/* * Alpha emulation cpu micro-operations helpers for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "exec.h" #include "host-utils.h" #include "softfloat.h" #include "helper.h" /*****************************************************************************/ /* Exceptions processing helpers */ void helper_excp (int excp, int error) { env->exception_index = excp; env->error_code = error; cpu_loop_exit(); } uint64_t helper_load_pcc (void) { /* XXX: TODO */ return 0; } uint64_t helper_load_fpcr (void) { return cpu_alpha_load_fpcr (env); } void helper_store_fpcr (uint64_t val) { cpu_alpha_store_fpcr (env, val); } static spinlock_t intr_cpu_lock = SPIN_LOCK_UNLOCKED; uint64_t helper_rs(void) { uint64_t tmp; spin_lock(&intr_cpu_lock); tmp = env->intr_flag; env->intr_flag = 1; spin_unlock(&intr_cpu_lock); return tmp; } uint64_t helper_rc(void) { uint64_t tmp; spin_lock(&intr_cpu_lock); tmp = env->intr_flag; env->intr_flag = 0; spin_unlock(&intr_cpu_lock); return tmp; } uint64_t helper_addqv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 += op2; if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_addlv (uint64_t op1, uint64_t op2) { uint64_t tmp = op1; op1 = (uint32_t)(op1 + op2); if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return op1; } uint64_t helper_subqv (uint64_t op1, uint64_t op2) { uint64_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return res; } uint64_t helper_sublv (uint64_t op1, uint64_t op2) { uint32_t res; res = op1 - op2; if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return res; } uint64_t helper_mullv (uint64_t op1, uint64_t op2) { int64_t res = (int64_t)op1 * (int64_t)op2; if (unlikely((int32_t)res != res)) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return (int64_t)((int32_t)res); } uint64_t helper_mulqv (uint64_t op1, uint64_t op2) { uint64_t tl, th; muls64(&tl, &th, op1, op2); /* If th != 0 && th != -1, then we had an overflow */ if (unlikely((th + 1) > 1)) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } return tl; } uint64_t helper_umulh (uint64_t op1, uint64_t op2) { uint64_t tl, th; mulu64(&tl, &th, op1, op2); return th; } uint64_t helper_ctpop (uint64_t arg) { return ctpop64(arg); } uint64_t helper_ctlz (uint64_t arg) { return clz64(arg); } uint64_t helper_cttz (uint64_t arg) { return ctz64(arg); } static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) { uint64_t mask; mask = 0; mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; return op & ~mask; } uint64_t helper_zap(uint64_t val, uint64_t mask) { return byte_zap(val, mask); } uint64_t helper_zapnot(uint64_t val, uint64_t mask) { return byte_zap(val, ~mask); } uint64_t helper_cmpbge (uint64_t op1, uint64_t op2) { uint8_t opa, opb, res; int i; res = 0; for (i = 0; i < 8; i++) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); if (opa >= opb) res |= 1 << i; } return res; } uint64_t helper_minub8 (uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_minsb8 (uint64_t op1, uint64_t op2) { uint64_t res = 0; int8_t opa, opb; uint8_t opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_minuw4 (uint64_t op1, uint64_t op2) { uint64_t res = 0; uint16_t opa, opb, opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_minsw4 (uint64_t op1, uint64_t op2) { uint64_t res = 0; int16_t opa, opb; uint16_t opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa < opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_maxub8 (uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2) { uint64_t res = 0; int8_t opa, opb; uint8_t opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 8); } return res; } uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2) { uint64_t res = 0; uint16_t opa, opb, opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2) { uint64_t res = 0; int16_t opa, opb; uint16_t opr; int i; for (i = 0; i < 4; ++i) { opa = op1 >> (i * 16); opb = op2 >> (i * 16); opr = opa > opb ? opa : opb; res |= (uint64_t)opr << (i * 16); } return res; } uint64_t helper_perr (uint64_t op1, uint64_t op2) { uint64_t res = 0; uint8_t opa, opb, opr; int i; for (i = 0; i < 8; ++i) { opa = op1 >> (i * 8); opb = op2 >> (i * 8); if (opa >= opb) opr = opa - opb; else opr = opb - opa; res += opr; } return res; } uint64_t helper_pklb (uint64_t op1) { return (op1 & 0xff) | ((op1 >> 24) & 0xff00); } uint64_t helper_pkwb (uint64_t op1) { return ((op1 & 0xff) | ((op1 >> 8) & 0xff00) | ((op1 >> 16) & 0xff0000) | ((op1 >> 24) & 0xff000000)); } uint64_t helper_unpkbl (uint64_t op1) { return (op1 & 0xff) | ((op1 & 0xff00) << 24); } uint64_t helper_unpkbw (uint64_t op1) { return ((op1 & 0xff) | ((op1 & 0xff00) << 8) | ((op1 & 0xff0000) << 16) | ((op1 & 0xff000000) << 24)); } /* Floating point helpers */ /* F floating (VAX) */ static inline uint64_t float32_to_f(float32 fa) { uint64_t r, exp, mant, sig; CPU_FloatU a; a.f = fa; sig = ((uint64_t)a.l & 0x80000000) << 32; exp = (a.l >> 23) & 0xff; mant = ((uint64_t)a.l & 0x007fffff) << 29; if (exp == 255) { /* NaN or infinity */ r = 1; /* VAX dirty zero */ } else if (exp == 0) { if (mant == 0) { /* Zero */ r = 0; } else { /* Denormalized */ r = sig | ((exp + 1) << 52) | mant; } } else { if (exp >= 253) { /* Overflow */ r = 1; /* VAX dirty zero */ } else { r = sig | ((exp + 2) << 52); } } return r; } static inline float32 f_to_float32(uint64_t a) { uint32_t exp, mant_sig; CPU_FloatU r; exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); if (unlikely(!exp && mant_sig)) { /* Reserved operands / Dirty zero */ helper_excp(EXCP_OPCDEC, 0); } if (exp < 3) { /* Underflow */ r.l = 0; } else { r.l = ((exp - 2) << 23) | mant_sig; } return r.f; } uint32_t helper_f_to_memory (uint64_t a) { uint32_t r; r = (a & 0x00001fffe0000000ull) >> 13; r |= (a & 0x07ffe00000000000ull) >> 45; r |= (a & 0xc000000000000000ull) >> 48; return r; } uint64_t helper_memory_to_f (uint32_t a) { uint64_t r; r = ((uint64_t)(a & 0x0000c000)) << 48; r |= ((uint64_t)(a & 0x003fffff)) << 45; r |= ((uint64_t)(a & 0xffff0000)) << 13; if (!(a & 0x00004000)) r |= 0x7ll << 59; return r; } uint64_t helper_addf (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = f_to_float32(a); fb = f_to_float32(b); fr = float32_add(fa, fb, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_subf (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = f_to_float32(a); fb = f_to_float32(b); fr = float32_sub(fa, fb, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_mulf (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = f_to_float32(a); fb = f_to_float32(b); fr = float32_mul(fa, fb, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_divf (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = f_to_float32(a); fb = f_to_float32(b); fr = float32_div(fa, fb, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_sqrtf (uint64_t t) { float32 ft, fr; ft = f_to_float32(t); fr = float32_sqrt(ft, &FP_STATUS); return float32_to_f(fr); } /* G floating (VAX) */ static inline uint64_t float64_to_g(float64 fa) { uint64_t r, exp, mant, sig; CPU_DoubleU a; a.d = fa; sig = a.ll & 0x8000000000000000ull; exp = (a.ll >> 52) & 0x7ff; mant = a.ll & 0x000fffffffffffffull; if (exp == 2047) { /* NaN or infinity */ r = 1; /* VAX dirty zero */ } else if (exp == 0) { if (mant == 0) { /* Zero */ r = 0; } else { /* Denormalized */ r = sig | ((exp + 1) << 52) | mant; } } else { if (exp >= 2045) { /* Overflow */ r = 1; /* VAX dirty zero */ } else { r = sig | ((exp + 2) << 52); } } return r; } static inline float64 g_to_float64(uint64_t a) { uint64_t exp, mant_sig; CPU_DoubleU r; exp = (a >> 52) & 0x7ff; mant_sig = a & 0x800fffffffffffffull; if (!exp && mant_sig) { /* Reserved operands / Dirty zero */ helper_excp(EXCP_OPCDEC, 0); } if (exp < 3) { /* Underflow */ r.ll = 0; } else { r.ll = ((exp - 2) << 52) | mant_sig; } return r.d; } uint64_t helper_g_to_memory (uint64_t a) { uint64_t r; r = (a & 0x000000000000ffffull) << 48; r |= (a & 0x00000000ffff0000ull) << 16; r |= (a & 0x0000ffff00000000ull) >> 16; r |= (a & 0xffff000000000000ull) >> 48; return r; } uint64_t helper_memory_to_g (uint64_t a) { uint64_t r; r = (a & 0x000000000000ffffull) << 48; r |= (a & 0x00000000ffff0000ull) << 16; r |= (a & 0x0000ffff00000000ull) >> 16; r |= (a & 0xffff000000000000ull) >> 48; return r; } uint64_t helper_addg (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = g_to_float64(a); fb = g_to_float64(b); fr = float64_add(fa, fb, &FP_STATUS); return float64_to_g(fr); } uint64_t helper_subg (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = g_to_float64(a); fb = g_to_float64(b); fr = float64_sub(fa, fb, &FP_STATUS); return float64_to_g(fr); } uint64_t helper_mulg (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = g_to_float64(a); fb = g_to_float64(b); fr = float64_mul(fa, fb, &FP_STATUS); return float64_to_g(fr); } uint64_t helper_divg (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = g_to_float64(a); fb = g_to_float64(b); fr = float64_div(fa, fb, &FP_STATUS); return float64_to_g(fr); } uint64_t helper_sqrtg (uint64_t a) { float64 fa, fr; fa = g_to_float64(a); fr = float64_sqrt(fa, &FP_STATUS); return float64_to_g(fr); } /* S floating (single) */ static inline uint64_t float32_to_s(float32 fa) { CPU_FloatU a; uint64_t r; a.f = fa; r = (((uint64_t)(a.l & 0xc0000000)) << 32) | (((uint64_t)(a.l & 0x3fffffff)) << 29); if (((a.l & 0x7f800000) != 0x7f800000) && (!(a.l & 0x40000000))) r |= 0x7ll << 59; return r; } static inline float32 s_to_float32(uint64_t a) { CPU_FloatU r; r.l = ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff); return r.f; } uint32_t helper_s_to_memory (uint64_t a) { /* Memory format is the same as float32 */ float32 fa = s_to_float32(a); return *(uint32_t*)(&fa); } uint64_t helper_memory_to_s (uint32_t a) { /* Memory format is the same as float32 */ return float32_to_s(*(float32*)(&a)); } uint64_t helper_adds (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = s_to_float32(a); fb = s_to_float32(b); fr = float32_add(fa, fb, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_subs (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = s_to_float32(a); fb = s_to_float32(b); fr = float32_sub(fa, fb, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_muls (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = s_to_float32(a); fb = s_to_float32(b); fr = float32_mul(fa, fb, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_divs (uint64_t a, uint64_t b) { float32 fa, fb, fr; fa = s_to_float32(a); fb = s_to_float32(b); fr = float32_div(fa, fb, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_sqrts (uint64_t a) { float32 fa, fr; fa = s_to_float32(a); fr = float32_sqrt(fa, &FP_STATUS); return float32_to_s(fr); } /* T floating (double) */ static inline float64 t_to_float64(uint64_t a) { /* Memory format is the same as float64 */ CPU_DoubleU r; r.ll = a; return r.d; } static inline uint64_t float64_to_t(float64 fa) { /* Memory format is the same as float64 */ CPU_DoubleU r; r.d = fa; return r.ll; } uint64_t helper_addt (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = t_to_float64(a); fb = t_to_float64(b); fr = float64_add(fa, fb, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_subt (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = t_to_float64(a); fb = t_to_float64(b); fr = float64_sub(fa, fb, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_mult (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = t_to_float64(a); fb = t_to_float64(b); fr = float64_mul(fa, fb, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_divt (uint64_t a, uint64_t b) { float64 fa, fb, fr; fa = t_to_float64(a); fb = t_to_float64(b); fr = float64_div(fa, fb, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_sqrtt (uint64_t a) { float64 fa, fr; fa = t_to_float64(a); fr = float64_sqrt(fa, &FP_STATUS); return float64_to_t(fr); } /* Sign copy */ uint64_t helper_cpys(uint64_t a, uint64_t b) { return (a & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL); } uint64_t helper_cpysn(uint64_t a, uint64_t b) { return ((~a) & 0x8000000000000000ULL) | (b & ~0x8000000000000000ULL); } uint64_t helper_cpyse(uint64_t a, uint64_t b) { return (a & 0xFFF0000000000000ULL) | (b & ~0xFFF0000000000000ULL); } /* Comparisons */ uint64_t helper_cmptun (uint64_t a, uint64_t b) { float64 fa, fb; fa = t_to_float64(a); fb = t_to_float64(b); if (float64_is_nan(fa) || float64_is_nan(fb)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmpteq(uint64_t a, uint64_t b) { float64 fa, fb; fa = t_to_float64(a); fb = t_to_float64(b); if (float64_eq(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmptle(uint64_t a, uint64_t b) { float64 fa, fb; fa = t_to_float64(a); fb = t_to_float64(b); if (float64_le(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmptlt(uint64_t a, uint64_t b) { float64 fa, fb; fa = t_to_float64(a); fb = t_to_float64(b); if (float64_lt(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmpgeq(uint64_t a, uint64_t b) { float64 fa, fb; fa = g_to_float64(a); fb = g_to_float64(b); if (float64_eq(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmpgle(uint64_t a, uint64_t b) { float64 fa, fb; fa = g_to_float64(a); fb = g_to_float64(b); if (float64_le(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } uint64_t helper_cmpglt(uint64_t a, uint64_t b) { float64 fa, fb; fa = g_to_float64(a); fb = g_to_float64(b); if (float64_lt(fa, fb, &FP_STATUS)) return 0x4000000000000000ULL; else return 0; } /* Floating point format conversion */ uint64_t helper_cvtts (uint64_t a) { float64 fa; float32 fr; fa = t_to_float64(a); fr = float64_to_float32(fa, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_cvtst (uint64_t a) { float32 fa; float64 fr; fa = s_to_float32(a); fr = float32_to_float64(fa, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_cvtqs (uint64_t a) { float32 fr = int64_to_float32(a, &FP_STATUS); return float32_to_s(fr); } uint64_t helper_cvttq (uint64_t a) { float64 fa = t_to_float64(a); return float64_to_int64_round_to_zero(fa, &FP_STATUS); } uint64_t helper_cvtqt (uint64_t a) { float64 fr = int64_to_float64(a, &FP_STATUS); return float64_to_t(fr); } uint64_t helper_cvtqf (uint64_t a) { float32 fr = int64_to_float32(a, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_cvtgf (uint64_t a) { float64 fa; float32 fr; fa = g_to_float64(a); fr = float64_to_float32(fa, &FP_STATUS); return float32_to_f(fr); } uint64_t helper_cvtgq (uint64_t a) { float64 fa = g_to_float64(a); return float64_to_int64_round_to_zero(fa, &FP_STATUS); } uint64_t helper_cvtqg (uint64_t a) { float64 fr; fr = int64_to_float64(a, &FP_STATUS); return float64_to_g(fr); } uint64_t helper_cvtlq (uint64_t a) { return (int64_t)((int32_t)((a >> 32) | ((a >> 29) & 0x3FFFFFFF))); } static inline uint64_t __helper_cvtql(uint64_t a, int s, int v) { uint64_t r; r = ((uint64_t)(a & 0xC0000000)) << 32; r |= ((uint64_t)(a & 0x7FFFFFFF)) << 29; if (v && (int64_t)((int32_t)r) != (int64_t)r) { helper_excp(EXCP_ARITH, EXCP_ARITH_OVERFLOW); } if (s) { /* TODO */ } return r; } uint64_t helper_cvtql (uint64_t a) { return __helper_cvtql(a, 0, 0); } uint64_t helper_cvtqlv (uint64_t a) { return __helper_cvtql(a, 0, 1); } uint64_t helper_cvtqlsv (uint64_t a) { return __helper_cvtql(a, 1, 1); } /* PALcode support special instructions */ #if !defined (CONFIG_USER_ONLY) void helper_hw_rei (void) { env->pc = env->ipr[IPR_EXC_ADDR] & ~3; env->ipr[IPR_EXC_ADDR] = env->ipr[IPR_EXC_ADDR] & 1; /* XXX: re-enable interrupts and memory mapping */ } void helper_hw_ret (uint64_t a) { env->pc = a & ~3; env->ipr[IPR_EXC_ADDR] = a & 1; /* XXX: re-enable interrupts and memory mapping */ } uint64_t helper_mfpr (int iprn, uint64_t val) { uint64_t tmp; if (cpu_alpha_mfpr(env, iprn, &tmp) == 0) val = tmp; return val; } void helper_mtpr (int iprn, uint64_t val) { cpu_alpha_mtpr(env, iprn, val, NULL); } void helper_set_alt_mode (void) { env->saved_mode = env->ps & 0xC; env->ps = (env->ps & ~0xC) | (env->ipr[IPR_ALT_MODE] & 0xC); } void helper_restore_mode (void) { env->ps = (env->ps & ~0xC) | env->saved_mode; } #endif /*****************************************************************************/ /* Softmmu support */ #if !defined (CONFIG_USER_ONLY) /* XXX: the two following helpers are pure hacks. * Hopefully, we emulate the PALcode, then we should never see * HW_LD / HW_ST instructions. */ uint64_t helper_ld_virt_to_phys (uint64_t virtaddr) { uint64_t tlb_addr, physaddr; int index, mmu_idx; void *retaddr; mmu_idx = cpu_mmu_index(env); index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_read; if ((virtaddr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(virtaddr, 0, mmu_idx, retaddr); goto redo; } return physaddr; } uint64_t helper_st_virt_to_phys (uint64_t virtaddr) { uint64_t tlb_addr, physaddr; int index, mmu_idx; void *retaddr; mmu_idx = cpu_mmu_index(env); index = (virtaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_write; if ((virtaddr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = virtaddr + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(virtaddr, 1, mmu_idx, retaddr); goto redo; } return physaddr; } void helper_ldl_raw(uint64_t t0, uint64_t t1) { ldl_raw(t1, t0); } void helper_ldq_raw(uint64_t t0, uint64_t t1) { ldq_raw(t1, t0); } void helper_ldl_l_raw(uint64_t t0, uint64_t t1) { env->lock = t1; ldl_raw(t1, t0); } void helper_ldq_l_raw(uint64_t t0, uint64_t t1) { env->lock = t1; ldl_raw(t1, t0); } void helper_ldl_kernel(uint64_t t0, uint64_t t1) { ldl_kernel(t1, t0); } void helper_ldq_kernel(uint64_t t0, uint64_t t1) { ldq_kernel(t1, t0); } void helper_ldl_data(uint64_t t0, uint64_t t1) { ldl_data(t1, t0); } void helper_ldq_data(uint64_t t0, uint64_t t1) { ldq_data(t1, t0); } void helper_stl_raw(uint64_t t0, uint64_t t1) { stl_raw(t1, t0); } void helper_stq_raw(uint64_t t0, uint64_t t1) { stq_raw(t1, t0); } uint64_t helper_stl_c_raw(uint64_t t0, uint64_t t1) { uint64_t ret; if (t1 == env->lock) { stl_raw(t1, t0); ret = 0; } else ret = 1; env->lock = 1; return ret; } uint64_t helper_stq_c_raw(uint64_t t0, uint64_t t1) { uint64_t ret; if (t1 == env->lock) { stq_raw(t1, t0); ret = 0; } else ret = 1; env->lock = 1; return ret; } #define MMUSUFFIX _mmu #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (!likely(ret == 0)) { if (likely(retaddr)) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (likely(tb)) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } /* Exception index and error code are already set */ cpu_loop_exit(); } env = saved_env; } #endif