/* * QEMU ARM CPU -- internal functions and types * * Copyright (c) 2014 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * * * This header defines functions, types, etc which need to be shared * between different source files within target-arm/ but which are * private to it and not required by the rest of QEMU. */ #ifndef TARGET_ARM_INTERNALS_H #define TARGET_ARM_INTERNALS_H /* register banks for CPU modes */ #define BANK_USRSYS 0 #define BANK_SVC 1 #define BANK_ABT 2 #define BANK_UND 3 #define BANK_IRQ 4 #define BANK_FIQ 5 #define BANK_HYP 6 #define BANK_MON 7 static inline bool excp_is_internal(int excp) { /* Return true if this exception number represents a QEMU-internal * exception that will not be passed to the guest. */ return excp == EXCP_INTERRUPT || excp == EXCP_HLT || excp == EXCP_DEBUG || excp == EXCP_HALTED || excp == EXCP_EXCEPTION_EXIT || excp == EXCP_KERNEL_TRAP || excp == EXCP_SEMIHOST || excp == EXCP_STREX; } /* Exception names for debug logging; note that not all of these * precisely correspond to architectural exceptions. */ static const char * const excnames[] = { [EXCP_UDEF] = "Undefined Instruction", [EXCP_SWI] = "SVC", [EXCP_PREFETCH_ABORT] = "Prefetch Abort", [EXCP_DATA_ABORT] = "Data Abort", [EXCP_IRQ] = "IRQ", [EXCP_FIQ] = "FIQ", [EXCP_BKPT] = "Breakpoint", [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", [EXCP_STREX] = "QEMU intercept of STREX", [EXCP_HVC] = "Hypervisor Call", [EXCP_HYP_TRAP] = "Hypervisor Trap", [EXCP_SMC] = "Secure Monitor Call", [EXCP_VIRQ] = "Virtual IRQ", [EXCP_VFIQ] = "Virtual FIQ", [EXCP_SEMIHOST] = "Semihosting call", }; static inline void arm_log_exception(int idx) { if (qemu_loglevel_mask(CPU_LOG_INT)) { const char *exc = NULL; if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { exc = excnames[idx]; } if (!exc) { exc = "unknown"; } qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); } } /* Scale factor for generic timers, ie number of ns per tick. * This gives a 62.5MHz timer. */ #define GTIMER_SCALE 16 /* * For AArch64, map a given EL to an index in the banked_spsr array. * Note that this mapping and the AArch32 mapping defined in bank_number() * must agree such that the AArch64<->AArch32 SPSRs have the architecturally * mandated mapping between each other. */ static inline unsigned int aarch64_banked_spsr_index(unsigned int el) { static const unsigned int map[4] = { [1] = BANK_SVC, /* EL1. */ [2] = BANK_HYP, /* EL2. */ [3] = BANK_MON, /* EL3. */ }; assert(el >= 1 && el <= 3); return map[el]; } int bank_number(int mode); void switch_mode(CPUARMState *, int); void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); void arm_translate_init(void); enum arm_fprounding { FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, FPROUNDING_ZERO, FPROUNDING_TIEAWAY, FPROUNDING_ODD }; int arm_rmode_to_sf(int rmode); static inline void aarch64_save_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->sp_el[el] = env->xregs[31]; } else { env->sp_el[0] = env->xregs[31]; } } static inline void aarch64_restore_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->xregs[31] = env->sp_el[el]; } else { env->xregs[31] = env->sp_el[0]; } } static inline void update_spsel(CPUARMState *env, uint32_t imm) { unsigned int cur_el = arm_current_el(env); /* Update PSTATE SPSel bit; this requires us to update the * working stack pointer in xregs[31]. */ if (!((imm ^ env->pstate) & PSTATE_SP)) { return; } aarch64_save_sp(env, cur_el); env->pstate = deposit32(env->pstate, 0, 1, imm); /* We rely on illegal updates to SPsel from EL0 to get trapped * at translation time. */ assert(cur_el >= 1 && cur_el <= 3); aarch64_restore_sp(env, cur_el); } /* * arm_pamax * @cpu: ARMCPU * * Returns the implementation defined bit-width of physical addresses. * The ARMv8 reference manuals refer to this as PAMax(). */ static inline unsigned int arm_pamax(ARMCPU *cpu) { static const unsigned int pamax_map[] = { [0] = 32, [1] = 36, [2] = 40, [3] = 42, [4] = 44, [5] = 48, }; unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4); /* id_aa64mmfr0 is a read-only register so values outside of the * supported mappings can be considered an implementation error. */ assert(parange < ARRAY_SIZE(pamax_map)); return pamax_map[parange]; } /* Return true if extended addresses are enabled. * This is always the case if our translation regime is 64 bit, * but depends on TTBCR.EAE for 32 bit. */ static inline bool extended_addresses_enabled(CPUARMState *env) { TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1]; return arm_el_is_aa64(env, 1) || (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE)); } /* Valid Syndrome Register EC field values */ enum arm_exception_class { EC_UNCATEGORIZED = 0x00, EC_WFX_TRAP = 0x01, EC_CP15RTTRAP = 0x03, EC_CP15RRTTRAP = 0x04, EC_CP14RTTRAP = 0x05, EC_CP14DTTRAP = 0x06, EC_ADVSIMDFPACCESSTRAP = 0x07, EC_FPIDTRAP = 0x08, EC_CP14RRTTRAP = 0x0c, EC_ILLEGALSTATE = 0x0e, EC_AA32_SVC = 0x11, EC_AA32_HVC = 0x12, EC_AA32_SMC = 0x13, EC_AA64_SVC = 0x15, EC_AA64_HVC = 0x16, EC_AA64_SMC = 0x17, EC_SYSTEMREGISTERTRAP = 0x18, EC_INSNABORT = 0x20, EC_INSNABORT_SAME_EL = 0x21, EC_PCALIGNMENT = 0x22, EC_DATAABORT = 0x24, EC_DATAABORT_SAME_EL = 0x25, EC_SPALIGNMENT = 0x26, EC_AA32_FPTRAP = 0x28, EC_AA64_FPTRAP = 0x2c, EC_SERROR = 0x2f, EC_BREAKPOINT = 0x30, EC_BREAKPOINT_SAME_EL = 0x31, EC_SOFTWARESTEP = 0x32, EC_SOFTWARESTEP_SAME_EL = 0x33, EC_WATCHPOINT = 0x34, EC_WATCHPOINT_SAME_EL = 0x35, EC_AA32_BKPT = 0x38, EC_VECTORCATCH = 0x3a, EC_AA64_BKPT = 0x3c, }; #define ARM_EL_EC_SHIFT 26 #define ARM_EL_IL_SHIFT 25 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) /* Utility functions for constructing various kinds of syndrome value. * Note that in general we follow the AArch64 syndrome values; in a * few cases the value in HSR for exceptions taken to AArch32 Hyp * mode differs slightly, so if we ever implemented Hyp mode then the * syndrome value would need some massaging on exception entry. * (One example of this is that AArch64 defaults to IL bit set for * exceptions which don't specifically indicate information about the * trapping instruction, whereas AArch32 defaults to IL bit clear.) */ static inline uint32_t syn_uncategorized(void) { return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; } static inline uint32_t syn_aa64_svc(uint32_t imm16) { return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa64_hvc(uint32_t imm16) { return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa64_smc(uint32_t imm16) { return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit) { return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_16bit ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa32_hvc(uint32_t imm16) { return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_smc(void) { return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL; } static inline uint32_t syn_aa64_bkpt(uint32_t imm16) { return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit) { return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_16bit ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, int crn, int crm, int rt, int isread) { return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_16bit) { return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_16bit) { return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_16bit) { return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_16bit) { return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit) { return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) | (is_16bit ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20); } static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) { return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (ea << 9) | (s1ptw << 7) | fsc; } static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw, int wnr, int fsc) { return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; } static inline uint32_t syn_swstep(int same_el, int isv, int ex) { return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (isv << 24) | (ex << 6) | 0x22; } static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr) { return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (cm << 8) | (wnr << 6) | 0x22; } static inline uint32_t syn_breakpoint(int same_el) { return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | ARM_EL_IL | 0x22; } static inline uint32_t syn_wfx(int cv, int cond, int ti) { return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) | (cv << 24) | (cond << 20) | ti; } /* Update a QEMU watchpoint based on the information the guest has set in the * DBGWCR_EL1 and DBGWVR_EL1 registers. */ void hw_watchpoint_update(ARMCPU *cpu, int n); /* Update the QEMU watchpoints for every guest watchpoint. This does a * complete delete-and-reinstate of the QEMU watchpoint list and so is * suitable for use after migration or on reset. */ void hw_watchpoint_update_all(ARMCPU *cpu); /* Update a QEMU breakpoint based on the information the guest has set in the * DBGBCR_EL1 and DBGBVR_EL1 registers. */ void hw_breakpoint_update(ARMCPU *cpu, int n); /* Update the QEMU breakpoints for every guest breakpoint. This does a * complete delete-and-reinstate of the QEMU breakpoint list and so is * suitable for use after migration or on reset. */ void hw_breakpoint_update_all(ARMCPU *cpu); /* Callback function for checking if a watchpoint should trigger. */ bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp); /* Callback function for when a watchpoint or breakpoint triggers. */ void arm_debug_excp_handler(CPUState *cs); #ifdef CONFIG_USER_ONLY static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type) { return false; } #else /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */ bool arm_is_psci_call(ARMCPU *cpu, int excp_type); /* Actually handle a PSCI call */ void arm_handle_psci_call(ARMCPU *cpu); #endif /** * ARMMMUFaultInfo: Information describing an ARM MMU Fault * @s2addr: Address that caused a fault at stage 2 * @stage2: True if we faulted at stage 2 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk */ typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; struct ARMMMUFaultInfo { target_ulong s2addr; bool stage2; bool s1ptw; }; /* Do a page table walk and add page to TLB if possible */ bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx, uint32_t *fsr, ARMMMUFaultInfo *fi); /* Return true if the stage 1 translation regime is using LPAE format page * tables */ bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx); /* Raise a data fault alignment exception for the specified virtual address */ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write, int is_user, uintptr_t retaddr); #endif