/* * CRIS emulation micro-operations for qemu. * * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "host-utils.h" #define REGNAME r0 #define REG (env->regs[0]) #include "op_template.h" #define REGNAME r1 #define REG (env->regs[1]) #include "op_template.h" #define REGNAME r2 #define REG (env->regs[2]) #include "op_template.h" #define REGNAME r3 #define REG (env->regs[3]) #include "op_template.h" #define REGNAME r4 #define REG (env->regs[4]) #include "op_template.h" #define REGNAME r5 #define REG (env->regs[5]) #include "op_template.h" #define REGNAME r6 #define REG (env->regs[6]) #include "op_template.h" #define REGNAME r7 #define REG (env->regs[7]) #include "op_template.h" #define REGNAME r8 #define REG (env->regs[8]) #include "op_template.h" #define REGNAME r9 #define REG (env->regs[9]) #include "op_template.h" #define REGNAME r10 #define REG (env->regs[10]) #include "op_template.h" #define REGNAME r11 #define REG (env->regs[11]) #include "op_template.h" #define REGNAME r12 #define REG (env->regs[12]) #include "op_template.h" #define REGNAME r13 #define REG (env->regs[13]) #include "op_template.h" #define REGNAME r14 #define REG (env->regs[14]) #include "op_template.h" #define REGNAME r15 #define REG (env->regs[15]) #include "op_template.h" #define REGNAME p0 #define REG (env->pregs[0]) #include "op_template.h" #define REGNAME p1 #define REG (env->pregs[1]) #include "op_template.h" #define REGNAME p2 #define REG (env->pregs[2]) #include "op_template.h" #define REGNAME p3 #define REG (env->pregs[3]) #include "op_template.h" #define REGNAME p4 #define REG (env->pregs[4]) #include "op_template.h" #define REGNAME p5 #define REG (env->pregs[5]) #include "op_template.h" #define REGNAME p6 #define REG (env->pregs[6]) #include "op_template.h" #define REGNAME p7 #define REG (env->pregs[7]) #include "op_template.h" #define REGNAME p8 #define REG (env->pregs[8]) #include "op_template.h" #define REGNAME p9 #define REG (env->pregs[9]) #include "op_template.h" #define REGNAME p10 #define REG (env->pregs[10]) #include "op_template.h" #define REGNAME p11 #define REG (env->pregs[11]) #include "op_template.h" #define REGNAME p12 #define REG (env->pregs[12]) #include "op_template.h" #define REGNAME p13 #define REG (env->pregs[13]) #include "op_template.h" #define REGNAME p14 #define REG (env->pregs[14]) #include "op_template.h" #define REGNAME p15 #define REG (env->pregs[15]) #include "op_template.h" /* Microcode. */ void OPPROTO op_exit_tb (void) { EXIT_TB(); } void OPPROTO op_goto_tb0 (void) { GOTO_TB(op_goto_tb0, PARAM1, 0); RETURN(); } void OPPROTO op_goto_tb1 (void) { GOTO_TB(op_goto_tb1, PARAM1, 1); RETURN(); } void OPPROTO op_break_im(void) { env->trapnr = PARAM1; env->exception_index = EXCP_BREAK; cpu_loop_exit(); } void OPPROTO op_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void OPPROTO op_exec_insn(void) { env->stats.exec_insns++; RETURN(); } void OPPROTO op_exec_load(void) { env->stats.exec_loads++; RETURN(); } void OPPROTO op_exec_store(void) { env->stats.exec_stores++; RETURN(); } void OPPROTO op_ccs_lshift (void) { uint32_t ccs; /* Apply the ccs shift. */ ccs = env->pregs[SR_CCS]; ccs = (ccs & 0xc0000000) | ((ccs << 12) >> 2); env->pregs[SR_CCS] = ccs; RETURN(); } void OPPROTO op_ccs_rshift (void) { uint32_t ccs; /* Apply the ccs shift. */ ccs = env->pregs[SR_CCS]; ccs = (ccs & 0xc0000000) | (ccs >> 10); env->pregs[SR_CCS] = ccs; RETURN(); } void OPPROTO op_setf (void) { env->pregs[SR_CCS] |= PARAM1; RETURN(); } void OPPROTO op_clrf (void) { env->pregs[SR_CCS] &= ~PARAM1; RETURN(); } void OPPROTO op_movl_debug1_T0 (void) { env->debug1 = T0; RETURN(); } void OPPROTO op_movl_debug2_T0 (void) { env->debug2 = T0; RETURN(); } void OPPROTO op_movl_debug3_T0 (void) { env->debug3 = T0; RETURN(); } void OPPROTO op_movl_debug1_T1 (void) { env->debug1 = T1; RETURN(); } void OPPROTO op_movl_debug2_T1 (void) { env->debug2 = T1; RETURN(); } void OPPROTO op_movl_debug3_T1 (void) { env->debug3 = T1; RETURN(); } void OPPROTO op_movl_debug3_im (void) { env->debug3 = PARAM1; RETURN(); } void OPPROTO op_movl_T0_flags (void) { T0 = env->pregs[SR_CCS]; RETURN(); } void OPPROTO op_movl_flags_T0 (void) { env->pregs[SR_CCS] = T0; RETURN(); } void OPPROTO op_movl_sreg_T0 (void) { env->sregs[env->pregs[SR_SRS]][PARAM1] = T0; RETURN(); } void OPPROTO op_movl_tlb_lo_T0 (void) { int srs; srs = env->pregs[SR_SRS]; if (srs == 1 || srs == 2) { int set; int idx; uint32_t lo, hi; idx = set = env->sregs[SFR_RW_MM_TLB_SEL]; set >>= 4; set &= 3; idx &= 31; /* We've just made a write to tlb_lo. */ lo = env->sregs[SFR_RW_MM_TLB_LO]; hi = env->sregs[SFR_RW_MM_TLB_HI]; env->tlbsets[srs - 1][set][idx].lo = lo; env->tlbsets[srs - 1][set][idx].hi = hi; } RETURN(); } void OPPROTO op_movl_T0_sreg (void) { T0 = env->sregs[env->pregs[SR_SRS]][PARAM1]; RETURN(); } void OPPROTO op_update_cc (void) { env->cc_op = PARAM1; env->cc_dest = PARAM2; env->cc_src = PARAM3; RETURN(); } void OPPROTO op_update_cc_op (void) { env->cc_op = PARAM1; RETURN(); } void OPPROTO op_update_cc_mask (void) { env->cc_mask = PARAM1; RETURN(); } void OPPROTO op_update_cc_dest_T0 (void) { env->cc_dest = T0; RETURN(); } void OPPROTO op_update_cc_result_T0 (void) { env->cc_result = T0; RETURN(); } void OPPROTO op_update_cc_size_im (void) { env->cc_size = PARAM1; RETURN(); } void OPPROTO op_update_cc_src_T1 (void) { env->cc_src = T1; RETURN(); } void OPPROTO op_update_cc_x (void) { env->cc_x_live = PARAM1; env->cc_x = PARAM2; RETURN(); } /* FIXME: is this allowed? */ extern inline void evaluate_flags_writeback(uint32_t flags) { int x; /* Extended arithmetics, leave the z flag alone. */ env->debug3 = env->pregs[SR_CCS]; if (env->cc_x_live) x = env->cc_x; else x = env->pregs[SR_CCS] & X_FLAG; if ((x || env->cc_op == CC_OP_ADDC) && flags & Z_FLAG) env->cc_mask &= ~Z_FLAG; /* all insn clear the x-flag except setf or clrf. */ env->pregs[SR_CCS] &= ~(env->cc_mask | X_FLAG); flags &= env->cc_mask; env->pregs[SR_CCS] |= flags; RETURN(); } void OPPROTO op_evaluate_flags_muls(void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; /* were gonna have to redo the muls. */ int64_t tmp, t0 ,t1; int32_t mof; int dneg; src = env->cc_src; dst = env->cc_dest; res = env->cc_result; /* cast into signed values to make GCC sign extend. */ t0 = (int32_t)src; t1 = (int32_t)dst; dneg = ((int32_t)res) < 0; tmp = t0 * t1; mof = tmp >> 32; if (tmp == 0) flags |= Z_FLAG; else if (tmp < 0) flags |= N_FLAG; if ((dneg && mof != -1) || (!dneg && mof != 0)) flags |= V_FLAG; evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_evaluate_flags_mulu(void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; /* were gonna have to redo the muls. */ uint64_t tmp, t0 ,t1; uint32_t mof; src = env->cc_src; dst = env->cc_dest; res = env->cc_result; /* cast into signed values to make GCC sign extend. */ t0 = src; t1 = dst; tmp = t0 * t1; mof = tmp >> 32; if (tmp == 0) flags |= Z_FLAG; else if (tmp >> 63) flags |= N_FLAG; if (mof) flags |= V_FLAG; evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_evaluate_flags_mcp(void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; src = env->cc_src; dst = env->cc_dest; res = env->cc_result; if ((res & 0x80000000L) != 0L) { flags |= N_FLAG; if (((src & 0x80000000L) == 0L) && ((dst & 0x80000000L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) { flags |= R_FLAG; } } else { if (res == 0L) flags |= Z_FLAG; if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) flags |= V_FLAG; if ((dst & 0x80000000L) != 0L || (src & 0x80000000L) != 0L) flags |= R_FLAG; } evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_evaluate_flags_alu_4(void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; src = env->cc_src; dst = env->cc_dest; res = env->cc_result; if ((res & 0x80000000L) != 0L) { flags |= N_FLAG; if (((src & 0x80000000L) == 0L) && ((dst & 0x80000000L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) { flags |= C_FLAG; } } else { if (res == 0L) flags |= Z_FLAG; if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) flags |= V_FLAG; if ((dst & 0x80000000L) != 0L || (src & 0x80000000L) != 0L) flags |= C_FLAG; } if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) { flags ^= C_FLAG; } evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_evaluate_flags_move_4 (void) { uint32_t src; uint32_t res; uint32_t flags = 0; src = env->cc_src; res = env->cc_result; if ((int32_t)res < 0) flags |= N_FLAG; else if (res == 0L) flags |= Z_FLAG; evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_evaluate_flags_move_2 (void) { uint32_t src; uint32_t flags = 0; uint16_t res; src = env->cc_src; res = env->cc_result; if ((int16_t)res < 0L) flags |= N_FLAG; else if (res == 0) flags |= Z_FLAG; evaluate_flags_writeback(flags); RETURN(); } /* TODO: This is expensive. We could split things up and only evaluate part of CCR on a need to know basis. For now, we simply re-evaluate everything. */ void OPPROTO op_evaluate_flags (void) { uint32_t src; uint32_t dst; uint32_t res; uint32_t flags = 0; src = env->cc_src; dst = env->cc_dest; res = env->cc_result; /* Now, evaluate the flags. This stuff is based on Per Zander's CRISv10 simulator. */ switch (env->cc_size) { case 1: if ((res & 0x80L) != 0L) { flags |= N_FLAG; if (((src & 0x80L) == 0L) && ((dst & 0x80L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x80L) != 0L) && ((dst & 0x80L) != 0L)) { flags |= C_FLAG; } } else { if ((res & 0xFFL) == 0L) { flags |= Z_FLAG; } if (((src & 0x80L) != 0L) && ((dst & 0x80L) != 0L)) { flags |= V_FLAG; } if ((dst & 0x80L) != 0L || (src & 0x80L) != 0L) { flags |= C_FLAG; } } break; case 2: if ((res & 0x8000L) != 0L) { flags |= N_FLAG; if (((src & 0x8000L) == 0L) && ((dst & 0x8000L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x8000L) != 0L) && ((dst & 0x8000L) != 0L)) { flags |= C_FLAG; } } else { if ((res & 0xFFFFL) == 0L) { flags |= Z_FLAG; } if (((src & 0x8000L) != 0L) && ((dst & 0x8000L) != 0L)) { flags |= V_FLAG; } if ((dst & 0x8000L) != 0L || (src & 0x8000L) != 0L) { flags |= C_FLAG; } } break; case 4: if ((res & 0x80000000L) != 0L) { flags |= N_FLAG; if (((src & 0x80000000L) == 0L) && ((dst & 0x80000000L) == 0L)) { flags |= V_FLAG; } else if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) { flags |= C_FLAG; } } else { if (res == 0L) flags |= Z_FLAG; if (((src & 0x80000000L) != 0L) && ((dst & 0x80000000L) != 0L)) flags |= V_FLAG; if ((dst & 0x80000000L) != 0L || (src & 0x80000000L) != 0L) flags |= C_FLAG; } break; default: break; } if (env->cc_op == CC_OP_SUB || env->cc_op == CC_OP_CMP) { flags ^= C_FLAG; } evaluate_flags_writeback(flags); RETURN(); } void OPPROTO op_extb_T0_T0 (void) { T0 = ((int8_t)T0); RETURN(); } void OPPROTO op_extb_T1_T0 (void) { T1 = ((int8_t)T0); RETURN(); } void OPPROTO op_extb_T1_T1 (void) { T1 = ((int8_t)T1); RETURN(); } void OPPROTO op_zextb_T0_T0 (void) { T0 = ((uint8_t)T0); RETURN(); } void OPPROTO op_zextb_T1_T0 (void) { T1 = ((uint8_t)T0); RETURN(); } void OPPROTO op_zextb_T1_T1 (void) { T1 = ((uint8_t)T1); RETURN(); } void OPPROTO op_extw_T0_T0 (void) { T0 = ((int16_t)T0); RETURN(); } void OPPROTO op_extw_T1_T0 (void) { T1 = ((int16_t)T0); RETURN(); } void OPPROTO op_extw_T1_T1 (void) { T1 = ((int16_t)T1); RETURN(); } void OPPROTO op_zextw_T0_T0 (void) { T0 = ((uint16_t)T0); RETURN(); } void OPPROTO op_zextw_T1_T0 (void) { T1 = ((uint16_t)T0); RETURN(); } void OPPROTO op_zextw_T1_T1 (void) { T1 = ((uint16_t)T1); RETURN(); } void OPPROTO op_movl_T0_im (void) { T0 = PARAM1; RETURN(); } void OPPROTO op_movl_T1_im (void) { T1 = PARAM1; RETURN(); } void OPPROTO op_addl_T0_im (void) { T0 += PARAM1; RETURN(); } void OPPROTO op_addl_T1_im (void) { T1 += PARAM1; RETURN(); } void OPPROTO op_subl_T0_im (void) { T0 -= PARAM1; RETURN(); } void OPPROTO op_addxl_T0_C (void) { if (env->pregs[SR_CCS] & X_FLAG) T0 += !!(env->pregs[SR_CCS] & C_FLAG); RETURN(); } void OPPROTO op_subxl_T0_C (void) { if (env->pregs[SR_CCS] & X_FLAG) T0 -= !!(env->pregs[SR_CCS] & C_FLAG); RETURN(); } void OPPROTO op_addl_T0_C (void) { T0 += !!(env->pregs[SR_CCS] & C_FLAG); RETURN(); } void OPPROTO op_addl_T0_R (void) { T0 += !!(env->pregs[SR_CCS] & R_FLAG); RETURN(); } void OPPROTO op_clr_R (void) { env->pregs[SR_CCS] &= ~R_FLAG; RETURN(); } void OPPROTO op_andl_T0_im (void) { T0 &= PARAM1; RETURN(); } void OPPROTO op_andl_T1_im (void) { T1 &= PARAM1; RETURN(); } void OPPROTO op_movl_T0_T1 (void) { T0 = T1; RETURN(); } void OPPROTO op_swp_T0_T1 (void) { T0 ^= T1; T1 ^= T0; T0 ^= T1; RETURN(); } void OPPROTO op_movl_T1_T0 (void) { T1 = T0; RETURN(); } void OPPROTO op_movl_pc_T0 (void) { env->pc = T0; RETURN(); } void OPPROTO op_movl_T0_0 (void) { T0 = 0; RETURN(); } void OPPROTO op_addl_T0_T1 (void) { T0 += T1; RETURN(); } void OPPROTO op_subl_T0_T1 (void) { T0 -= T1; RETURN(); } void OPPROTO op_absl_T1_T1 (void) { int32_t st = T1; T1 = st < 0 ? -st : st; RETURN(); } void OPPROTO op_muls_T0_T1 (void) { int64_t tmp, t0 ,t1; /* cast into signed values to make GCC sign extend these babies. */ t0 = (int32_t)T0; t1 = (int32_t)T1; tmp = t0 * t1; T0 = tmp & 0xffffffff; env->pregs[REG_MOF] = tmp >> 32; RETURN(); } void OPPROTO op_mulu_T0_T1 (void) { uint64_t tmp, t0 ,t1; t0 = T0; t1 = T1; tmp = t0 * t1; T0 = tmp & 0xffffffff; env->pregs[REG_MOF] = tmp >> 32; RETURN(); } void OPPROTO op_dstep_T0_T1 (void) { T0 <<= 1; if (T0 >= T1) T0 -= T1; RETURN(); } void OPPROTO op_orl_T0_T1 (void) { T0 |= T1; RETURN(); } void OPPROTO op_andl_T0_T1 (void) { T0 &= T1; RETURN(); } void OPPROTO op_xorl_T0_T1 (void) { T0 ^= T1; RETURN(); } void OPPROTO op_lsll_T0_T1 (void) { int s = T1; if (s > 31) T0 = 0; else T0 <<= s; RETURN(); } void OPPROTO op_lsll_T0_im (void) { T0 <<= PARAM1; RETURN(); } void OPPROTO op_lsrl_T0_T1 (void) { int s = T1; if (s > 31) T0 = 0; else T0 >>= s; RETURN(); } /* Rely on GCC emitting an arithmetic shift for signed right shifts. */ void OPPROTO op_asrl_T0_T1 (void) { int s = T1; if (s > 31) T0 = T0 & 0x80000000 ? -1 : 0; else T0 = (int32_t)T0 >> s; RETURN(); } void OPPROTO op_btst_T0_T1 (void) { /* FIXME: clean this up. */ /* des ref: The N flag is set according to the selected bit in the dest reg. The Z flag is set if the selected bit and all bits to the right are zero. The destination reg is not affected.*/ unsigned int fz, sbit, bset, mask, masked_t0; sbit = T1 & 31; bset = !!(T0 & (1 << sbit)); mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1; masked_t0 = T0 & mask; fz = !(masked_t0 | bset); /* Set the N and Z flags accordingly. */ T0 = (bset << 3) | (fz << 2); RETURN(); } void OPPROTO op_bound_T0_T1 (void) { if (T0 > T1) T0 = T1; RETURN(); } void OPPROTO op_lz_T0_T1 (void) { T0 = clz32(T1); RETURN(); } void OPPROTO op_negl_T0_T1 (void) { T0 = -T1; RETURN(); } void OPPROTO op_negl_T1_T1 (void) { T1 = -T1; RETURN(); } void OPPROTO op_not_T0_T0 (void) { T0 = ~(T0); RETURN(); } void OPPROTO op_not_T1_T1 (void) { T1 = ~(T1); RETURN(); } void OPPROTO op_swapw_T0_T0 (void) { T0 = (T0 << 16) | ((T0 >> 16)); RETURN(); } void OPPROTO op_swapb_T0_T0 (void) { T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff); RETURN(); } void OPPROTO op_swapr_T0_T0 (void) { T0 = (((T0 << 7) & 0x80808080) | ((T0 << 5) & 0x40404040) | ((T0 << 3) & 0x20202020) | ((T0 << 1) & 0x10101010) | ((T0 >> 1) & 0x08080808) | ((T0 >> 3) & 0x04040404) | ((T0 >> 5) & 0x02020202) | ((T0 >> 7) & 0x01010101)); RETURN(); } void OPPROTO op_tst_cc_eq (void) { uint32_t flags = env->pregs[SR_CCS]; int z_set; z_set = !!(flags & Z_FLAG); T0 = z_set; RETURN(); } void OPPROTO op_tst_cc_eq_fast (void) { T0 = !(env->cc_result); RETURN(); } void OPPROTO op_tst_cc_ne (void) { uint32_t flags = env->pregs[SR_CCS]; int z_set; z_set = !!(flags & Z_FLAG); T0 = !z_set; RETURN(); } void OPPROTO op_tst_cc_ne_fast (void) { T0 = !!(env->cc_result); RETURN(); } void OPPROTO op_tst_cc_cc (void) { uint32_t flags = env->pregs[SR_CCS]; int c_set; c_set = !!(flags & C_FLAG); T0 = !c_set; RETURN(); } void OPPROTO op_tst_cc_cs (void) { uint32_t flags = env->pregs[SR_CCS]; int c_set; c_set = !!(flags & C_FLAG); T0 = c_set; RETURN(); } void OPPROTO op_tst_cc_vc (void) { uint32_t flags = env->pregs[SR_CCS]; int v_set; v_set = !!(flags & V_FLAG); T0 = !v_set; RETURN(); } void OPPROTO op_tst_cc_vs (void) { uint32_t flags = env->pregs[SR_CCS]; int v_set; v_set = !!(flags & V_FLAG); T0 = v_set; RETURN(); } void OPPROTO op_tst_cc_pl (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; n_set = !!(flags & N_FLAG); T0 = !n_set; RETURN(); } void OPPROTO op_tst_cc_pl_fast (void) { T0 = ((int32_t)env->cc_result) >= 0; RETURN(); } void OPPROTO op_tst_cc_mi (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; n_set = !!(flags & N_FLAG); T0 = n_set; RETURN(); } void OPPROTO op_tst_cc_mi_fast (void) { T0 = ((int32_t)env->cc_result) < 0; RETURN(); } void OPPROTO op_tst_cc_ls (void) { uint32_t flags = env->pregs[SR_CCS]; int c_set; int z_set; c_set = !!(flags & C_FLAG); z_set = !!(flags & Z_FLAG); T0 = c_set || z_set; RETURN(); } void OPPROTO op_tst_cc_hi (void) { uint32_t flags = env->pregs[SR_CCS]; int z_set; int c_set; z_set = !!(flags & Z_FLAG); c_set = !!(flags & C_FLAG); T0 = !c_set && !z_set; RETURN(); } void OPPROTO op_tst_cc_ge (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; int v_set; n_set = !!(flags & N_FLAG); v_set = !!(flags & V_FLAG); T0 = (n_set && v_set) || (!n_set && !v_set); RETURN(); } void OPPROTO op_tst_cc_ge_fast (void) { T0 = ((int32_t)env->cc_src < (int32_t)env->cc_dest); RETURN(); } void OPPROTO op_tst_cc_lt (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; int v_set; n_set = !!(flags & N_FLAG); v_set = !!(flags & V_FLAG); T0 = (n_set && !v_set) || (!n_set && v_set); RETURN(); } void OPPROTO op_tst_cc_gt (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; int v_set; int z_set; n_set = !!(flags & N_FLAG); v_set = !!(flags & V_FLAG); z_set = !!(flags & Z_FLAG); T0 = (n_set && v_set && !z_set) || (!n_set && !v_set && !z_set); RETURN(); } void OPPROTO op_tst_cc_le (void) { uint32_t flags = env->pregs[SR_CCS]; int n_set; int v_set; int z_set; n_set = !!(flags & N_FLAG); v_set = !!(flags & V_FLAG); z_set = !!(flags & Z_FLAG); T0 = z_set || (n_set && !v_set) || (!n_set && v_set); RETURN(); } void OPPROTO op_tst_cc_p (void) { uint32_t flags = env->pregs[SR_CCS]; int p_set; p_set = !!(flags & P_FLAG); T0 = p_set; RETURN(); } /* Evaluate the if the branch should be taken or not. Needs to be done in the original sequence. The acutal branch is rescheduled to right after the delay-slot. */ void OPPROTO op_evaluate_bcc (void) { env->btaken = T0; RETURN(); } /* this one is used on every alu op, optimize it!. */ void OPPROTO op_goto_if_not_x (void) { if (env->pregs[SR_CCS] & X_FLAG) GOTO_LABEL_PARAM(1); RETURN(); } void OPPROTO op_cc_jmp (void) { if (env->btaken) env->pc = PARAM1; else env->pc = PARAM2; RETURN(); } void OPPROTO op_cc_ngoto (void) { if (!env->btaken) GOTO_LABEL_PARAM(1); RETURN(); } void OPPROTO op_movl_btarget_T0 (void) { env->btarget = T0; RETURN(); } void OPPROTO op_jmp (void) { env->pc = env->btarget; RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.c" #undef MEMSUFFIX #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.c" #undef MEMSUFFIX #define MEMSUFFIX _kernel #include "op_mem.c" #undef MEMSUFFIX #endif