/* * QEMU ARM CPU -- internal functions and types * * Copyright (c) 2014 Linaro Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see * <http://www.gnu.org/licenses/gpl-2.0.html> * * This header defines functions, types, etc which need to be shared * between different source files within target-arm/ but which are * private to it and not required by the rest of QEMU. */ #ifndef TARGET_ARM_INTERNALS_H #define TARGET_ARM_INTERNALS_H static inline bool excp_is_internal(int excp) { /* Return true if this exception number represents a QEMU-internal * exception that will not be passed to the guest. */ return excp == EXCP_INTERRUPT || excp == EXCP_HLT || excp == EXCP_DEBUG || excp == EXCP_HALTED || excp == EXCP_EXCEPTION_EXIT || excp == EXCP_KERNEL_TRAP || excp == EXCP_STREX; } /* Exception names for debug logging; note that not all of these * precisely correspond to architectural exceptions. */ static const char * const excnames[] = { [EXCP_UDEF] = "Undefined Instruction", [EXCP_SWI] = "SVC", [EXCP_PREFETCH_ABORT] = "Prefetch Abort", [EXCP_DATA_ABORT] = "Data Abort", [EXCP_IRQ] = "IRQ", [EXCP_FIQ] = "FIQ", [EXCP_BKPT] = "Breakpoint", [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", [EXCP_STREX] = "QEMU intercept of STREX", }; static inline void arm_log_exception(int idx) { if (qemu_loglevel_mask(CPU_LOG_INT)) { const char *exc = NULL; if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { exc = excnames[idx]; } if (!exc) { exc = "unknown"; } qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); } } /* Scale factor for generic timers, ie number of ns per tick. * This gives a 62.5MHz timer. */ #define GTIMER_SCALE 16 /* * For AArch64, map a given EL to an index in the banked_spsr array. */ static inline unsigned int aarch64_banked_spsr_index(unsigned int el) { static const unsigned int map[4] = { [1] = 0, /* EL1. */ [2] = 6, /* EL2. */ [3] = 7, /* EL3. */ }; assert(el >= 1 && el <= 3); return map[el]; } int bank_number(int mode); void switch_mode(CPUARMState *, int); void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu); void arm_translate_init(void); enum arm_fprounding { FPROUNDING_TIEEVEN, FPROUNDING_POSINF, FPROUNDING_NEGINF, FPROUNDING_ZERO, FPROUNDING_TIEAWAY, FPROUNDING_ODD }; int arm_rmode_to_sf(int rmode); static inline void aarch64_save_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->sp_el[el] = env->xregs[31]; } else { env->sp_el[0] = env->xregs[31]; } } static inline void aarch64_restore_sp(CPUARMState *env, int el) { if (env->pstate & PSTATE_SP) { env->xregs[31] = env->sp_el[el]; } else { env->xregs[31] = env->sp_el[0]; } } static inline void update_spsel(CPUARMState *env, uint32_t imm) { unsigned int cur_el = arm_current_pl(env); /* Update PSTATE SPSel bit; this requires us to update the * working stack pointer in xregs[31]. */ if (!((imm ^ env->pstate) & PSTATE_SP)) { return; } aarch64_save_sp(env, cur_el); env->pstate = deposit32(env->pstate, 0, 1, imm); /* We rely on illegal updates to SPsel from EL0 to get trapped * at translation time. */ assert(cur_el >= 1 && cur_el <= 3); aarch64_restore_sp(env, cur_el); } /* Valid Syndrome Register EC field values */ enum arm_exception_class { EC_UNCATEGORIZED = 0x00, EC_WFX_TRAP = 0x01, EC_CP15RTTRAP = 0x03, EC_CP15RRTTRAP = 0x04, EC_CP14RTTRAP = 0x05, EC_CP14DTTRAP = 0x06, EC_ADVSIMDFPACCESSTRAP = 0x07, EC_FPIDTRAP = 0x08, EC_CP14RRTTRAP = 0x0c, EC_ILLEGALSTATE = 0x0e, EC_AA32_SVC = 0x11, EC_AA32_HVC = 0x12, EC_AA32_SMC = 0x13, EC_AA64_SVC = 0x15, EC_AA64_HVC = 0x16, EC_AA64_SMC = 0x17, EC_SYSTEMREGISTERTRAP = 0x18, EC_INSNABORT = 0x20, EC_INSNABORT_SAME_EL = 0x21, EC_PCALIGNMENT = 0x22, EC_DATAABORT = 0x24, EC_DATAABORT_SAME_EL = 0x25, EC_SPALIGNMENT = 0x26, EC_AA32_FPTRAP = 0x28, EC_AA64_FPTRAP = 0x2c, EC_SERROR = 0x2f, EC_BREAKPOINT = 0x30, EC_BREAKPOINT_SAME_EL = 0x31, EC_SOFTWARESTEP = 0x32, EC_SOFTWARESTEP_SAME_EL = 0x33, EC_WATCHPOINT = 0x34, EC_WATCHPOINT_SAME_EL = 0x35, EC_AA32_BKPT = 0x38, EC_VECTORCATCH = 0x3a, EC_AA64_BKPT = 0x3c, }; #define ARM_EL_EC_SHIFT 26 #define ARM_EL_IL_SHIFT 25 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT) /* Utility functions for constructing various kinds of syndrome value. * Note that in general we follow the AArch64 syndrome values; in a * few cases the value in HSR for exceptions taken to AArch32 Hyp * mode differs slightly, so if we ever implemented Hyp mode then the * syndrome value would need some massaging on exception entry. * (One example of this is that AArch64 defaults to IL bit set for * exceptions which don't specifically indicate information about the * trapping instruction, whereas AArch32 defaults to IL bit clear.) */ static inline uint32_t syn_uncategorized(void) { return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL; } static inline uint32_t syn_aa64_svc(uint32_t imm16) { return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb) { return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_thumb ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa64_bkpt(uint32_t imm16) { return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff); } static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb) { return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff) | (is_thumb ? 0 : ARM_EL_IL); } static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2, int crn, int crm, int rt, int isread) { return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_thumb) { return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT) | (is_thumb ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2, int crn, int crm, int rt, int isread, bool is_thumb) { return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT) | (is_thumb ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14) | (crn << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_thumb) { return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT) | (is_thumb ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm, int rt, int rt2, int isread, bool is_thumb) { return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT) | (is_thumb ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20) | (opc1 << 16) | (rt2 << 10) | (rt << 5) | (crm << 1) | isread; } static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb) { return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT) | (is_thumb ? 0 : ARM_EL_IL) | (cv << 24) | (cond << 20); } static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc) { return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (ea << 9) | (s1ptw << 7) | fsc; } static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw, int wnr, int fsc) { return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT) | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc; } #endif