecuting due to exception in the * delayslot, like in real hw. */ pc_start = tb->pc & ~1; dc->env = env; dc->tb = tb; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; dc->is_jmp = DISAS_NEXT; dc->ppc = pc_start; dc->pc = pc_start; dc->singlestep_enabled = env->singlestep_enabled; dc->flags_uptodate = 1; dc->flagx_known = 1; dc->flags_x = tb->flags & X_FLAG; dc->cc_x_uptodate = 0; dc->cc_mask = 0; dc->update_cc = 0; dc->clear_prefix = 0; dc->clear_locked_irq = 1; cris_update_cc_op(dc, CC_OP_FLAGS, 4); dc->cc_size_uptodate = -1; /* Decode TB flags. */ orig_flags = dc->tb_flags = tb->flags & (S_FLAG | P_FLAG | U_FLAG \ | X_FLAG | PFIX_FLAG); dc->delayed_branch = !!(tb->flags & 7); if (dc->delayed_branch) dc->jmp = JMP_INDIRECT; else dc->jmp = JMP_NOJMP; dc->cpustate_changed = 0; if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { qemu_log( "srch=%d pc=%x %x flg=%" PRIx64 " bt=%x ds=%u ccs=%x\n" "pid=%x usp=%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n" "%x.%x.%x.%x\n", search_pc, dc->pc, dc->ppc, (uint64_t)tb->flags, env->btarget, (unsigned)tb->flags & 7, env->pregs[PR_CCS], env->pregs[PR_PID], env->pregs[PR_USP], env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], env->regs[5], env->regs[6], env->regs[7], env->regs[8], env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->regs[14], env->regs[15]); qemu_log("--------------\n"); qemu_log("IN: %s\n", lookup_symbol(pc_start)); } next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; lj = -1; num_insns = 0; max_insns = tb->cflags & CF_COUNT_MASK; if (max_insns == 0) max_insns = CF_COUNT_MASK; gen_icount_start(); do { check_breakpoint(env, dc); if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; } if (dc->delayed_branch == 1) gen_opc_pc[lj] = dc->ppc | 1; else gen_opc_pc[lj] = dc->pc; gen_opc_instr_start[lj] = 1; gen_opc_icount[lj] = num_insns; } /* Pretty disas. */ LOG_DIS("%8.8x:\t", dc->pc); if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) gen_io_start(); dc->clear_x = 1; insn_len = dc->decoder(dc); dc->ppc = dc->pc; dc->pc += insn_len; if (dc->clear_x) cris_clear_x_flag(dc); num_insns++; /* Check for delayed branches here. If we do it before actually generating any host code, the simulator will just loop doing nothing for on this program location. */ if (dc->delayed_branch) { dc->delayed_branch--; if (dc->delayed_branch == 0) { if (tb->flags & 7) t_gen_mov_env_TN(dslot, tcg_const_tl(0)); if (dc->jmp == JMP_DIRECT) { dc->is_jmp = DISAS_NEXT; } else { t_gen_cc_jmp(env_btarget, tcg_const_tl(dc->pc)); dc->is_jmp = DISAS_JUMP; } break; } } /* If we are rexecuting a branch due to exceptions on delay slots dont break. */ if (!(tb->pc & 1) && env->singlestep_enabled) break; } while (!dc->is_jmp && !dc->cpustate_changed && gen_opc_ptr < gen_opc_end && !singlestep && (dc->pc < next_page_start) && num_insns < max_insns); if (dc->tb_flags != orig_flags) { dc->cpustate_changed = 1; } if (dc->clear_locked_irq) t_gen_mov_env_TN(locked_irq, tcg_const_tl(0)); npc = dc->pc; if (dc->jmp == JMP_DIRECT && !dc->delayed_branch) npc = dc->jmp_pc; if (tb->cflags & CF_LAST_IO) gen_io_end(); /* Force an update if the per-tb cpu state has changed. */ if (dc->is_jmp == DISAS_NEXT && (dc->cpustate_changed || !dc->flagx_known || (dc->flags_x != (tb->flags & X_FLAG)))) { dc->is_jmp = DISAS_UPDATE; tcg_gen_movi_tl(env_pc, npc); } /* Broken branch+delayslot sequence. */ if (dc->delayed_branch == 1) { /* Set env->dslot to the size of the branch insn. */ t_gen_mov_env_TN(dslot, tcg_const_tl(dc->pc - dc->ppc)); cris_store_direct_jmp(dc); } cris_evaluate_flags (dc); if (unlikely(env->singlestep_enabled)) { if (dc->is_jmp == DISAS_NEXT) tcg_gen_movi_tl(env_pc, npc); t_gen_raise_exception(EXCP_DEBUG); } else { switch(dc->is_jmp) { case DISAS_NEXT: gen_goto_tb(dc, 1, npc); break; default: case DISAS_JUMP: case DISAS_UPDATE: /* indicate that the hash table must be used to find the next TB */ tcg_gen_exit_tb(0); break; case DISAS_SWI: case DISAS_TB_JUMP: /* nothing more to generate */ break; } } gen_icount_end(tb, num_insns); *gen_opc_ptr = INDEX_op_end; if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; } else { tb->size = dc->pc - pc_start; tb->icount = num_insns; } #ifdef DEBUG_DISAS #if !DISAS_CRIS if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { log_target_disas(pc_start, dc->pc - pc_start, dc->env->pregs[PR_VR]); qemu_log("\nisize=%d osize=%td\n", dc->pc - pc_start, gen_opc_ptr - gen_opc_buf); } #endif #endif } void gen_intermediate_code (CPUState *env, struct TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 0); } void gen_intermediate_code_pc (CPUState *env, struct TranslationBlock *tb) { gen_intermediate_code_internal(env, tb, 1); } void cpu_dump_state (CPUState *env, FILE *f, fprintf_function cpu_fprintf, int flags) { int i; uint32_t srs; if (!env || !f) return; cpu_fprintf(f, "PC=%x CCS=%x btaken=%d btarget=%x\n" "cc_op=%d cc_src=%d cc_dest=%d cc_result=%x cc_mask=%x\n", env->pc, env->pregs[PR_CCS], env->btaken, env->btarget, env->cc_op, env->cc_src, env->cc_dest, env->cc_result, env->cc_mask); for (i = 0; i < 16; i++) { cpu_fprintf(f, "%s=%8.8x ",regnames[i], env->regs[i]); if ((i + 1) % 4 == 0) cpu_fprintf(f, "\n"); } cpu_fprintf(f, "\nspecial regs:\n"); for (i = 0; i < 16; i++) { cpu_fprintf(f, "%s=%8.8x ", pregnames[i], env->pregs[i]); if ((i + 1) % 4 == 0) cpu_fprintf(f, "\n"); } srs = env->pregs[PR_SRS]; cpu_fprintf(f, "\nsupport function regs bank %x:\n", srs); if (srs < 256) { for (i = 0; i < 16; i++) { cpu_fprintf(f, "s%2.2d=%8.8x ", i, env->sregs[srs][i]); if ((i + 1) % 4 == 0) cpu_fprintf(f, "\n"); } } cpu_fprintf(f, "\n\n"); } struct { uint32_t vr; const char *name; } cris_cores[] = { {8, "crisv8"}, {9, "crisv9"}, {10, "crisv10"}, {11, "crisv11"}, {32, "crisv32"}, }; void cris_cpu_list(FILE *f, fprintf_function cpu_fprintf) { unsigned int i; (*cpu_fprintf)(f, "Available CPUs:\n"); for (i = 0; i < ARRAY_SIZE(cris_cores); i++) { (*cpu_fprintf)(f, " %s\n", cris_cores[i].name); } } static uint32_t vr_by_name(const char *name) { unsigned int i; for (i = 0; i < ARRAY_SIZE(cris_cores); i++) { if (strcmp(name, cris_cores[i].name) == 0) { return cris_cores[i].vr; } } return 32; } CPUCRISState *cpu_cris_init (const char *cpu_model) { CPUCRISState *env; static int tcg_initialized = 0; int i; env = qemu_mallocz(sizeof(CPUCRISState)); env->pregs[PR_VR] = vr_by_name(cpu_model); cpu_exec_init(env); cpu_reset(env); qemu_init_vcpu(env); if (tcg_initialized) return env; tcg_initialized = 1; #define GEN_HELPER 2 #include "helper.h" if (env->pregs[PR_VR] < 32) { cpu_crisv10_init(env); return env; } cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env"); cc_x = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_x), "cc_x"); cc_src = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_src), "cc_src"); cc_dest = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_dest), "cc_dest"); cc_result = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_result), "cc_result"); cc_op = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_op), "cc_op"); cc_size = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_size), "cc_size"); cc_mask = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, cc_mask), "cc_mask"); env_pc = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, pc), "pc"); env_btarget = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, btarget), "btarget"); env_btaken = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, btaken), "btaken"); for (i = 0; i < 16; i++) { cpu_R[i] = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, regs[i]), regnames[i]); } for (i = 0; i < 16; i++) { cpu_PR[i] = tcg_global_mem_new(TCG_AREG0, offsetof(CPUState, pregs[i]), pregnames[i]); } return env; } void cpu_reset (CPUCRISState *env) { uint32_t vr; if (qemu_loglevel_mask(CPU_LOG_RESET)) { qemu_log("CPU Reset (CPU %d)\n", env->cpu_index); log_cpu_state(env, 0); } vr = env->pregs[PR_VR]; memset(env, 0, offsetof(CPUCRISState, breakpoints)); env->pregs[PR_VR] = vr; tlb_flush(env, 1); #if defined(CONFIG_USER_ONLY) /* start in user mode with interrupts enabled. */ env->pregs[PR_CCS] |= U_FLAG | I_FLAG | P_FLAG; #else cris_mmu_init(env); env->pregs[PR_CCS] = 0; #endif } void gen_pc_load(CPUState *env, struct TranslationBlock *tb, unsigned long searched_pc, int pc_pos, void *puc) { env->pc = gen_opc_pc[pc_pos]; }