/* * Alpha emulation cpu helpers for qemu. * * Copyright (c) 2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include <stdint.h> #include <stdlib.h> #include <stdio.h> #include "cpu.h" #include "fpu/softfloat.h" #include "exec/helper-proto.h" uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env) { uint64_t r = 0; uint8_t t; t = env->fpcr_exc_status; if (t) { r = FPCR_SUM; if (t & float_flag_invalid) { r |= FPCR_INV; } if (t & float_flag_divbyzero) { r |= FPCR_DZE; } if (t & float_flag_overflow) { r |= FPCR_OVF; } if (t & float_flag_underflow) { r |= FPCR_UNF; } if (t & float_flag_inexact) { r |= FPCR_INE; } } t = env->fpcr_exc_mask; if (t & float_flag_invalid) { r |= FPCR_INVD; } if (t & float_flag_divbyzero) { r |= FPCR_DZED; } if (t & float_flag_overflow) { r |= FPCR_OVFD; } if (t & float_flag_underflow) { r |= FPCR_UNFD; } if (t & float_flag_inexact) { r |= FPCR_INED; } switch (env->fpcr_dyn_round) { case float_round_nearest_even: r |= FPCR_DYN_NORMAL; break; case float_round_down: r |= FPCR_DYN_MINUS; break; case float_round_up: r |= FPCR_DYN_PLUS; break; case float_round_to_zero: r |= FPCR_DYN_CHOPPED; break; } if (env->fp_status.flush_inputs_to_zero) { r |= FPCR_DNZ; } if (env->fpcr_dnod) { r |= FPCR_DNOD; } if (env->fpcr_undz) { r |= FPCR_UNDZ; } return r; } void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val) { uint8_t t; t = 0; if (val & FPCR_INV) { t |= float_flag_invalid; } if (val & FPCR_DZE) { t |= float_flag_divbyzero; } if (val & FPCR_OVF) { t |= float_flag_overflow; } if (val & FPCR_UNF) { t |= float_flag_underflow; } if (val & FPCR_INE) { t |= float_flag_inexact; } env->fpcr_exc_status = t; t = 0; if (val & FPCR_INVD) { t |= float_flag_invalid; } if (val & FPCR_DZED) { t |= float_flag_divbyzero; } if (val & FPCR_OVFD) { t |= float_flag_overflow; } if (val & FPCR_UNFD) { t |= float_flag_underflow; } if (val & FPCR_INED) { t |= float_flag_inexact; } env->fpcr_exc_mask = t; switch (val & FPCR_DYN_MASK) { case FPCR_DYN_CHOPPED: t = float_round_to_zero; break; case FPCR_DYN_MINUS: t = float_round_down; break; case FPCR_DYN_NORMAL: t = float_round_nearest_even; break; case FPCR_DYN_PLUS: t = float_round_up; break; } env->fpcr_dyn_round = t; env->fpcr_dnod = (val & FPCR_DNOD) != 0; env->fpcr_undz = (val & FPCR_UNDZ) != 0; env->fpcr_flush_to_zero = env->fpcr_dnod & env->fpcr_undz; env->fp_status.flush_inputs_to_zero = (val & FPCR_DNZ) != 0; } uint64_t helper_load_fpcr(CPUAlphaState *env) { return cpu_alpha_load_fpcr(env); } void helper_store_fpcr(CPUAlphaState *env, uint64_t val) { cpu_alpha_store_fpcr(env, val); } #if defined(CONFIG_USER_ONLY) int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw, int mmu_idx) { AlphaCPU *cpu = ALPHA_CPU(cs); cs->exception_index = EXCP_MMFAULT; cpu->env.trap_arg0 = address; return 1; } #else void swap_shadow_regs(CPUAlphaState *env) { uint64_t i0, i1, i2, i3, i4, i5, i6, i7; i0 = env->ir[8]; i1 = env->ir[9]; i2 = env->ir[10]; i3 = env->ir[11]; i4 = env->ir[12]; i5 = env->ir[13]; i6 = env->ir[14]; i7 = env->ir[25]; env->ir[8] = env->shadow[0]; env->ir[9] = env->shadow[1]; env->ir[10] = env->shadow[2]; env->ir[11] = env->shadow[3]; env->ir[12] = env->shadow[4]; env->ir[13] = env->shadow[5]; env->ir[14] = env->shadow[6]; env->ir[25] = env->shadow[7]; env->shadow[0] = i0; env->shadow[1] = i1; env->shadow[2] = i2; env->shadow[3] = i3; env->shadow[4] = i4; env->shadow[5] = i5; env->shadow[6] = i6; env->shadow[7] = i7; } /* Returns the OSF/1 entMM failure indication, or -1 on success. */ static int get_physical_address(CPUAlphaState *env, target_ulong addr, int prot_need, int mmu_idx, target_ulong *pphys, int *pprot) { CPUState *cs = CPU(alpha_env_get_cpu(env)); target_long saddr = addr; target_ulong phys = 0; target_ulong L1pte, L2pte, L3pte; target_ulong pt, index; int prot = 0; int ret = MM_K_ACV; /* Ensure that the virtual address is properly sign-extended from the last implemented virtual address bit. */ if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) { goto exit; } /* Translate the superpage. */ /* ??? When we do more than emulate Unix PALcode, we'll need to determine which KSEG is actually active. */ if (saddr < 0 && ((saddr >> 41) & 3) == 2) { /* User-space cannot access KSEG addresses. */ if (mmu_idx != MMU_KERNEL_IDX) { goto exit; } /* For the benefit of the Typhoon chipset, move bit 40 to bit 43. We would not do this if the 48-bit KSEG is enabled. */ phys = saddr & ((1ull << 40) - 1); phys |= (saddr & (1ull << 40)) << 3; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; ret = -1; goto exit; } /* Interpret the page table exactly like PALcode does. */ pt = env->ptbr; /* L1 page table read. */ index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff; L1pte = ldq_phys(cs->as, pt + index*8); if (unlikely((L1pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } if (unlikely((L1pte & PTE_KRE) == 0)) { goto exit; } pt = L1pte >> 32 << TARGET_PAGE_BITS; /* L2 page table read. */ index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff; L2pte = ldq_phys(cs->as, pt + index*8); if (unlikely((L2pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } if (unlikely((L2pte & PTE_KRE) == 0)) { goto exit; } pt = L2pte >> 32 << TARGET_PAGE_BITS; /* L3 page table read. */ index = (addr >> TARGET_PAGE_BITS) & 0x3ff; L3pte = ldq_phys(cs->as, pt + index*8); phys = L3pte >> 32 << TARGET_PAGE_BITS; if (unlikely((L3pte & PTE_VALID) == 0)) { ret = MM_K_TNV; goto exit; } #if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4 # error page bits out of date #endif /* Check access violations. */ if (L3pte & (PTE_KRE << mmu_idx)) { prot |= PAGE_READ | PAGE_EXEC; } if (L3pte & (PTE_KWE << mmu_idx)) { prot |= PAGE_WRITE; } if (unlikely((prot & prot_need) == 0 && prot_need)) { goto exit; } /* Check fault-on-operation violations. */ prot &= ~(L3pte >> 1); ret = -1; if (unlikely((prot & prot_need) == 0)) { ret = (prot_need & PAGE_EXEC ? MM_K_FOE : prot_need & PAGE_WRITE ? MM_K_FOW : prot_need & PAGE_READ ? MM_K_FOR : -1); } exit: *pphys = phys; *pprot = prot; return ret; } hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { AlphaCPU *cpu = ALPHA_CPU(cs); target_ulong phys; int prot, fail; fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot); return (fail >= 0 ? -1 : phys); } int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int rw, int mmu_idx) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; target_ulong phys; int prot, fail; fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot); if (unlikely(fail >= 0)) { cs->exception_index = EXCP_MMFAULT; env->trap_arg0 = addr; env->trap_arg1 = fail; env->trap_arg2 = (rw == 2 ? -1 : rw); return 1; } tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK, prot, mmu_idx, TARGET_PAGE_SIZE); return 0; } #endif /* USER_ONLY */ void alpha_cpu_do_interrupt(CPUState *cs) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int i = cs->exception_index; if (qemu_loglevel_mask(CPU_LOG_INT)) { static int count; const char *name = "<unknown>"; switch (i) { case EXCP_RESET: name = "reset"; break; case EXCP_MCHK: name = "mchk"; break; case EXCP_SMP_INTERRUPT: name = "smp_interrupt"; break; case EXCP_CLK_INTERRUPT: name = "clk_interrupt"; break; case EXCP_DEV_INTERRUPT: name = "dev_interrupt"; break; case EXCP_MMFAULT: name = "mmfault"; break; case EXCP_UNALIGN: name = "unalign"; break; case EXCP_OPCDEC: name = "opcdec"; break; case EXCP_ARITH: name = "arith"; break; case EXCP_FEN: name = "fen"; break; case EXCP_CALL_PAL: name = "call_pal"; break; case EXCP_STL_C: name = "stl_c"; break; case EXCP_STQ_C: name = "stq_c"; break; } qemu_log("INT %6d: %s(%#x) pc=%016" PRIx64 " sp=%016" PRIx64 "\n", ++count, name, env->error_code, env->pc, env->ir[IR_SP]); } cs->exception_index = -1; #if !defined(CONFIG_USER_ONLY) switch (i) { case EXCP_RESET: i = 0x0000; break; case EXCP_MCHK: i = 0x0080; break; case EXCP_SMP_INTERRUPT: i = 0x0100; break; case EXCP_CLK_INTERRUPT: i = 0x0180; break; case EXCP_DEV_INTERRUPT: i = 0x0200; break; case EXCP_MMFAULT: i = 0x0280; break; case EXCP_UNALIGN: i = 0x0300; break; case EXCP_OPCDEC: i = 0x0380; break; case EXCP_ARITH: i = 0x0400; break; case EXCP_FEN: i = 0x0480; break; case EXCP_CALL_PAL: i = env->error_code; /* There are 64 entry points for both privileged and unprivileged, with bit 0x80 indicating unprivileged. Each entry point gets 64 bytes to do its job. */ if (i & 0x80) { i = 0x2000 + (i - 0x80) * 64; } else { i = 0x1000 + i * 64; } break; default: cpu_abort(cs, "Unhandled CPU exception"); } /* Remember where the exception happened. Emulate real hardware in that the low bit of the PC indicates PALmode. */ env->exc_addr = env->pc | env->pal_mode; /* Continue execution at the PALcode entry point. */ env->pc = env->palbr + i; /* Switch to PALmode. */ if (!env->pal_mode) { env->pal_mode = 1; swap_shadow_regs(env); } #endif /* !USER_ONLY */ } bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request) { AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int idx = -1; /* We never take interrupts while in PALmode. */ if (env->pal_mode) { return false; } /* Fall through the switch, collecting the highest priority interrupt that isn't masked by the processor status IPL. */ /* ??? This hard-codes the OSF/1 interrupt levels. */ switch (env->ps & PS_INT_MASK) { case 0 ... 3: if (interrupt_request & CPU_INTERRUPT_HARD) { idx = EXCP_DEV_INTERRUPT; } /* FALLTHRU */ case 4: if (interrupt_request & CPU_INTERRUPT_TIMER) { idx = EXCP_CLK_INTERRUPT; } /* FALLTHRU */ case 5: if (interrupt_request & CPU_INTERRUPT_SMP) { idx = EXCP_SMP_INTERRUPT; } /* FALLTHRU */ case 6: if (interrupt_request & CPU_INTERRUPT_MCHK) { idx = EXCP_MCHK; } } if (idx >= 0) { cs->exception_index = idx; env->error_code = 0; alpha_cpu_do_interrupt(cs); return true; } return false; } void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { static const char *linux_reg_names[] = { "v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ", "t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ", "a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ", "t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero", }; AlphaCPU *cpu = ALPHA_CPU(cs); CPUAlphaState *env = &cpu->env; int i; cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n", env->pc, env->ps); for (i = 0; i < 31; i++) { cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx " ", i, linux_reg_names[i], env->ir[i]); if ((i % 3) == 2) cpu_fprintf(f, "\n"); } cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n", env->lock_addr, env->lock_value); for (i = 0; i < 31; i++) { cpu_fprintf(f, "FIR%02d " TARGET_FMT_lx " ", i, *((uint64_t *)(&env->fir[i]))); if ((i % 3) == 2) cpu_fprintf(f, "\n"); } cpu_fprintf(f, "\n"); } /* This should only be called from translate, via gen_excp. We expect that ENV->PC has already been updated. */ void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error) { AlphaCPU *cpu = alpha_env_get_cpu(env); CPUState *cs = CPU(cpu); cs->exception_index = excp; env->error_code = error; cpu_loop_exit(cs); } /* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr, int excp, int error) { AlphaCPU *cpu = alpha_env_get_cpu(env); CPUState *cs = CPU(cpu); cs->exception_index = excp; env->error_code = error; if (retaddr) { cpu_restore_state(cs, retaddr); } cpu_loop_exit(cs); } void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr, int exc, uint64_t mask) { env->trap_arg0 = exc; env->trap_arg1 = mask; dynamic_excp(env, retaddr, EXCP_ARITH, 0); }