/* * ARM micro operations * * Copyright (c) 2003 Fabrice Bellard * Copyright (c) 2005-2007 CodeSourcery, LLC * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" void OPPROTO op_addl_T0_T1_cc(void) { unsigned int src1; src1 = T0; T0 += T1; env->NZF = T0; env->CF = T0 < src1; env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); } void OPPROTO op_adcl_T0_T1_cc(void) { unsigned int src1; src1 = T0; if (!env->CF) { T0 += T1; env->CF = T0 < src1; } else { T0 += T1 + 1; env->CF = T0 <= src1; } env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0); env->NZF = T0; FORCE_RET(); } #define OPSUB(sub, sbc, res, T0, T1) \ \ void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \ { \ unsigned int src1; \ src1 = T0; \ T0 -= T1; \ env->NZF = T0; \ env->CF = src1 >= T1; \ env->VF = (src1 ^ T1) & (src1 ^ T0); \ res = T0; \ } \ \ void OPPROTO op_ ## sbc ## l_T0_T1(void) \ { \ res = T0 - T1 + env->CF - 1; \ } \ \ void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \ { \ unsigned int src1; \ src1 = T0; \ if (!env->CF) { \ T0 = T0 - T1 - 1; \ env->CF = src1 > T1; \ } else { \ T0 = T0 - T1; \ env->CF = src1 >= T1; \ } \ env->VF = (src1 ^ T1) & (src1 ^ T0); \ env->NZF = T0; \ res = T0; \ FORCE_RET(); \ } OPSUB(sub, sbc, T0, T0, T1) OPSUB(rsb, rsc, T0, T1, T0) #define EIP (env->regs[15]) void OPPROTO op_test_eq(void) { if (env->NZF == 0) GOTO_LABEL_PARAM(1);; FORCE_RET(); } void OPPROTO op_test_ne(void) { if (env->NZF != 0) GOTO_LABEL_PARAM(1);; FORCE_RET(); } void OPPROTO op_test_cs(void) { if (env->CF != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_cc(void) { if (env->CF == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_mi(void) { if ((env->NZF & 0x80000000) != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_pl(void) { if ((env->NZF & 0x80000000) == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_vs(void) { if ((env->VF & 0x80000000) != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_vc(void) { if ((env->VF & 0x80000000) == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_hi(void) { if (env->CF != 0 && env->NZF != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_ls(void) { if (env->CF == 0 || env->NZF == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_ge(void) { if (((env->VF ^ env->NZF) & 0x80000000) == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_lt(void) { if (((env->VF ^ env->NZF) & 0x80000000) != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_gt(void) { if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_le(void) { if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_test_T0(void) { if (T0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_testn_T0(void) { if (!T0) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_movl_T0_cpsr(void) { /* Execution state bits always read as zero. */ T0 = cpsr_read(env) & ~CPSR_EXEC; FORCE_RET(); } void OPPROTO op_movl_T0_spsr(void) { T0 = env->spsr; } void OPPROTO op_movl_spsr_T0(void) { uint32_t mask = PARAM1; env->spsr = (env->spsr & ~mask) | (T0 & mask); } void OPPROTO op_movl_cpsr_T0(void) { cpsr_write(env, T0, PARAM1); FORCE_RET(); } void OPPROTO op_mul_T0_T1(void) { T0 = T0 * T1; } /* 64 bit unsigned mul */ void OPPROTO op_mull_T0_T1(void) { uint64_t res; res = (uint64_t)T0 * (uint64_t)T1; T1 = res >> 32; T0 = res; } /* 64 bit signed mul */ void OPPROTO op_imull_T0_T1(void) { uint64_t res; res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); T1 = res >> 32; T0 = res; } /* 48 bit signed mul, top 32 bits */ void OPPROTO op_imulw_T0_T1(void) { uint64_t res; res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1); T0 = res >> 16; } void OPPROTO op_addq_T0_T1(void) { uint64_t res; res = ((uint64_t)T1 << 32) | T0; res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); T1 = res >> 32; T0 = res; } void OPPROTO op_addq_lo_T0_T1(void) { uint64_t res; res = ((uint64_t)T1 << 32) | T0; res += (uint64_t)(env->regs[PARAM1]); T1 = res >> 32; T0 = res; } /* Dual 16-bit accumulate. */ void OPPROTO op_addq_T0_T1_dual(void) { uint64_t res; res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); res += (int32_t)T0; res += (int32_t)T1; env->regs[PARAM1] = (uint32_t)res; env->regs[PARAM2] = res >> 32; } /* Dual 16-bit subtract accumulate. */ void OPPROTO op_subq_T0_T1_dual(void) { uint64_t res; res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]); res += (int32_t)T0; res -= (int32_t)T1; env->regs[PARAM1] = (uint32_t)res; env->regs[PARAM2] = res >> 32; } void OPPROTO op_logicq_cc(void) { env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0); } /* memory access */ #define MEMSUFFIX _raw #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_mem.h" #endif void OPPROTO op_clrex(void) { cpu_lock(); helper_clrex(env); cpu_unlock(); } /* T1 based, use T0 as shift count */ void OPPROTO op_shll_T1_T0(void) { int shift; shift = T0 & 0xff; if (shift >= 32) T1 = 0; else T1 = T1 << shift; FORCE_RET(); } void OPPROTO op_shrl_T1_T0(void) { int shift; shift = T0 & 0xff; if (shift >= 32) T1 = 0; else T1 = (uint32_t)T1 >> shift; FORCE_RET(); } void OPPROTO op_sarl_T1_T0(void) { int shift; shift = T0 & 0xff; if (shift >= 32) shift = 31; T1 = (int32_t)T1 >> shift; } void OPPROTO op_rorl_T1_T0(void) { int shift; shift = T0 & 0x1f; if (shift) { T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); } FORCE_RET(); } /* T1 based, use T0 as shift count and compute CF */ void OPPROTO op_shll_T1_T0_cc(void) { int shift; shift = T0 & 0xff; if (shift >= 32) { if (shift == 32) env->CF = T1 & 1; else env->CF = 0; T1 = 0; } else if (shift != 0) { env->CF = (T1 >> (32 - shift)) & 1; T1 = T1 << shift; } FORCE_RET(); } void OPPROTO op_shrl_T1_T0_cc(void) { int shift; shift = T0 & 0xff; if (shift >= 32) { if (shift == 32) env->CF = (T1 >> 31) & 1; else env->CF = 0; T1 = 0; } else if (shift != 0) { env->CF = (T1 >> (shift - 1)) & 1; T1 = (uint32_t)T1 >> shift; } FORCE_RET(); } void OPPROTO op_sarl_T1_T0_cc(void) { int shift; shift = T0 & 0xff; if (shift >= 32) { env->CF = (T1 >> 31) & 1; T1 = (int32_t)T1 >> 31; } else if (shift != 0) { env->CF = (T1 >> (shift - 1)) & 1; T1 = (int32_t)T1 >> shift; } FORCE_RET(); } void OPPROTO op_rorl_T1_T0_cc(void) { int shift1, shift; shift1 = T0 & 0xff; shift = shift1 & 0x1f; if (shift == 0) { if (shift1 != 0) env->CF = (T1 >> 31) & 1; } else { env->CF = (T1 >> (shift - 1)) & 1; T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift)); } FORCE_RET(); } /* misc */ #define SIGNBIT (uint32_t)0x80000000 /* saturating arithmetic */ void OPPROTO op_addl_T0_T1_setq(void) { uint32_t res; res = T0 + T1; if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) env->QF = 1; T0 = res; FORCE_RET(); } void OPPROTO op_addl_T0_T1_saturate(void) { uint32_t res; res = T0 + T1; if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) { env->QF = 1; if (T0 & SIGNBIT) T0 = 0x80000000; else T0 = 0x7fffffff; } else T0 = res; FORCE_RET(); } void OPPROTO op_subl_T0_T1_saturate(void) { uint32_t res; res = T0 - T1; if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) { env->QF = 1; if (T0 & SIGNBIT) T0 = 0x80000000; else T0 = 0x7fffffff; } else T0 = res; FORCE_RET(); } void OPPROTO op_double_T1_saturate(void) { int32_t val; val = T1; if (val >= 0x40000000) { T1 = 0x7fffffff; env->QF = 1; } else if (val <= (int32_t)0xc0000000) { T1 = 0x80000000; env->QF = 1; } else { T1 = val << 1; } FORCE_RET(); } /* Unsigned saturating arithmetic for NEON. */ void OPPROTO op_addl_T0_T1_usaturate(void) { uint32_t res; res = T0 + T1; if (res < T0) { env->QF = 1; T0 = 0xffffffff; } else { T0 = res; } FORCE_RET(); } void OPPROTO op_subl_T0_T1_usaturate(void) { uint32_t res; res = T0 - T1; if (res > T0) { env->QF = 1; T0 = 0; } else { T0 = res; } FORCE_RET(); } /* exceptions */ void OPPROTO op_swi(void) { env->exception_index = EXCP_SWI; cpu_loop_exit(); } void OPPROTO op_undef_insn(void) { env->exception_index = EXCP_UDEF; cpu_loop_exit(); } void OPPROTO op_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(); } void OPPROTO op_wfi(void) { env->exception_index = EXCP_HLT; env->halted = 1; cpu_loop_exit(); } void OPPROTO op_bkpt(void) { env->exception_index = EXCP_BKPT; cpu_loop_exit(); } void OPPROTO op_exception_exit(void) { env->exception_index = EXCP_EXCEPTION_EXIT; cpu_loop_exit(); } /* VFP support. We follow the convention used for VFP instrunctions: Single precition routines have a "s" suffix, double precision a "d" suffix. */ #define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void) #define VFP_BINOP(name) \ VFP_OP(name, s) \ { \ FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \ } \ VFP_OP(name, d) \ { \ FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \ } VFP_BINOP(add) VFP_BINOP(sub) VFP_BINOP(mul) VFP_BINOP(div) #undef VFP_BINOP #define VFP_HELPER(name) \ VFP_OP(name, s) \ { \ do_vfp_##name##s(); \ } \ VFP_OP(name, d) \ { \ do_vfp_##name##d(); \ } VFP_HELPER(abs) VFP_HELPER(sqrt) VFP_HELPER(cmp) VFP_HELPER(cmpe) #undef VFP_HELPER /* XXX: Will this do the right thing for NANs. Should invert the signbit without looking at the rest of the value. */ VFP_OP(neg, s) { FT0s = float32_chs(FT0s); } VFP_OP(neg, d) { FT0d = float64_chs(FT0d); } VFP_OP(F1_ld0, s) { union { uint32_t i; float32 s; } v; v.i = 0; FT1s = v.s; } VFP_OP(F1_ld0, d) { union { uint64_t i; float64 d; } v; v.i = 0; FT1d = v.d; } /* Helper routines to perform bitwise copies between float and int. */ static inline float32 vfp_itos(uint32_t i) { union { uint32_t i; float32 s; } v; v.i = i; return v.s; } static inline uint32_t vfp_stoi(float32 s) { union { uint32_t i; float32 s; } v; v.s = s; return v.i; } static inline float64 vfp_itod(uint64_t i) { union { uint64_t i; float64 d; } v; v.i = i; return v.d; } static inline uint64_t vfp_dtoi(float64 d) { union { uint64_t i; float64 d; } v; v.d = d; return v.i; } /* Integer to float conversion. */ VFP_OP(uito, s) { FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); } VFP_OP(uito, d) { FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); } VFP_OP(sito, s) { FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status); } VFP_OP(sito, d) { FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status); } /* Float to integer conversion. */ VFP_OP(toui, s) { FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status)); } VFP_OP(toui, d) { FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status)); } VFP_OP(tosi, s) { FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status)); } VFP_OP(tosi, d) { FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status)); } /* TODO: Set rounding mode properly. */ VFP_OP(touiz, s) { FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status)); } VFP_OP(touiz, d) { FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status)); } VFP_OP(tosiz, s) { FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status)); } VFP_OP(tosiz, d) { FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status)); } /* floating point conversion */ VFP_OP(fcvtd, s) { FT0d = float32_to_float64(FT0s, &env->vfp.fp_status); } VFP_OP(fcvts, d) { FT0s = float64_to_float32(FT0d, &env->vfp.fp_status); } /* VFP3 fixed point conversion. */ #define VFP_CONV_FIX(name, p, ftype, itype, sign) \ VFP_OP(name##to, p) \ { \ ftype tmp; \ tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \ &env->vfp.fp_status); \ FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \ } \ VFP_OP(to##name, p) \ { \ ftype tmp; \ tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \ FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \ &env->vfp.fp_status)); \ } VFP_CONV_FIX(sh, d, float64, int16, ) VFP_CONV_FIX(sl, d, float64, int32, ) VFP_CONV_FIX(uh, d, float64, uint16, u) VFP_CONV_FIX(ul, d, float64, uint32, u) VFP_CONV_FIX(sh, s, float32, int16, ) VFP_CONV_FIX(sl, s, float32, int32, ) VFP_CONV_FIX(uh, s, float32, uint16, u) VFP_CONV_FIX(ul, s, float32, uint32, u) /* Get and Put values from registers. */ VFP_OP(getreg_F0, d) { FT0d = *(float64 *)((char *) env + PARAM1); } VFP_OP(getreg_F0, s) { FT0s = *(float32 *)((char *) env + PARAM1); } VFP_OP(getreg_F1, d) { FT1d = *(float64 *)((char *) env + PARAM1); } VFP_OP(getreg_F1, s) { FT1s = *(float32 *)((char *) env + PARAM1); } VFP_OP(setreg_F0, d) { *(float64 *)((char *) env + PARAM1) = FT0d; } VFP_OP(setreg_F0, s) { *(float32 *)((char *) env + PARAM1) = FT0s; } void OPPROTO op_vfp_movl_T0_fpscr(void) { do_vfp_get_fpscr (); } void OPPROTO op_vfp_movl_T0_fpscr_flags(void) { T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28); } void OPPROTO op_vfp_movl_fpscr_T0(void) { do_vfp_set_fpscr(); } void OPPROTO op_vfp_movl_T0_xreg(void) { T0 = env->vfp.xregs[PARAM1]; } void OPPROTO op_vfp_movl_xreg_T0(void) { env->vfp.xregs[PARAM1] = T0; } /* Move between FT0s to T0 */ void OPPROTO op_vfp_mrs(void) { T0 = vfp_stoi(FT0s); } void OPPROTO op_vfp_msr(void) { FT0s = vfp_itos(T0); } /* Move between FT0d and {T0,T1} */ void OPPROTO op_vfp_mrrd(void) { CPU_DoubleU u; u.d = FT0d; T0 = u.l.lower; T1 = u.l.upper; } void OPPROTO op_vfp_mdrr(void) { CPU_DoubleU u; u.l.lower = T0; u.l.upper = T1; FT0d = u.d; } /* Load immediate. PARAM1 is the 32 most significant bits of the value. */ void OPPROTO op_vfp_fconstd(void) { CPU_DoubleU u; u.l.upper = PARAM1; u.l.lower = 0; FT0d = u.d; } void OPPROTO op_vfp_fconsts(void) { FT0s = vfp_itos(PARAM1); } /* Copy the most significant bit of T0 to all bits of T1. */ void OPPROTO op_signbit_T1_T0(void) { T1 = (int32_t)T0 >> 31; } void OPPROTO op_movl_cp_T0(void) { helper_set_cp(env, PARAM1, T0); FORCE_RET(); } void OPPROTO op_movl_T0_cp(void) { T0 = helper_get_cp(env, PARAM1); FORCE_RET(); } void OPPROTO op_movl_cp15_T0(void) { helper_set_cp15(env, PARAM1, T0); FORCE_RET(); } void OPPROTO op_movl_T0_cp15(void) { T0 = helper_get_cp15(env, PARAM1); FORCE_RET(); } /* Access to user mode registers from privileged modes. */ void OPPROTO op_movl_T0_user(void) { int regno = PARAM1; if (regno == 13) { T0 = env->banked_r13[0]; } else if (regno == 14) { T0 = env->banked_r14[0]; } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { T0 = env->usr_regs[regno - 8]; } else { T0 = env->regs[regno]; } FORCE_RET(); } void OPPROTO op_movl_user_T0(void) { int regno = PARAM1; if (regno == 13) { env->banked_r13[0] = T0; } else if (regno == 14) { env->banked_r14[0] = T0; } else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { env->usr_regs[regno - 8] = T0; } else { env->regs[regno] = T0; } FORCE_RET(); } /* ARMv6 Media instructions. */ /* Note that signed overflow is undefined in C. The following routines are careful to use unsigned types where modulo arithmetic is required. Failure to do so _will_ break on newer gcc. */ /* Signed saturating arithmetic. */ /* Perform 16-bit signed satruating addition. */ static inline uint16_t add16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a + b; if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed satruating addition. */ static inline uint8_t add8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } /* Perform 16-bit signed satruating subtraction. */ static inline uint16_t sub16_sat(uint16_t a, uint16_t b) { uint16_t res; res = a - b; if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { if (a & 0x8000) res = 0x8000; else res = 0x7fff; } return res; } /* Perform 8-bit signed satruating subtraction. */ static inline uint8_t sub8_sat(uint8_t a, uint8_t b) { uint8_t res; res = a - b; if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { if (a & 0x80) res = 0x80; else res = 0x7f; } return res; } #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); #define PFX q #include "op_addsub.h" /* Unsigned saturating arithmetic. */ static inline uint16_t add16_usat(uint16_t a, uint8_t b) { uint16_t res; res = a + b; if (res < a) res = 0xffff; return res; } static inline uint16_t sub16_usat(uint16_t a, uint8_t b) { if (a < b) return a - b; else return 0; } static inline uint8_t add8_usat(uint8_t a, uint8_t b) { uint8_t res; res = a + b; if (res < a) res = 0xff; return res; } static inline uint8_t sub8_usat(uint8_t a, uint8_t b) { if (a < b) return a - b; else return 0; } #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); #define PFX uq #include "op_addsub.h" /* Signed modulo arithmetic. */ #define SARITH16(a, b, n, op) do { \ int32_t sum; \ sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \ RESULT(sum, n, 16); \ if (sum >= 0) \ ge |= 3 << (n * 2); \ } while(0) #define SARITH8(a, b, n, op) do { \ int32_t sum; \ sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \ RESULT(sum, n, 8); \ if (sum >= 0) \ ge |= 1 << n; \ } while(0) #define ADD16(a, b, n) SARITH16(a, b, n, +) #define SUB16(a, b, n) SARITH16(a, b, n, -) #define ADD8(a, b, n) SARITH8(a, b, n, +) #define SUB8(a, b, n) SARITH8(a, b, n, -) #define PFX s #define ARITH_GE #include "op_addsub.h" /* Unsigned modulo arithmetic. */ #define ADD16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define ADD8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB16(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ RESULT(sum, n, 16); \ if ((sum >> 16) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define SUB8(a, b, n) do { \ uint32_t sum; \ sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ RESULT(sum, n, 8); \ if ((sum >> 8) == 0) \ ge |= 3 << (n * 2); \ } while(0) #define PFX u #define ARITH_GE #include "op_addsub.h" /* Halved signed arithmetic. */ #define ADD16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) #define PFX sh #include "op_addsub.h" /* Halved unsigned arithmetic. */ #define ADD16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define SUB16(a, b, n) \ RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) #define ADD8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define SUB8(a, b, n) \ RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) #define PFX uh #include "op_addsub.h" void OPPROTO op_pkhtb_T0_T1(void) { T0 = (T0 & 0xffff0000) | (T1 & 0xffff); } void OPPROTO op_pkhbt_T0_T1(void) { T0 = (T0 & 0xffff) | (T1 & 0xffff0000); } void OPPROTO op_rev_T0(void) { T0 = ((T0 & 0xff000000) >> 24) | ((T0 & 0x00ff0000) >> 8) | ((T0 & 0x0000ff00) << 8) | ((T0 & 0x000000ff) << 24); } void OPPROTO op_revh_T0(void) { T0 = (T0 >> 16) | (T0 << 16); } void OPPROTO op_rev16_T0(void) { T0 = ((T0 & 0xff000000) >> 8) | ((T0 & 0x00ff0000) << 8) | ((T0 & 0x0000ff00) >> 8) | ((T0 & 0x000000ff) << 8); } void OPPROTO op_revsh_T0(void) { T0 = (int16_t)( ((T0 & 0x0000ff00) >> 8) | ((T0 & 0x000000ff) << 8)); } void OPPROTO op_rbit_T0(void) { T0 = ((T0 & 0xff000000) >> 24) | ((T0 & 0x00ff0000) >> 8) | ((T0 & 0x0000ff00) << 8) | ((T0 & 0x000000ff) << 24); T0 = ((T0 & 0xf0f0f0f0) >> 4) | ((T0 & 0x0f0f0f0f) << 4); T0 = ((T0 & 0x88888888) >> 3) | ((T0 & 0x44444444) >> 1) | ((T0 & 0x22222222) << 1) | ((T0 & 0x11111111) << 3); } /* Swap low and high halfwords. */ void OPPROTO op_swap_half_T1(void) { T1 = (T1 >> 16) | (T1 << 16); FORCE_RET(); } /* Dual 16-bit signed multiply. */ void OPPROTO op_mul_dual_T0_T1(void) { int32_t low; int32_t high; low = (int32_t)(int16_t)T0 * (int32_t)(int16_t)T1; high = (((int32_t)T0) >> 16) * (((int32_t)T1) >> 16); T0 = low; T1 = high; } void OPPROTO op_sel_T0_T1(void) { uint32_t mask; uint32_t flags; flags = env->GE; mask = 0; if (flags & 1) mask |= 0xff; if (flags & 2) mask |= 0xff00; if (flags & 4) mask |= 0xff0000; if (flags & 8) mask |= 0xff000000; T0 = (T0 & mask) | (T1 & ~mask); FORCE_RET(); } void OPPROTO op_roundqd_T0_T1(void) { T0 = T1 + ((uint32_t)T0 >> 31); } /* Signed saturation. */ static inline uint32_t do_ssat(int32_t val, int shift) { int32_t top; uint32_t mask; shift = PARAM1; top = val >> shift; mask = (1u << shift) - 1; if (top > 0) { env->QF = 1; return mask; } else if (top < -1) { env->QF = 1; return ~mask; } return val; } /* Unsigned saturation. */ static inline uint32_t do_usat(int32_t val, int shift) { uint32_t max; shift = PARAM1; max = (1u << shift) - 1; if (val < 0) { env->QF = 1; return 0; } else if (val > max) { env->QF = 1; return max; } return val; } /* Signed saturate. */ void OPPROTO op_ssat_T1(void) { T0 = do_ssat(T0, PARAM1); FORCE_RET(); } /* Dual halfword signed saturate. */ void OPPROTO op_ssat16_T1(void) { uint32_t res; res = (uint16_t)do_ssat((int16_t)T0, PARAM1); res |= do_ssat(((int32_t)T0) >> 16, PARAM1) << 16; T0 = res; FORCE_RET(); } /* Unsigned saturate. */ void OPPROTO op_usat_T1(void) { T0 = do_usat(T0, PARAM1); FORCE_RET(); } /* Dual halfword unsigned saturate. */ void OPPROTO op_usat16_T1(void) { uint32_t res; res = (uint16_t)do_usat((int16_t)T0, PARAM1); res |= do_usat(((int32_t)T0) >> 16, PARAM1) << 16; T0 = res; FORCE_RET(); } /* Dual 16-bit add. */ static inline uint8_t do_usad(uint8_t a, uint8_t b) { if (a > b) return a - b; else return b - a; } /* Unsigned sum of absolute byte differences. */ void OPPROTO op_usad8_T0_T1(void) { uint32_t sum; sum = do_usad(T0, T1); sum += do_usad(T0 >> 8, T1 >> 8); sum += do_usad(T0 >> 16, T1 >>16); sum += do_usad(T0 >> 24, T1 >> 24); T0 = sum; } /* Thumb-2 instructions. */ /* Insert T1 into T0. Result goes in T1. */ void OPPROTO op_bfi_T1_T0(void) { int shift = PARAM1; uint32_t mask = PARAM2; uint32_t bits; bits = (T1 << shift) & mask; T1 = (T0 & ~mask) | bits; } /* Unsigned bitfield extract. */ void OPPROTO op_ubfx_T1(void) { uint32_t shift = PARAM1; uint32_t mask = PARAM2; T1 >>= shift; T1 &= mask; } /* Signed bitfield extract. */ void OPPROTO op_sbfx_T1(void) { uint32_t shift = PARAM1; uint32_t width = PARAM2; int32_t val; val = T1 << (32 - (shift + width)); T1 = val >> (32 - width); } void OPPROTO op_movtop_T0_im(void) { T0 = (T0 & 0xffff) | PARAM1; } /* Used by table branch instructions. */ void OPPROTO op_jmp_T0_im(void) { env->regs[15] = PARAM1 + (T0 << 1); } void OPPROTO op_set_condexec(void) { env->condexec_bits = PARAM1; } void OPPROTO op_sdivl_T0_T1(void) { int32_t num; int32_t den; num = T0; den = T1; if (den == 0) T0 = 0; else T0 = num / den; FORCE_RET(); } void OPPROTO op_udivl_T0_T1(void) { uint32_t num; uint32_t den; num = T0; den = T1; if (den == 0) T0 = 0; else T0 = num / den; FORCE_RET(); } void OPPROTO op_movl_T1_r13_banked(void) { T1 = helper_get_r13_banked(env, PARAM1); } void OPPROTO op_movl_r13_T1_banked(void) { helper_set_r13_banked(env, PARAM1, T1); } void OPPROTO op_v7m_mrs_T0(void) { T0 = helper_v7m_mrs(env, PARAM1); } void OPPROTO op_v7m_msr_T0(void) { helper_v7m_msr(env, PARAM1, T0); } void OPPROTO op_movl_T0_sp(void) { if (PARAM1 == env->v7m.current_sp) T0 = env->regs[13]; else T0 = env->v7m.other_sp; FORCE_RET(); } #include "op_neon.h" /* iwMMXt support */ #include "op_iwmmxt.c"