/*
 * ARM implementation of KVM hooks, 64 bit specific code
 *
 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>

#include <linux/kvm.h>

#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "hw/arm/arm.h"

static inline void set_feature(uint64_t *features, int feature)
{
    *features |= 1ULL << feature;
}

bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
{
    /* Identify the feature bits corresponding to the host CPU, and
     * fill out the ARMHostCPUClass fields accordingly. To do this
     * we have to create a scratch VM, create a single CPU inside it,
     * and then query that CPU for the relevant ID registers.
     * For AArch64 we currently don't care about ID registers at
     * all; we just want to know the CPU type.
     */
    int fdarray[3];
    uint64_t features = 0;
    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
     * we know these will only support creating one kind of guest CPU,
     * which is its preferred CPU type. Fortunately these old kernels
     * support only a very limited number of CPUs.
     */
    static const uint32_t cpus_to_try[] = {
        KVM_ARM_TARGET_AEM_V8,
        KVM_ARM_TARGET_FOUNDATION_V8,
        KVM_ARM_TARGET_CORTEX_A57,
        QEMU_KVM_ARM_TARGET_NONE
    };
    struct kvm_vcpu_init init;

    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
        return false;
    }

    ahcc->target = init.target;
    ahcc->dtb_compatible = "arm,arm-v8";

    kvm_arm_destroy_scratch_host_vcpu(fdarray);

   /* We can assume any KVM supporting CPU is at least a v8
     * with VFPv4+Neon; this in turn implies most of the other
     * feature bits.
     */
    set_feature(&features, ARM_FEATURE_V8);
    set_feature(&features, ARM_FEATURE_VFP4);
    set_feature(&features, ARM_FEATURE_NEON);
    set_feature(&features, ARM_FEATURE_AARCH64);

    ahcc->features = features;

    return true;
}

int kvm_arch_init_vcpu(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    struct kvm_vcpu_init init;
    int ret;

    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
        !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
        return -EINVAL;
    }

    init.target = cpu->kvm_target;
    memset(init.features, 0, sizeof(init.features));
    if (cpu->start_powered_off) {
        init.features[0] = 1 << KVM_ARM_VCPU_POWER_OFF;
    }
    ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);

    /* TODO : support for save/restore/reset of system regs via tuple list */

    return ret;
}

#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))

int kvm_arch_put_registers(CPUState *cs, int level)
{
    struct kvm_one_reg reg;
    uint64_t val;
    int i;
    int ret;

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.id = AARCH64_CORE_REG(regs.sp);
    reg.addr = (uintptr_t) &env->xregs[31];
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
    val = pstate_read(env);
    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(elr_el1);
    reg.addr = (uintptr_t) &env->elr_el1;
    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* TODO:
     * SP_EL1
     * SPSR[]
     * FP state
     * system registers
     */
    return ret;
}

int kvm_arch_get_registers(CPUState *cs)
{
    struct kvm_one_reg reg;
    uint64_t val;
    int i;
    int ret;

    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    for (i = 0; i < 31; i++) {
        reg.id = AARCH64_CORE_REG(regs.regs[i]);
        reg.addr = (uintptr_t) &env->xregs[i];
        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
        if (ret) {
            return ret;
        }
    }

    reg.id = AARCH64_CORE_REG(regs.sp);
    reg.addr = (uintptr_t) &env->xregs[31];
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(regs.pstate);
    reg.addr = (uintptr_t) &val;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }
    pstate_write(env, val);

    reg.id = AARCH64_CORE_REG(regs.pc);
    reg.addr = (uintptr_t) &env->pc;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    reg.id = AARCH64_CORE_REG(elr_el1);
    reg.addr = (uintptr_t) &env->elr_el1;
    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
    if (ret) {
        return ret;
    }

    /* TODO: other registers */
    return ret;
}

void kvm_arch_reset_vcpu(CPUState *cs)
{
}