/* * ARM implementation of KVM hooks, 64 bit specific code * * Copyright Mian-M. Hamayun 2013, Virtual Open Systems * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include <stdio.h> #include <sys/types.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <linux/kvm.h> #include "qemu-common.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_arm.h" #include "cpu.h" #include "internals.h" #include "hw/arm/arm.h" static inline void set_feature(uint64_t *features, int feature) { *features |= 1ULL << feature; } bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc) { /* Identify the feature bits corresponding to the host CPU, and * fill out the ARMHostCPUClass fields accordingly. To do this * we have to create a scratch VM, create a single CPU inside it, * and then query that CPU for the relevant ID registers. * For AArch64 we currently don't care about ID registers at * all; we just want to know the CPU type. */ int fdarray[3]; uint64_t features = 0; /* Old kernels may not know about the PREFERRED_TARGET ioctl: however * we know these will only support creating one kind of guest CPU, * which is its preferred CPU type. Fortunately these old kernels * support only a very limited number of CPUs. */ static const uint32_t cpus_to_try[] = { KVM_ARM_TARGET_AEM_V8, KVM_ARM_TARGET_FOUNDATION_V8, KVM_ARM_TARGET_CORTEX_A57, QEMU_KVM_ARM_TARGET_NONE }; struct kvm_vcpu_init init; if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { return false; } ahcc->target = init.target; ahcc->dtb_compatible = "arm,arm-v8"; kvm_arm_destroy_scratch_host_vcpu(fdarray); /* We can assume any KVM supporting CPU is at least a v8 * with VFPv4+Neon; this in turn implies most of the other * feature bits. */ set_feature(&features, ARM_FEATURE_V8); set_feature(&features, ARM_FEATURE_VFP4); set_feature(&features, ARM_FEATURE_NEON); set_feature(&features, ARM_FEATURE_AARCH64); ahcc->features = features; return true; } int kvm_arch_init_vcpu(CPUState *cs) { int ret; ARMCPU *cpu = ARM_CPU(cs); if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { fprintf(stderr, "KVM is not supported for this guest CPU type\n"); return -EINVAL; } /* Determine init features for this CPU */ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); if (cpu->start_powered_off) { cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { cpu->psci_version = 2; cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; } /* Do KVM_ARM_VCPU_INIT ioctl */ ret = kvm_arm_vcpu_init(cs); if (ret) { return ret; } /* TODO : support for save/restore/reset of system regs via tuple list */ return 0; } #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) int kvm_arch_put_registers(CPUState *cs, int level) { struct kvm_one_reg reg; uint64_t val; int i; int ret; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; for (i = 0; i < 31; i++) { reg.id = AARCH64_CORE_REG(regs.regs[i]); reg.addr = (uintptr_t) &env->xregs[i]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the * QEMU side we keep the current SP in xregs[31] as well. */ aarch64_save_sp(env, 1); reg.id = AARCH64_CORE_REG(regs.sp); reg.addr = (uintptr_t) &env->sp_el[0]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(sp_el1); reg.addr = (uintptr_t) &env->sp_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ val = pstate_read(env); reg.id = AARCH64_CORE_REG(regs.pstate); reg.addr = (uintptr_t) &val; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(regs.pc); reg.addr = (uintptr_t) &env->pc; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(elr_el1); reg.addr = (uintptr_t) &env->elr_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } for (i = 0; i < KVM_NR_SPSR; i++) { reg.id = AARCH64_CORE_REG(spsr[i]); reg.addr = (uintptr_t) &env->banked_spsr[i - 1]; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); if (ret) { return ret; } } /* TODO: * FP state * system registers */ return ret; } int kvm_arch_get_registers(CPUState *cs) { struct kvm_one_reg reg; uint64_t val; int i; int ret; ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; for (i = 0; i < 31; i++) { reg.id = AARCH64_CORE_REG(regs.regs[i]); reg.addr = (uintptr_t) &env->xregs[i]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } } reg.id = AARCH64_CORE_REG(regs.sp); reg.addr = (uintptr_t) &env->sp_el[0]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(sp_el1); reg.addr = (uintptr_t) &env->sp_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(regs.pstate); reg.addr = (uintptr_t) &val; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } pstate_write(env, val); /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the * QEMU side we keep the current SP in xregs[31] as well. */ aarch64_restore_sp(env, 1); reg.id = AARCH64_CORE_REG(regs.pc); reg.addr = (uintptr_t) &env->pc; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } reg.id = AARCH64_CORE_REG(elr_el1); reg.addr = (uintptr_t) &env->elr_el[1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } for (i = 0; i < KVM_NR_SPSR; i++) { reg.id = AARCH64_CORE_REG(spsr[i]); reg.addr = (uintptr_t) &env->banked_spsr[i - 1]; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); if (ret) { return ret; } } /* TODO: other registers */ return ret; } void kvm_arm_reset_vcpu(ARMCPU *cpu) { /* Re-init VCPU so that all registers are set to * their respective reset values. */ kvm_arm_vcpu_init(CPU(cpu)); }