/* * AArch64 specific helpers * * Copyright (c) 2013 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "cpu.h" #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" #include "sysemu/sysemu.h" #include "qemu/bitops.h" #include "internals.h" #include "qemu/crc32c.h" #include /* For crc32 */ /* C2.4.7 Multiply and divide */ /* special cases for 0 and LLONG_MIN are mandated by the standard */ uint64_t HELPER(udiv64)(uint64_t num, uint64_t den) { if (den == 0) { return 0; } return num / den; } int64_t HELPER(sdiv64)(int64_t num, int64_t den) { if (den == 0) { return 0; } if (num == LLONG_MIN && den == -1) { return LLONG_MIN; } return num / den; } uint64_t HELPER(clz64)(uint64_t x) { return clz64(x); } uint64_t HELPER(cls64)(uint64_t x) { return clrsb64(x); } uint32_t HELPER(cls32)(uint32_t x) { return clrsb32(x); } uint32_t HELPER(clz32)(uint32_t x) { return clz32(x); } uint64_t HELPER(rbit64)(uint64_t x) { /* assign the correct byte position */ x = bswap64(x); /* assign the correct nibble position */ x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4) | ((x & 0x0f0f0f0f0f0f0f0fULL) << 4); /* assign the correct bit position */ x = ((x & 0x8888888888888888ULL) >> 3) | ((x & 0x4444444444444444ULL) >> 1) | ((x & 0x2222222222222222ULL) << 1) | ((x & 0x1111111111111111ULL) << 3); return x; } /* Convert a softfloat float_relation_ (as returned by * the float*_compare functions) to the correct ARM * NZCV flag state. */ static inline uint32_t float_rel_to_flags(int res) { uint64_t flags; switch (res) { case float_relation_equal: flags = PSTATE_Z | PSTATE_C; break; case float_relation_less: flags = PSTATE_N; break; case float_relation_greater: flags = PSTATE_C; break; case float_relation_unordered: default: flags = PSTATE_C | PSTATE_V; break; } return flags; } uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status) { return float_rel_to_flags(float32_compare_quiet(x, y, fp_status)); } uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status) { return float_rel_to_flags(float32_compare(x, y, fp_status)); } uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status) { return float_rel_to_flags(float64_compare_quiet(x, y, fp_status)); } uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status) { return float_rel_to_flags(float64_compare(x, y, fp_status)); } float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp) { float_status *fpst = fpstp; if ((float32_is_zero(a) && float32_is_infinity(b)) || (float32_is_infinity(a) && float32_is_zero(b))) { /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ return make_float32((1U << 30) | ((float32_val(a) ^ float32_val(b)) & (1U << 31))); } return float32_mul(a, b, fpst); } float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; if ((float64_is_zero(a) && float64_is_infinity(b)) || (float64_is_infinity(a) && float64_is_zero(b))) { /* 2.0 with the sign bit set to sign(A) XOR sign(B) */ return make_float64((1ULL << 62) | ((float64_val(a) ^ float64_val(b)) & (1ULL << 63))); } return float64_mul(a, b, fpst); } uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices, uint32_t rn, uint32_t numregs) { /* Helper function for SIMD TBL and TBX. We have to do the table * lookup part for the 64 bits worth of indices we're passed in. * result is the initial results vector (either zeroes for TBL * or some guest values for TBX), rn the register number where * the table starts, and numregs the number of registers in the table. * We return the results of the lookups. */ int shift; for (shift = 0; shift < 64; shift += 8) { int index = extract64(indices, shift, 8); if (index < 16 * numregs) { /* Convert index (a byte offset into the virtual table * which is a series of 128-bit vectors concatenated) * into the correct vfp.regs[] element plus a bit offset * into that element, bearing in mind that the table * can wrap around from V31 to V0. */ int elt = (rn * 2 + (index >> 3)) % 64; int bitidx = (index & 7) * 8; uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8); result = deposit64(result, shift, 8, val); } } return result; } /* 64bit/double versions of the neon float compare functions */ uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; return -float64_eq_quiet(a, b, fpst); } uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; return -float64_le(b, a, fpst); } uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; return -float64_lt(b, a, fpst); } /* Reciprocal step and sqrt step. Note that unlike the A32/T32 * versions, these do a fully fused multiply-add or * multiply-add-and-halve. */ #define float32_two make_float32(0x40000000) #define float32_three make_float32(0x40400000) #define float32_one_point_five make_float32(0x3fc00000) #define float64_two make_float64(0x4000000000000000ULL) #define float64_three make_float64(0x4008000000000000ULL) #define float64_one_point_five make_float64(0x3FF8000000000000ULL) float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp) { float_status *fpst = fpstp; a = float32_chs(a); if ((float32_is_infinity(a) && float32_is_zero(b)) || (float32_is_infinity(b) && float32_is_zero(a))) { return float32_two; } return float32_muladd(a, b, float32_two, 0, fpst); } float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; a = float64_chs(a); if ((float64_is_infinity(a) && float64_is_zero(b)) || (float64_is_infinity(b) && float64_is_zero(a))) { return float64_two; } return float64_muladd(a, b, float64_two, 0, fpst); } float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp) { float_status *fpst = fpstp; a = float32_chs(a); if ((float32_is_infinity(a) && float32_is_zero(b)) || (float32_is_infinity(b) && float32_is_zero(a))) { return float32_one_point_five; } return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst); } float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp) { float_status *fpst = fpstp; a = float64_chs(a); if ((float64_is_infinity(a) && float64_is_zero(b)) || (float64_is_infinity(b) && float64_is_zero(a))) { return float64_one_point_five; } return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst); } /* Pairwise long add: add pairs of adjacent elements into * double-width elements in the result (eg _s8 is an 8x8->16 op) */ uint64_t HELPER(neon_addlp_s8)(uint64_t a) { uint64_t nsignmask = 0x0080008000800080ULL; uint64_t wsignmask = 0x8000800080008000ULL; uint64_t elementmask = 0x00ff00ff00ff00ffULL; uint64_t tmp1, tmp2; uint64_t res, signres; /* Extract odd elements, sign extend each to a 16 bit field */ tmp1 = a & elementmask; tmp1 ^= nsignmask; tmp1 |= wsignmask; tmp1 = (tmp1 - nsignmask) ^ wsignmask; /* Ditto for the even elements */ tmp2 = (a >> 8) & elementmask; tmp2 ^= nsignmask; tmp2 |= wsignmask; tmp2 = (tmp2 - nsignmask) ^ wsignmask; /* calculate the result by summing bits 0..14, 16..22, etc, * and then adjusting the sign bits 15, 23, etc manually. * This ensures the addition can't overflow the 16 bit field. */ signres = (tmp1 ^ tmp2) & wsignmask; res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask); res ^= signres; return res; } uint64_t HELPER(neon_addlp_u8)(uint64_t a) { uint64_t tmp; tmp = a & 0x00ff00ff00ff00ffULL; tmp += (a >> 8) & 0x00ff00ff00ff00ffULL; return tmp; } uint64_t HELPER(neon_addlp_s16)(uint64_t a) { int32_t reslo, reshi; reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16); reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48); return (uint32_t)reslo | (((uint64_t)reshi) << 32); } uint64_t HELPER(neon_addlp_u16)(uint64_t a) { uint64_t tmp; tmp = a & 0x0000ffff0000ffffULL; tmp += (a >> 16) & 0x0000ffff0000ffffULL; return tmp; } /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */ float32 HELPER(frecpx_f32)(float32 a, void *fpstp) { float_status *fpst = fpstp; uint32_t val32, sbit; int32_t exp; if (float32_is_any_nan(a)) { float32 nan = a; if (float32_is_signaling_nan(a)) { float_raise(float_flag_invalid, fpst); nan = float32_maybe_silence_nan(a); } if (fpst->default_nan_mode) { nan = float32_default_nan; } return nan; } val32 = float32_val(a); sbit = 0x80000000ULL & val32; exp = extract32(val32, 23, 8); if (exp == 0) { return make_float32(sbit | (0xfe << 23)); } else { return make_float32(sbit | (~exp & 0xff) << 23); } } float64 HELPER(frecpx_f64)(float64 a, void *fpstp) { float_status *fpst = fpstp; uint64_t val64, sbit; int64_t exp; if (float64_is_any_nan(a)) { float64 nan = a; if (float64_is_signaling_nan(a)) { float_raise(float_flag_invalid, fpst); nan = float64_maybe_silence_nan(a); } if (fpst->default_nan_mode) { nan = float64_default_nan; } return nan; } val64 = float64_val(a); sbit = 0x8000000000000000ULL & val64; exp = extract64(float64_val(a), 52, 11); if (exp == 0) { return make_float64(sbit | (0x7feULL << 52)); } else { return make_float64(sbit | (~exp & 0x7ffULL) << 52); } } float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env) { /* Von Neumann rounding is implemented by using round-to-zero * and then setting the LSB of the result if Inexact was raised. */ float32 r; float_status *fpst = &env->vfp.fp_status; float_status tstat = *fpst; int exflags; set_float_rounding_mode(float_round_to_zero, &tstat); set_float_exception_flags(0, &tstat); r = float64_to_float32(a, &tstat); r = float32_maybe_silence_nan(r); exflags = get_float_exception_flags(&tstat); if (exflags & float_flag_inexact) { r = make_float32(float32_val(r) | 1); } exflags |= get_float_exception_flags(fpst); set_float_exception_flags(exflags, fpst); return r; } /* 64-bit versions of the CRC helpers. Note that although the operation * (and the prototypes of crc32c() and crc32() mean that only the bottom * 32 bits of the accumulator and result are used, we pass and return * uint64_t for convenience of the generated code. Unlike the 32-bit * instruction set versions, val may genuinely have 64 bits of data in it. * The upper bytes of val (above the number specified by 'bytes') must have * been zeroed out by the caller. */ uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes) { uint8_t buf[8]; stq_le_p(buf, val); /* zlib crc32 converts the accumulator and output to one's complement. */ return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; } uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes) { uint8_t buf[8]; stq_le_p(buf, val); /* Linux crc32c converts the output to one's complement. */ return crc32c(acc, buf, bytes) ^ 0xffffffff; } #if !defined(CONFIG_USER_ONLY) /* Handle a CPU exception. */ void aarch64_cpu_do_interrupt(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; unsigned int new_el = arm_excp_target_el(cs, cs->exception_index); target_ulong addr = env->cp15.vbar_el[new_el]; unsigned int new_mode = aarch64_pstate_mode(new_el, true); int i; if (arm_current_pl(env) < new_el) { if (env->aarch64) { addr += 0x400; } else { addr += 0x600; } } else if (pstate_read(env) & PSTATE_SP) { addr += 0x200; } arm_log_exception(cs->exception_index); qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_pl(env)); if (qemu_loglevel_mask(CPU_LOG_INT) && !excp_is_internal(cs->exception_index)) { qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n", env->exception.syndrome); } if (arm_is_psci_call(cpu, cs->exception_index)) { arm_handle_psci_call(cpu); qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); return; } switch (cs->exception_index) { case EXCP_PREFETCH_ABORT: case EXCP_DATA_ABORT: env->cp15.far_el[new_el] = env->exception.vaddress; qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", env->cp15.far_el[new_el]); /* fall through */ case EXCP_BKPT: case EXCP_UDEF: case EXCP_SWI: case EXCP_HVC: case EXCP_HYP_TRAP: case EXCP_SMC: env->cp15.esr_el[new_el] = env->exception.syndrome; break; case EXCP_IRQ: case EXCP_VIRQ: addr += 0x80; break; case EXCP_FIQ: case EXCP_VFIQ: addr += 0x100; break; default: cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); } if (is_a64(env)) { env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); aarch64_save_sp(env, arm_current_pl(env)); env->elr_el[new_el] = env->pc; } else { env->banked_spsr[0] = cpsr_read(env); if (!env->thumb) { env->cp15.esr_el[new_el] |= 1 << 25; } env->elr_el[new_el] = env->regs[15]; for (i = 0; i < 15; i++) { env->xregs[i] = env->regs[i]; } env->condexec_bits = 0; } pstate_write(env, PSTATE_DAIF | new_mode); env->aarch64 = 1; aarch64_restore_sp(env, new_el); env->pc = addr; cs->interrupt_request |= CPU_INTERRUPT_EXITTB; } #endif