/* * Physical memory management * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qapi/error.h" #include "exec/memory.h" #include "qapi/visitor.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "qemu/qemu-print.h" #include "qom/object.h" #include "trace.h" #include "exec/memory-internal.h" #include "exec/ram_addr.h" #include "sysemu/kvm.h" #include "sysemu/runstate.h" #include "sysemu/tcg.h" #include "qemu/accel.h" #include "hw/boards.h" #include "migration/vmstate.h" //#define DEBUG_UNASSIGNED static unsigned memory_region_transaction_depth; static bool memory_region_update_pending; static bool ioeventfd_update_pending; unsigned int global_dirty_tracking; static QTAILQ_HEAD(, MemoryListener) memory_listeners = QTAILQ_HEAD_INITIALIZER(memory_listeners); static QTAILQ_HEAD(, AddressSpace) address_spaces = QTAILQ_HEAD_INITIALIZER(address_spaces); static GHashTable *flat_views; typedef struct AddrRange AddrRange; /* * Note that signed integers are needed for negative offsetting in aliases * (large MemoryRegion::alias_offset). */ struct AddrRange { Int128 start; Int128 size; }; static AddrRange addrrange_make(Int128 start, Int128 size) { return (AddrRange) { start, size }; } static bool addrrange_equal(AddrRange r1, AddrRange r2) { return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size); } static Int128 addrrange_end(AddrRange r) { return int128_add(r.start, r.size); } static AddrRange addrrange_shift(AddrRange range, Int128 delta) { int128_addto(&range.start, delta); return range; } static bool addrrange_contains(AddrRange range, Int128 addr) { return int128_ge(addr, range.start) && int128_lt(addr, addrrange_end(range)); } static bool addrrange_intersects(AddrRange r1, AddrRange r2) { return addrrange_contains(r1, r2.start) || addrrange_contains(r2, r1.start); } static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2) { Int128 start = int128_max(r1.start, r2.start); Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2)); return addrrange_make(start, int128_sub(end, start)); } enum ListenerDirection { Forward, Reverse }; #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \ do { \ MemoryListener *_listener; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, &memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener, ##_args); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \ if (_listener->_callback) { \ _listener->_callback(_listener, ##_args); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \ do { \ MemoryListener *_listener; \ \ switch (_direction) { \ case Forward: \ QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section, ##_args); \ } \ } \ break; \ case Reverse: \ QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \ if (_listener->_callback) { \ _listener->_callback(_listener, _section, ##_args); \ } \ } \ break; \ default: \ abort(); \ } \ } while (0) /* No need to ref/unref .mr, the FlatRange keeps it alive. */ #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \ do { \ MemoryRegionSection mrs = section_from_flat_range(fr, \ address_space_to_flatview(as)); \ MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \ } while(0) struct CoalescedMemoryRange { AddrRange addr; QTAILQ_ENTRY(CoalescedMemoryRange) link; }; struct MemoryRegionIoeventfd { AddrRange addr; bool match_data; uint64_t data; EventNotifier *e; }; static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a, MemoryRegionIoeventfd *b) { if (int128_lt(a->addr.start, b->addr.start)) { return true; } else if (int128_gt(a->addr.start, b->addr.start)) { return false; } else if (int128_lt(a->addr.size, b->addr.size)) { return true; } else if (int128_gt(a->addr.size, b->addr.size)) { return false; } else if (a->match_data < b->match_data) { return true; } else if (a->match_data > b->match_data) { return false; } else if (a->match_data) { if (a->data < b->data) { return true; } else if (a->data > b->data) { return false; } } if (a->e < b->e) { return true; } else if (a->e > b->e) { return false; } return false; } static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a, MemoryRegionIoeventfd *b) { if (int128_eq(a->addr.start, b->addr.start) && (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) || (int128_eq(a->addr.size, b->addr.size) && (a->match_data == b->match_data) && ((a->match_data && (a->data == b->data)) || !a->match_data) && (a->e == b->e)))) return true; return false; } /* Range of memory in the global map. Addresses are absolute. */ struct FlatRange { MemoryRegion *mr; hwaddr offset_in_region; AddrRange addr; uint8_t dirty_log_mask; bool romd_mode; bool readonly; bool nonvolatile; }; #define FOR_EACH_FLAT_RANGE(var, view) \ for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var) static inline MemoryRegionSection section_from_flat_range(FlatRange *fr, FlatView *fv) { return (MemoryRegionSection) { .mr = fr->mr, .fv = fv, .offset_within_region = fr->offset_in_region, .size = fr->addr.size, .offset_within_address_space = int128_get64(fr->addr.start), .readonly = fr->readonly, .nonvolatile = fr->nonvolatile, }; } static bool flatrange_equal(FlatRange *a, FlatRange *b) { return a->mr == b->mr && addrrange_equal(a->addr, b->addr) && a->offset_in_region == b->offset_in_region && a->romd_mode == b->romd_mode && a->readonly == b->readonly && a->nonvolatile == b->nonvolatile; } static FlatView *flatview_new(MemoryRegion *mr_root) { FlatView *view; view = g_new0(FlatView, 1); view->ref = 1; view->root = mr_root; memory_region_ref(mr_root); trace_flatview_new(view, mr_root); return view; } /* Insert a range into a given position. Caller is responsible for maintaining * sorting order. */ static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range) { if (view->nr == view->nr_allocated) { view->nr_allocated = MAX(2 * view->nr, 10); view->ranges = g_realloc(view->ranges, view->nr_allocated * sizeof(*view->ranges)); } memmove(view->ranges + pos + 1, view->ranges + pos, (view->nr - pos) * sizeof(FlatRange)); view->ranges[pos] = *range; memory_region_ref(range->mr); ++view->nr; } static void flatview_destroy(FlatView *view) { int i; trace_flatview_destroy(view, view->root); if (view->dispatch) { address_space_dispatch_free(view->dispatch); } for (i = 0; i < view->nr; i++) { memory_region_unref(view->ranges[i].mr); } g_free(view->ranges); memory_region_unref(view->root); g_free(view); } static bool flatview_ref(FlatView *view) { return qatomic_fetch_inc_nonzero(&view->ref) > 0; } void flatview_unref(FlatView *view) { if (qatomic_fetch_dec(&view->ref) == 1) { trace_flatview_destroy_rcu(view, view->root); assert(view->root); call_rcu(view, flatview_destroy, rcu); } } static bool can_merge(FlatRange *r1, FlatRange *r2) { return int128_eq(addrrange_end(r1->addr), r2->addr.start) && r1->mr == r2->mr && int128_eq(int128_add(int128_make64(r1->offset_in_region), r1->addr.size), int128_make64(r2->offset_in_region)) && r1->dirty_log_mask == r2->dirty_log_mask && r1->romd_mode == r2->romd_mode && r1->readonly == r2->readonly && r1->nonvolatile == r2->nonvolatile; } /* Attempt to simplify a view by merging adjacent ranges */ static void flatview_simplify(FlatView *view) { unsigned i, j, k; i = 0; while (i < view->nr) { j = i + 1; while (j < view->nr && can_merge(&view->ranges[j-1], &view->ranges[j])) { int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size); ++j; } ++i; for (k = i; k < j; k++) { memory_region_unref(view->ranges[k].mr); } memmove(&view->ranges[i], &view->ranges[j], (view->nr - j) * sizeof(view->ranges[j])); view->nr -= j - i; } } static bool memory_region_big_endian(MemoryRegion *mr) { #ifdef TARGET_WORDS_BIGENDIAN return mr->ops->endianness != DEVICE_LITTLE_ENDIAN; #else return mr->ops->endianness == DEVICE_BIG_ENDIAN; #endif } static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op) { if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) { switch (op & MO_SIZE) { case MO_8: break; case MO_16: *data = bswap16(*data); break; case MO_32: *data = bswap32(*data); break; case MO_64: *data = bswap64(*data); break; default: g_assert_not_reached(); } } } static inline void memory_region_shift_read_access(uint64_t *value, signed shift, uint64_t mask, uint64_t tmp) { if (shift >= 0) { *value |= (tmp & mask) << shift; } else { *value |= (tmp & mask) >> -shift; } } static inline uint64_t memory_region_shift_write_access(uint64_t *value, signed shift, uint64_t mask) { uint64_t tmp; if (shift >= 0) { tmp = (*value >> shift) & mask; } else { tmp = (*value << -shift) & mask; } return tmp; } static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset) { MemoryRegion *root; hwaddr abs_addr = offset; abs_addr += mr->addr; for (root = mr; root->container; ) { root = root->container; abs_addr += root->addr; } return abs_addr; } static int get_cpu_index(void) { if (current_cpu) { return current_cpu->cpu_index; } return -1; } static MemTxResult memory_region_read_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp; tmp = mr->ops->read(mr->opaque, addr, size); if (mr->subpage) { trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, memory_region_name(mr)); } memory_region_shift_read_access(value, shift, mask, tmp); return MEMTX_OK; } static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = 0; MemTxResult r; r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs); if (mr->subpage) { trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size); } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) { hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size, memory_region_name(mr)); } memory_region_shift_read_access(value, shift, mask, tmp); return r; } static MemTxResult memory_region_write_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); if (mr->subpage) { trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, memory_region_name(mr)); } mr->ops->write(mr->opaque, addr, tmp, size); return MEMTX_OK; } static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs) { uint64_t tmp = memory_region_shift_write_access(value, shift, mask); if (mr->subpage) { trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size); } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) { hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr); trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size, memory_region_name(mr)); } return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs); } static MemTxResult access_with_adjusted_size(hwaddr addr, uint64_t *value, unsigned size, unsigned access_size_min, unsigned access_size_max, MemTxResult (*access_fn) (MemoryRegion *mr, hwaddr addr, uint64_t *value, unsigned size, signed shift, uint64_t mask, MemTxAttrs attrs), MemoryRegion *mr, MemTxAttrs attrs) { uint64_t access_mask; unsigned access_size; unsigned i; MemTxResult r = MEMTX_OK; if (!access_size_min) { access_size_min = 1; } if (!access_size_max) { access_size_max = 4; } /* FIXME: support unaligned access? */ access_size = MAX(MIN(size, access_size_max), access_size_min); access_mask = MAKE_64BIT_MASK(0, access_size * 8); if (memory_region_big_endian(mr)) { for (i = 0; i < size; i += access_size) { r |= access_fn(mr, addr + i, value, access_size, (size - access_size - i) * 8, access_mask, attrs); } } else { for (i = 0; i < size; i += access_size) { r |= access_fn(mr, addr + i, value, access_size, i * 8, access_mask, attrs); } } return r; } static AddressSpace *memory_region_to_address_space(MemoryRegion *mr) { AddressSpace *as; while (mr->container) { mr = mr->container; } QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { if (mr == as->root) { return as; } } return NULL; } /* Render a memory region into the global view. Ranges in @view obscure * ranges in @mr. */ static void render_memory_region(FlatView *view, MemoryRegion *mr, Int128 base, AddrRange clip, bool readonly, bool nonvolatile) { MemoryRegion *subregion; unsigned i; hwaddr offset_in_region; Int128 remain; Int128 now; FlatRange fr; AddrRange tmp; if (!mr->enabled) { return; } int128_addto(&base, int128_make64(mr->addr)); readonly |= mr->readonly; nonvolatile |= mr->nonvolatile; tmp = addrrange_make(base, mr->size); if (!addrrange_intersects(tmp, clip)) { return; } clip = addrrange_intersection(tmp, clip); if (mr->alias) { int128_subfrom(&base, int128_make64(mr->alias->addr)); int128_subfrom(&base, int128_make64(mr->alias_offset)); render_memory_region(view, mr->alias, base, clip, readonly, nonvolatile); return; } /* Render subregions in priority order. */ QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) { render_memory_region(view, subregion, base, clip, readonly, nonvolatile); } if (!mr->terminates) { return; } offset_in_region = int128_get64(int128_sub(clip.start, base)); base = clip.start; remain = clip.size; fr.mr = mr; fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr); fr.romd_mode = mr->romd_mode; fr.readonly = readonly; fr.nonvolatile = nonvolatile; /* Render the region itself into any gaps left by the current view. */ for (i = 0; i < view->nr && int128_nz(remain); ++i) { if (int128_ge(base, addrrange_end(view->ranges[i].addr))) { continue; } if (int128_lt(base, view->ranges[i].addr.start)) { now = int128_min(remain, int128_sub(view->ranges[i].addr.start, base)); fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, now); flatview_insert(view, i, &fr); ++i; int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } now = int128_sub(int128_min(int128_add(base, remain), addrrange_end(view->ranges[i].addr)), base); int128_addto(&base, now); offset_in_region += int128_get64(now); int128_subfrom(&remain, now); } if (int128_nz(remain)) { fr.offset_in_region = offset_in_region; fr.addr = addrrange_make(base, remain); flatview_insert(view, i, &fr); } } void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque) { FlatRange *fr; assert(fv); assert(cb); FOR_EACH_FLAT_RANGE(fr, fv) { if (cb(fr->addr.start, fr->addr.size, fr->mr, fr->offset_in_region, opaque)) { break; } } } static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr) { while (mr->enabled) { if (mr->alias) { if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) { /* The alias is included in its entirety. Use it as * the "real" root, so that we can share more FlatViews. */ mr = mr->alias; continue; } } else if (!mr->terminates) { unsigned int found = 0; MemoryRegion *child, *next = NULL; QTAILQ_FOREACH(child, &mr->subregions, subregions_link) { if (child->enabled) { if (++found > 1) { next = NULL; break; } if (!child->addr && int128_ge(mr->size, child->size)) { /* A child is included in its entirety. If it's the only * enabled one, use it in the hope of finding an alias down the * way. This will also let us share FlatViews. */ next = child; } } } if (found == 0) { return NULL; } if (next) { mr = next; continue; } } return mr; } return NULL; } /* Render a memory topology into a list of disjoint absolute ranges. */ static FlatView *generate_memory_topology(MemoryRegion *mr) { int i; FlatView *view; view = flatview_new(mr); if (mr) { render_memory_region(view, mr, int128_zero(), addrrange_make(int128_zero(), int128_2_64()), false, false); } flatview_simplify(view); view->dispatch = address_space_dispatch_new(view); for (i = 0; i < view->nr; i++) { MemoryRegionSection mrs = section_from_flat_range(&view->ranges[i], view); flatview_add_to_dispatch(view, &mrs); } address_space_dispatch_compact(view->dispatch); g_hash_table_replace(flat_views, mr, view); return view; } static void address_space_add_del_ioeventfds(AddressSpace *as, MemoryRegionIoeventfd *fds_new, unsigned fds_new_nb, MemoryRegionIoeventfd *fds_old, unsigned fds_old_nb) { unsigned iold, inew; MemoryRegionIoeventfd *fd; MemoryRegionSection section; /* Generate a symmetric difference of the old and new fd sets, adding * and deleting as necessary. */ iold = inew = 0; while (iold < fds_old_nb || inew < fds_new_nb) { if (iold < fds_old_nb && (inew == fds_new_nb || memory_region_ioeventfd_before(&fds_old[iold], &fds_new[inew]))) { fd = &fds_old[iold]; section = (MemoryRegionSection) { .fv = address_space_to_flatview(as), .offset_within_address_space = int128_get64(fd->addr.start), .size = fd->addr.size, }; MEMORY_LISTENER_CALL(as, eventfd_del, Forward, §ion, fd->match_data, fd->data, fd->e); ++iold; } else if (inew < fds_new_nb && (iold == fds_old_nb || memory_region_ioeventfd_before(&fds_new[inew], &fds_old[iold]))) { fd = &fds_new[inew]; section = (MemoryRegionSection) { .fv = address_space_to_flatview(as), .offset_within_address_space = int128_get64(fd->addr.start), .size = fd->addr.size, }; MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, §ion, fd->match_data, fd->data, fd->e); ++inew; } else { ++iold; ++inew; } } } FlatView *address_space_get_flatview(AddressSpace *as) { FlatView *view; RCU_READ_LOCK_GUARD(); do { view = address_space_to_flatview(as); /* If somebody has replaced as->current_map concurrently, * flatview_ref returns false. */ } while (!flatview_ref(view)); return view; } static void address_space_update_ioeventfds(AddressSpace *as) { FlatView *view; FlatRange *fr; unsigned ioeventfd_nb = 0; unsigned ioeventfd_max; MemoryRegionIoeventfd *ioeventfds; AddrRange tmp; unsigned i; /* * It is likely that the number of ioeventfds hasn't changed much, so use * the previous size as the starting value, with some headroom to avoid * gratuitous reallocations. */ ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4); ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max); view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { for (i = 0; i < fr->mr->ioeventfd_nb; ++i) { tmp = addrrange_shift(fr->mr->ioeventfds[i].addr, int128_sub(fr->addr.start, int128_make64(fr->offset_in_region))); if (addrrange_intersects(fr->addr, tmp)) { ++ioeventfd_nb; if (ioeventfd_nb > ioeventfd_max) { ioeventfd_max = MAX(ioeventfd_max * 2, 4); ioeventfds = g_realloc(ioeventfds, ioeventfd_max * sizeof(*ioeventfds)); } ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i]; ioeventfds[ioeventfd_nb-1].addr = tmp; } } } address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb, as->ioeventfds, as->ioeventfd_nb); g_free(as->ioeventfds); as->ioeventfds = ioeventfds; as->ioeventfd_nb = ioeventfd_nb; flatview_unref(view); } /* * Notify the memory listeners about the coalesced IO change events of * range `cmr'. Only the part that has intersection of the specified * FlatRange will be sent. */ static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as, CoalescedMemoryRange *cmr, bool add) { AddrRange tmp; tmp = addrrange_shift(cmr->addr, int128_sub(fr->addr.start, int128_make64(fr->offset_in_region))); if (!addrrange_intersects(tmp, fr->addr)) { return; } tmp = addrrange_intersection(tmp, fr->addr); if (add) { MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add, int128_get64(tmp.start), int128_get64(tmp.size)); } else { MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del, int128_get64(tmp.start), int128_get64(tmp.size)); } } static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as) { CoalescedMemoryRange *cmr; QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) { flat_range_coalesced_io_notify(fr, as, cmr, false); } } static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as) { MemoryRegion *mr = fr->mr; CoalescedMemoryRange *cmr; if (QTAILQ_EMPTY(&mr->coalesced)) { return; } QTAILQ_FOREACH(cmr, &mr->coalesced, link) { flat_range_coalesced_io_notify(fr, as, cmr, true); } } static void address_space_update_topology_pass(AddressSpace *as, const FlatView *old_view, const FlatView *new_view, bool adding) { unsigned iold, inew; FlatRange *frold, *frnew; /* Generate a symmetric difference of the old and new memory maps. * Kill ranges in the old map, and instantiate ranges in the new map. */ iold = inew = 0; while (iold < old_view->nr || inew < new_view->nr) { if (iold < old_view->nr) { frold = &old_view->ranges[iold]; } else { frold = NULL; } if (inew < new_view->nr) { frnew = &new_view->ranges[inew]; } else { frnew = NULL; } if (frold && (!frnew || int128_lt(frold->addr.start, frnew->addr.start) || (int128_eq(frold->addr.start, frnew->addr.start) && !flatrange_equal(frold, frnew)))) { /* In old but not in new, or in both but attributes changed. */ if (!adding) { flat_range_coalesced_io_del(frold, as); MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del); } ++iold; } else if (frold && frnew && flatrange_equal(frold, frnew)) { /* In both and unchanged (except logging may have changed) */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop); if (frnew->dirty_log_mask & ~frold->dirty_log_mask) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start, frold->dirty_log_mask, frnew->dirty_log_mask); } if (frold->dirty_log_mask & ~frnew->dirty_log_mask) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop, frold->dirty_log_mask, frnew->dirty_log_mask); } } ++iold; ++inew; } else { /* In new */ if (adding) { MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add); flat_range_coalesced_io_add(frnew, as); } ++inew; } } } static void flatviews_init(void) { static FlatView *empty_view; if (flat_views) { return; } flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL, (GDestroyNotify) flatview_unref); if (!empty_view) { empty_view = generate_memory_topology(NULL); /* We keep it alive forever in the global variable. */ flatview_ref(empty_view); } else { g_hash_table_replace(flat_views, NULL, empty_view); flatview_ref(empty_view); } } static void flatviews_reset(void) { AddressSpace *as; if (flat_views) { g_hash_table_unref(flat_views); flat_views = NULL; } flatviews_init(); /* Render unique FVs */ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); if (g_hash_table_lookup(flat_views, physmr)) { continue; } generate_memory_topology(physmr); } } static void address_space_set_flatview(AddressSpace *as) { FlatView *old_view = address_space_to_flatview(as); MemoryRegion *physmr = memory_region_get_flatview_root(as->root); FlatView *new_view = g_hash_table_lookup(flat_views, physmr); assert(new_view); if (old_view == new_view) { return; } if (old_view) { flatview_ref(old_view); } flatview_ref(new_view); if (!QTAILQ_EMPTY(&as->listeners)) { FlatView tmpview = { .nr = 0 }, *old_view2 = old_view; if (!old_view2) { old_view2 = &tmpview; } address_space_update_topology_pass(as, old_view2, new_view, false); address_space_update_topology_pass(as, old_view2, new_view, true); } /* Writes are protected by the BQL. */ qatomic_rcu_set(&as->current_map, new_view); if (old_view) { flatview_unref(old_view); } /* Note that all the old MemoryRegions are still alive up to this * point. This relieves most MemoryListeners from the need to * ref/unref the MemoryRegions they get---unless they use them * outside the iothread mutex, in which case precise reference * counting is necessary. */ if (old_view) { flatview_unref(old_view); } } static void address_space_update_topology(AddressSpace *as) { MemoryRegion *physmr = memory_region_get_flatview_root(as->root); flatviews_init(); if (!g_hash_table_lookup(flat_views, physmr)) { generate_memory_topology(physmr); } address_space_set_flatview(as); } void memory_region_transaction_begin(void) { qemu_flush_coalesced_mmio_buffer(); ++memory_region_transaction_depth; } void memory_region_transaction_commit(void) { AddressSpace *as; assert(memory_region_transaction_depth); assert(qemu_mutex_iothread_locked()); --memory_region_transaction_depth; if (!memory_region_transaction_depth) { if (memory_region_update_pending) { flatviews_reset(); MEMORY_LISTENER_CALL_GLOBAL(begin, Forward); QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { address_space_set_flatview(as); address_space_update_ioeventfds(as); } memory_region_update_pending = false; ioeventfd_update_pending = false; MEMORY_LISTENER_CALL_GLOBAL(commit, Forward); } else if (ioeventfd_update_pending) { QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { address_space_update_ioeventfds(as); } ioeventfd_update_pending = false; } } } static void memory_region_destructor_none(MemoryRegion *mr) { } static void memory_region_destructor_ram(MemoryRegion *mr) { qemu_ram_free(mr->ram_block); } static bool memory_region_need_escape(char c) { return c == '/' || c == '[' || c == '\\' || c == ']'; } static char *memory_region_escape_name(const char *name) { const char *p; char *escaped, *q; uint8_t c; size_t bytes = 0; for (p = name; *p; p++) { bytes += memory_region_need_escape(*p) ? 4 : 1; } if (bytes == p - name) { return g_memdup(name, bytes + 1); } escaped = g_malloc(bytes + 1); for (p = name, q = escaped; *p; p++) { c = *p; if (unlikely(memory_region_need_escape(c))) { *q++ = '\\'; *q++ = 'x'; *q++ = "0123456789abcdef"[c >> 4]; c = "0123456789abcdef"[c & 15]; } *q++ = c; } *q = 0; return escaped; } static void memory_region_do_init(MemoryRegion *mr, Object *owner, const char *name, uint64_t size) { mr->size = int128_make64(size); if (size == UINT64_MAX) { mr->size = int128_2_64(); } mr->name = g_strdup(name); mr->owner = owner; mr->ram_block = NULL; if (name) { char *escaped_name = memory_region_escape_name(name); char *name_array = g_strdup_printf("%s[*]", escaped_name); if (!owner) { owner = container_get(qdev_get_machine(), "/unattached"); } object_property_add_child(owner, name_array, OBJECT(mr)); object_unref(OBJECT(mr)); g_free(name_array); g_free(escaped_name); } } void memory_region_init(MemoryRegion *mr, Object *owner, const char *name, uint64_t size) { object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION); memory_region_do_init(mr, owner, name, size); } static void memory_region_get_container(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(obj); char *path = (char *)""; if (mr->container) { path = object_get_canonical_path(OBJECT(mr->container)); } visit_type_str(v, name, &path, errp); if (mr->container) { g_free(path); } } static Object *memory_region_resolve_container(Object *obj, void *opaque, const char *part) { MemoryRegion *mr = MEMORY_REGION(obj); return OBJECT(mr->container); } static void memory_region_get_priority(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(obj); int32_t value = mr->priority; visit_type_int32(v, name, &value, errp); } static void memory_region_get_size(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { MemoryRegion *mr = MEMORY_REGION(obj); uint64_t value = memory_region_size(mr); visit_type_uint64(v, name, &value, errp); } static void memory_region_initfn(Object *obj) { MemoryRegion *mr = MEMORY_REGION(obj); ObjectProperty *op; mr->ops = &unassigned_mem_ops; mr->enabled = true; mr->romd_mode = true; mr->destructor = memory_region_destructor_none; QTAILQ_INIT(&mr->subregions); QTAILQ_INIT(&mr->coalesced); op = object_property_add(OBJECT(mr), "container", "link<" TYPE_MEMORY_REGION ">", memory_region_get_container, NULL, /* memory_region_set_container */ NULL, NULL); op->resolve = memory_region_resolve_container; object_property_add_uint64_ptr(OBJECT(mr), "addr", &mr->addr, OBJ_PROP_FLAG_READ); object_property_add(OBJECT(mr), "priority", "uint32", memory_region_get_priority, NULL, /* memory_region_set_priority */ NULL, NULL); object_property_add(OBJECT(mr), "size", "uint64", memory_region_get_size, NULL, /* memory_region_set_size, */ NULL, NULL); } static void iommu_memory_region_initfn(Object *obj) { MemoryRegion *mr = MEMORY_REGION(obj); mr->is_iommu = true; } static uint64_t unassigned_mem_read(void *opaque, hwaddr addr, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); #endif return 0; } static void unassigned_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val); #endif } static bool unassigned_mem_accepts(void *opaque, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { return false; } const MemoryRegionOps unassigned_mem_ops = { .valid.accepts = unassigned_mem_accepts, .endianness = DEVICE_NATIVE_ENDIAN, }; static uint64_t memory_region_ram_device_read(void *opaque, hwaddr addr, unsigned size) { MemoryRegion *mr = opaque; uint64_t data = (uint64_t)~0; switch (size) { case 1: data = *(uint8_t *)(mr->ram_block->host + addr); break; case 2: data = *(uint16_t *)(mr->ram_block->host + addr); break; case 4: data = *(uint32_t *)(mr->ram_block->host + addr); break; case 8: data = *(uint64_t *)(mr->ram_block->host + addr); break; } trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size); return data; } static void memory_region_ram_device_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { MemoryRegion *mr = opaque; trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size); switch (size) { case 1: *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data; break; case 2: *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data; break; case 4: *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data; break; case 8: *(uint64_t *)(mr->ram_block->host + addr) = data; break; } } static const MemoryRegionOps ram_device_mem_ops = { .read = memory_region_ram_device_read, .write = memory_region_ram_device_write, .endianness = DEVICE_HOST_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 8, .unaligned = true, }, .impl = { .min_access_size = 1, .max_access_size = 8, .unaligned = true, }, }; bool memory_region_access_valid(MemoryRegion *mr, hwaddr addr, unsigned size, bool is_write, MemTxAttrs attrs) { if (mr->ops->valid.accepts && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) { qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX ", size %u, region '%s', reason: rejected\n", is_write ? "write" : "read", addr, size, memory_region_name(mr)); return false; } if (!mr->ops->valid.unaligned && (addr & (size - 1))) { qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX ", size %u, region '%s', reason: unaligned\n", is_write ? "write" : "read", addr, size, memory_region_name(mr)); return false; } /* Treat zero as compatibility all valid */ if (!mr->ops->valid.max_access_size) { return true; } if (size > mr->ops->valid.max_access_size || size < mr->ops->valid.min_access_size) { qemu_log_mask(LOG_GUEST_ERROR, "Invalid %s at addr 0x%" HWADDR_PRIX ", size %u, region '%s', reason: invalid size " "(min:%u max:%u)\n", is_write ? "write" : "read", addr, size, memory_region_name(mr), mr->ops->valid.min_access_size, mr->ops->valid.max_access_size); return false; } return true; } static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size, MemTxAttrs attrs) { *pval = 0; if (mr->ops->read) { return access_with_adjusted_size(addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_accessor, mr, attrs); } else { return access_with_adjusted_size(addr, pval, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_read_with_attrs_accessor, mr, attrs); } } MemTxResult memory_region_dispatch_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); MemTxResult r; if (mr->alias) { return memory_region_dispatch_read(mr->alias, mr->alias_offset + addr, pval, op, attrs); } if (!memory_region_access_valid(mr, addr, size, false, attrs)) { *pval = unassigned_mem_read(mr, addr, size); return MEMTX_DECODE_ERROR; } r = memory_region_dispatch_read1(mr, addr, pval, size, attrs); adjust_endianness(mr, pval, op); return r; } /* Return true if an eventfd was signalled */ static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr, hwaddr addr, uint64_t data, unsigned size, MemTxAttrs attrs) { MemoryRegionIoeventfd ioeventfd = { .addr = addrrange_make(int128_make64(addr), int128_make64(size)), .data = data, }; unsigned i; for (i = 0; i < mr->ioeventfd_nb; i++) { ioeventfd.match_data = mr->ioeventfds[i].match_data; ioeventfd.e = mr->ioeventfds[i].e; if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) { event_notifier_set(ioeventfd.e); return true; } } return false; } MemTxResult memory_region_dispatch_write(MemoryRegion *mr, hwaddr addr, uint64_t data, MemOp op, MemTxAttrs attrs) { unsigned size = memop_size(op); if (mr->alias) { return memory_region_dispatch_write(mr->alias, mr->alias_offset + addr, data, op, attrs); } if (!memory_region_access_valid(mr, addr, size, true, attrs)) { unassigned_mem_write(mr, addr, data, size); return MEMTX_DECODE_ERROR; } adjust_endianness(mr, &data, op); if ((!kvm_eventfds_enabled()) && memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) { return MEMTX_OK; } if (mr->ops->write) { return access_with_adjusted_size(addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_accessor, mr, attrs); } else { return access_with_adjusted_size(addr, &data, size, mr->ops->impl.min_access_size, mr->ops->impl.max_access_size, memory_region_write_with_attrs_accessor, mr, attrs); } } void memory_region_init_io(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size) { memory_region_init(mr, owner, name, size); mr->ops = ops ? ops : &unassigned_mem_ops; mr->opaque = opaque; mr->terminates = true; } void memory_region_init_ram_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp) { memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp); } void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint32_t ram_flags, Error **errp) { Error *err = NULL; memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err); if (err) { mr->size = int128_zero(); object_unparent(OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_resizeable_ram(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint64_t max_size, void (*resized)(const char*, uint64_t length, void *host), Error **errp) { Error *err = NULL; memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized, mr, &err); if (err) { mr->size = int128_zero(); object_unparent(OBJECT(mr)); error_propagate(errp, err); } } #ifdef CONFIG_POSIX void memory_region_init_ram_from_file(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint64_t align, uint32_t ram_flags, const char *path, bool readonly, Error **errp) { Error *err = NULL; memory_region_init(mr, owner, name, size); mr->ram = true; mr->readonly = readonly; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->align = align; mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, readonly, &err); if (err) { mr->size = int128_zero(); object_unparent(OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_ram_from_fd(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, uint32_t ram_flags, int fd, ram_addr_t offset, Error **errp) { Error *err = NULL; memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, false, &err); if (err) { mr->size = int128_zero(); object_unparent(OBJECT(mr)); error_propagate(errp, err); } } #endif void memory_region_init_ram_ptr(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr) { memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->destructor = memory_region_destructor_ram; /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ assert(ptr != NULL); mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal); } void memory_region_init_ram_device_ptr(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, void *ptr) { memory_region_init(mr, owner, name, size); mr->ram = true; mr->terminates = true; mr->ram_device = true; mr->ops = &ram_device_mem_ops; mr->opaque = mr; mr->destructor = memory_region_destructor_ram; /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */ assert(ptr != NULL); mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal); } void memory_region_init_alias(MemoryRegion *mr, Object *owner, const char *name, MemoryRegion *orig, hwaddr offset, uint64_t size) { memory_region_init(mr, owner, name, size); mr->alias = orig; mr->alias_offset = offset; } void memory_region_init_rom_nomigrate(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp) { memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp); mr->readonly = true; } void memory_region_init_rom_device_nomigrate(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size, Error **errp) { Error *err = NULL; assert(ops); memory_region_init(mr, owner, name, size); mr->ops = ops; mr->opaque = opaque; mr->terminates = true; mr->rom_device = true; mr->destructor = memory_region_destructor_ram; mr->ram_block = qemu_ram_alloc(size, 0, mr, &err); if (err) { mr->size = int128_zero(); object_unparent(OBJECT(mr)); error_propagate(errp, err); } } void memory_region_init_iommu(void *_iommu_mr, size_t instance_size, const char *mrtypename, Object *owner, const char *name, uint64_t size) { struct IOMMUMemoryRegion *iommu_mr; struct MemoryRegion *mr; object_initialize(_iommu_mr, instance_size, mrtypename); mr = MEMORY_REGION(_iommu_mr); memory_region_do_init(mr, owner, name, size); iommu_mr = IOMMU_MEMORY_REGION(mr); mr->terminates = true; /* then re-forwards */ QLIST_INIT(&iommu_mr->iommu_notify); iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE; } static void memory_region_finalize(Object *obj) { MemoryRegion *mr = MEMORY_REGION(obj); assert(!mr->container); /* We know the region is not visible in any address space (it * does not have a container and cannot be a root either because * it has no references, so we can blindly clear mr->enabled. * memory_region_set_enabled instead could trigger a transaction * and cause an infinite loop. */ mr->enabled = false; memory_region_transaction_begin(); while (!QTAILQ_EMPTY(&mr->subregions)) { MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions); memory_region_del_subregion(mr, subregion); } memory_region_transaction_commit(); mr->destructor(mr); memory_region_clear_coalescing(mr); g_free((char *)mr->name); g_free(mr->ioeventfds); } Object *memory_region_owner(MemoryRegion *mr) { Object *obj = OBJECT(mr); return obj->parent; } void memory_region_ref(MemoryRegion *mr) { /* MMIO callbacks most likely will access data that belongs * to the owner, hence the need to ref/unref the owner whenever * the memory region is in use. * * The memory region is a child of its owner. As long as the * owner doesn't call unparent itself on the memory region, * ref-ing the owner will also keep the memory region alive. * Memory regions without an owner are supposed to never go away; * we do not ref/unref them because it slows down DMA sensibly. */ if (mr && mr->owner) { object_ref(mr->owner); } } void memory_region_unref(MemoryRegion *mr) { if (mr && mr->owner) { object_unref(mr->owner); } } uint64_t memory_region_size(MemoryRegion *mr) { if (int128_eq(mr->size, int128_2_64())) { return UINT64_MAX; } return int128_get64(mr->size); } const char *memory_region_name(const MemoryRegion *mr) { if (!mr->name) { ((MemoryRegion *)mr)->name = g_strdup(object_get_canonical_path_component(OBJECT(mr))); } return mr->name; } bool memory_region_is_ram_device(MemoryRegion *mr) { return mr->ram_device; } bool memory_region_is_protected(MemoryRegion *mr) { return mr->ram && (mr->ram_block->flags & RAM_PROTECTED); } uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr) { uint8_t mask = mr->dirty_log_mask; RAMBlock *rb = mr->ram_block; if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) || memory_region_is_iommu(mr))) { mask |= (1 << DIRTY_MEMORY_MIGRATION); } if (tcg_enabled() && rb) { /* TCG only cares about dirty memory logging for RAM, not IOMMU. */ mask |= (1 << DIRTY_MEMORY_CODE); } return mask; } bool memory_region_is_logging(MemoryRegion *mr, uint8_t client) { return memory_region_get_dirty_log_mask(mr) & (1 << client); } static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr, Error **errp) { IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE; IOMMUNotifier *iommu_notifier; IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); int ret = 0; IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { flags |= iommu_notifier->notifier_flags; } if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) { ret = imrc->notify_flag_changed(iommu_mr, iommu_mr->iommu_notify_flags, flags, errp); } if (!ret) { iommu_mr->iommu_notify_flags = flags; } return ret; } int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr, uint64_t page_size_mask, Error **errp) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); int ret = 0; if (imrc->iommu_set_page_size_mask) { ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp); } return ret; } int memory_region_register_iommu_notifier(MemoryRegion *mr, IOMMUNotifier *n, Error **errp) { IOMMUMemoryRegion *iommu_mr; int ret; if (mr->alias) { return memory_region_register_iommu_notifier(mr->alias, n, errp); } /* We need to register for at least one bitfield */ iommu_mr = IOMMU_MEMORY_REGION(mr); assert(n->notifier_flags != IOMMU_NOTIFIER_NONE); assert(n->start <= n->end); assert(n->iommu_idx >= 0 && n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr)); QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node); ret = memory_region_update_iommu_notify_flags(iommu_mr, errp); if (ret) { QLIST_REMOVE(n, node); } return ret; } uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); if (imrc->get_min_page_size) { return imrc->get_min_page_size(iommu_mr); } return TARGET_PAGE_SIZE; } void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) { MemoryRegion *mr = MEMORY_REGION(iommu_mr); IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); hwaddr addr, granularity; IOMMUTLBEntry iotlb; /* If the IOMMU has its own replay callback, override */ if (imrc->replay) { imrc->replay(iommu_mr, n); return; } granularity = memory_region_iommu_get_min_page_size(iommu_mr); for (addr = 0; addr < memory_region_size(mr); addr += granularity) { iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx); if (iotlb.perm != IOMMU_NONE) { n->notify(n, &iotlb); } /* if (2^64 - MR size) < granularity, it's possible to get an * infinite loop here. This should catch such a wraparound */ if ((addr + granularity) < addr) { break; } } } void memory_region_unregister_iommu_notifier(MemoryRegion *mr, IOMMUNotifier *n) { IOMMUMemoryRegion *iommu_mr; if (mr->alias) { memory_region_unregister_iommu_notifier(mr->alias, n); return; } QLIST_REMOVE(n, node); iommu_mr = IOMMU_MEMORY_REGION(mr); memory_region_update_iommu_notify_flags(iommu_mr, NULL); } void memory_region_notify_iommu_one(IOMMUNotifier *notifier, IOMMUTLBEvent *event) { IOMMUTLBEntry *entry = &event->entry; hwaddr entry_end = entry->iova + entry->addr_mask; IOMMUTLBEntry tmp = *entry; if (event->type == IOMMU_NOTIFIER_UNMAP) { assert(entry->perm == IOMMU_NONE); } /* * Skip the notification if the notification does not overlap * with registered range. */ if (notifier->start > entry_end || notifier->end < entry->iova) { return; } if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) { /* Crop (iova, addr_mask) to range */ tmp.iova = MAX(tmp.iova, notifier->start); tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova; } else { assert(entry->iova >= notifier->start && entry_end <= notifier->end); } if (event->type & notifier->notifier_flags) { notifier->notify(notifier, &tmp); } } void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr, int iommu_idx, IOMMUTLBEvent event) { IOMMUNotifier *iommu_notifier; assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr))); IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) { if (iommu_notifier->iommu_idx == iommu_idx) { memory_region_notify_iommu_one(iommu_notifier, &event); } } } int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr, enum IOMMUMemoryRegionAttr attr, void *data) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); if (!imrc->get_attr) { return -EINVAL; } return imrc->get_attr(iommu_mr, attr, data); } int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr, MemTxAttrs attrs) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); if (!imrc->attrs_to_index) { return 0; } return imrc->attrs_to_index(iommu_mr, attrs); } int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr) { IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr); if (!imrc->num_indexes) { return 1; } return imrc->num_indexes(iommu_mr); } RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr) { if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) { return NULL; } return mr->rdm; } void memory_region_set_ram_discard_manager(MemoryRegion *mr, RamDiscardManager *rdm) { g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr)); g_assert(!rdm || !mr->rdm); mr->rdm = rdm; } uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm, const MemoryRegion *mr) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->get_min_granularity); return rdmc->get_min_granularity(rdm, mr); } bool ram_discard_manager_is_populated(const RamDiscardManager *rdm, const MemoryRegionSection *section) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->is_populated); return rdmc->is_populated(rdm, section); } int ram_discard_manager_replay_populated(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamPopulate replay_fn, void *opaque) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->replay_populated); return rdmc->replay_populated(rdm, section, replay_fn, opaque); } void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm, MemoryRegionSection *section, ReplayRamDiscard replay_fn, void *opaque) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->replay_discarded); rdmc->replay_discarded(rdm, section, replay_fn, opaque); } void ram_discard_manager_register_listener(RamDiscardManager *rdm, RamDiscardListener *rdl, MemoryRegionSection *section) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->register_listener); rdmc->register_listener(rdm, rdl, section); } void ram_discard_manager_unregister_listener(RamDiscardManager *rdm, RamDiscardListener *rdl) { RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm); g_assert(rdmc->unregister_listener); rdmc->unregister_listener(rdm, rdl); } void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client) { uint8_t mask = 1 << client; uint8_t old_logging; assert(client == DIRTY_MEMORY_VGA); old_logging = mr->vga_logging_count; mr->vga_logging_count += log ? 1 : -1; if (!!old_logging == !!mr->vga_logging_count) { return; } memory_region_transaction_begin(); mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask); memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(); } void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size) { assert(mr->ram_block); cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr, size, memory_region_get_dirty_log_mask(mr)); } /* * If memory region `mr' is NULL, do global sync. Otherwise, sync * dirty bitmap for the specified memory region. */ static void memory_region_sync_dirty_bitmap(MemoryRegion *mr) { MemoryListener *listener; AddressSpace *as; FlatView *view; FlatRange *fr; /* If the same address space has multiple log_sync listeners, we * visit that address space's FlatView multiple times. But because * log_sync listeners are rare, it's still cheaper than walking each * address space once. */ QTAILQ_FOREACH(listener, &memory_listeners, link) { if (listener->log_sync) { as = listener->address_space; view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { if (fr->dirty_log_mask && (!mr || fr->mr == mr)) { MemoryRegionSection mrs = section_from_flat_range(fr, view); listener->log_sync(listener, &mrs); } } flatview_unref(view); trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0); } else if (listener->log_sync_global) { /* * No matter whether MR is specified, what we can do here * is to do a global sync, because we are not capable to * sync in a finer granularity. */ listener->log_sync_global(listener); trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1); } } } void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start, hwaddr len) { MemoryRegionSection mrs; MemoryListener *listener; AddressSpace *as; FlatView *view; FlatRange *fr; hwaddr sec_start, sec_end, sec_size; QTAILQ_FOREACH(listener, &memory_listeners, link) { if (!listener->log_clear) { continue; } as = listener->address_space; view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { if (!fr->dirty_log_mask || fr->mr != mr) { /* * Clear dirty bitmap operation only applies to those * regions whose dirty logging is at least enabled */ continue; } mrs = section_from_flat_range(fr, view); sec_start = MAX(mrs.offset_within_region, start); sec_end = mrs.offset_within_region + int128_get64(mrs.size); sec_end = MIN(sec_end, start + len); if (sec_start >= sec_end) { /* * If this memory region section has no intersection * with the requested range, skip. */ continue; } /* Valid case; shrink the section if needed */ mrs.offset_within_address_space += sec_start - mrs.offset_within_region; mrs.offset_within_region = sec_start; sec_size = sec_end - sec_start; mrs.size = int128_make64(sec_size); listener->log_clear(listener, &mrs); } flatview_unref(view); } } DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size, unsigned client) { DirtyBitmapSnapshot *snapshot; assert(mr->ram_block); memory_region_sync_dirty_bitmap(mr); snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client); memory_global_after_dirty_log_sync(); return snapshot; } bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap, hwaddr addr, hwaddr size) { assert(mr->ram_block); return cpu_physical_memory_snapshot_get_dirty(snap, memory_region_get_ram_addr(mr) + addr, size); } void memory_region_set_readonly(MemoryRegion *mr, bool readonly) { if (mr->readonly != readonly) { memory_region_transaction_begin(); mr->readonly = readonly; memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(); } } void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile) { if (mr->nonvolatile != nonvolatile) { memory_region_transaction_begin(); mr->nonvolatile = nonvolatile; memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(); } } void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode) { if (mr->romd_mode != romd_mode) { memory_region_transaction_begin(); mr->romd_mode = romd_mode; memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(); } } void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr, hwaddr size, unsigned client) { assert(mr->ram_block); cpu_physical_memory_test_and_clear_dirty( memory_region_get_ram_addr(mr) + addr, size, client); } int memory_region_get_fd(MemoryRegion *mr) { int fd; RCU_READ_LOCK_GUARD(); while (mr->alias) { mr = mr->alias; } fd = mr->ram_block->fd; return fd; } void *memory_region_get_ram_ptr(MemoryRegion *mr) { void *ptr; uint64_t offset = 0; RCU_READ_LOCK_GUARD(); while (mr->alias) { offset += mr->alias_offset; mr = mr->alias; } assert(mr->ram_block); ptr = qemu_map_ram_ptr(mr->ram_block, offset); return ptr; } MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset) { RAMBlock *block; block = qemu_ram_block_from_host(ptr, false, offset); if (!block) { return NULL; } return block->mr; } ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr) { return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID; } void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp) { assert(mr->ram_block); qemu_ram_resize(mr->ram_block, newsize, errp); } void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size) { if (mr->ram_block) { qemu_ram_msync(mr->ram_block, addr, size); } } void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size) { /* * Might be extended case needed to cover * different types of memory regions */ if (mr->dirty_log_mask) { memory_region_msync(mr, addr, size); } } /* * Call proper memory listeners about the change on the newly * added/removed CoalescedMemoryRange. */ static void memory_region_update_coalesced_range(MemoryRegion *mr, CoalescedMemoryRange *cmr, bool add) { AddressSpace *as; FlatView *view; FlatRange *fr; QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { if (fr->mr == mr) { flat_range_coalesced_io_notify(fr, as, cmr, add); } } flatview_unref(view); } } void memory_region_set_coalescing(MemoryRegion *mr) { memory_region_clear_coalescing(mr); memory_region_add_coalescing(mr, 0, int128_get64(mr->size)); } void memory_region_add_coalescing(MemoryRegion *mr, hwaddr offset, uint64_t size) { CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr)); cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size)); QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link); memory_region_update_coalesced_range(mr, cmr, true); memory_region_set_flush_coalesced(mr); } void memory_region_clear_coalescing(MemoryRegion *mr) { CoalescedMemoryRange *cmr; if (QTAILQ_EMPTY(&mr->coalesced)) { return; } qemu_flush_coalesced_mmio_buffer(); mr->flush_coalesced_mmio = false; while (!QTAILQ_EMPTY(&mr->coalesced)) { cmr = QTAILQ_FIRST(&mr->coalesced); QTAILQ_REMOVE(&mr->coalesced, cmr, link); memory_region_update_coalesced_range(mr, cmr, false); g_free(cmr); } } void memory_region_set_flush_coalesced(MemoryRegion *mr) { mr->flush_coalesced_mmio = true; } void memory_region_clear_flush_coalesced(MemoryRegion *mr) { qemu_flush_coalesced_mmio_buffer(); if (QTAILQ_EMPTY(&mr->coalesced)) { mr->flush_coalesced_mmio = false; } } static bool userspace_eventfd_warning; void memory_region_add_eventfd(MemoryRegion *mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier *e) { MemoryRegionIoeventfd mrfd = { .addr.start = int128_make64(addr), .addr.size = int128_make64(size), .match_data = match_data, .data = data, .e = e, }; unsigned i; if (kvm_enabled() && (!(kvm_eventfds_enabled() || userspace_eventfd_warning))) { userspace_eventfd_warning = true; error_report("Using eventfd without MMIO binding in KVM. " "Suboptimal performance expected"); } if (size) { adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); } memory_region_transaction_begin(); for (i = 0; i < mr->ioeventfd_nb; ++i) { if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) { break; } } ++mr->ioeventfd_nb; mr->ioeventfds = g_realloc(mr->ioeventfds, sizeof(*mr->ioeventfds) * mr->ioeventfd_nb); memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i], sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i)); mr->ioeventfds[i] = mrfd; ioeventfd_update_pending |= mr->enabled; memory_region_transaction_commit(); } void memory_region_del_eventfd(MemoryRegion *mr, hwaddr addr, unsigned size, bool match_data, uint64_t data, EventNotifier *e) { MemoryRegionIoeventfd mrfd = { .addr.start = int128_make64(addr), .addr.size = int128_make64(size), .match_data = match_data, .data = data, .e = e, }; unsigned i; if (size) { adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE); } memory_region_transaction_begin(); for (i = 0; i < mr->ioeventfd_nb; ++i) { if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) { break; } } assert(i != mr->ioeventfd_nb); memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1], sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1))); --mr->ioeventfd_nb; mr->ioeventfds = g_realloc(mr->ioeventfds, sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1); ioeventfd_update_pending |= mr->enabled; memory_region_transaction_commit(); } static void memory_region_update_container_subregions(MemoryRegion *subregion) { MemoryRegion *mr = subregion->container; MemoryRegion *other; memory_region_transaction_begin(); memory_region_ref(subregion); QTAILQ_FOREACH(other, &mr->subregions, subregions_link) { if (subregion->priority >= other->priority) { QTAILQ_INSERT_BEFORE(other, subregion, subregions_link); goto done; } } QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link); done: memory_region_update_pending |= mr->enabled && subregion->enabled; memory_region_transaction_commit(); } static void memory_region_add_subregion_common(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { MemoryRegion *alias; assert(!subregion->container); subregion->container = mr; for (alias = subregion->alias; alias; alias = alias->alias) { alias->mapped_via_alias++; } subregion->addr = offset; memory_region_update_container_subregions(subregion); } void memory_region_add_subregion(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion) { subregion->priority = 0; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_add_subregion_overlap(MemoryRegion *mr, hwaddr offset, MemoryRegion *subregion, int priority) { subregion->priority = priority; memory_region_add_subregion_common(mr, offset, subregion); } void memory_region_del_subregion(MemoryRegion *mr, MemoryRegion *subregion) { MemoryRegion *alias; memory_region_transaction_begin(); assert(subregion->container == mr); subregion->container = NULL; for (alias = subregion->alias; alias; alias = alias->alias) { alias->mapped_via_alias--; assert(alias->mapped_via_alias >= 0); } QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link); memory_region_unref(subregion); memory_region_update_pending |= mr->enabled && subregion->enabled; memory_region_transaction_commit(); } void memory_region_set_enabled(MemoryRegion *mr, bool enabled) { if (enabled == mr->enabled) { return; } memory_region_transaction_begin(); mr->enabled = enabled; memory_region_update_pending = true; memory_region_transaction_commit(); } void memory_region_set_size(MemoryRegion *mr, uint64_t size) { Int128 s = int128_make64(size); if (size == UINT64_MAX) { s = int128_2_64(); } if (int128_eq(s, mr->size)) { return; } memory_region_transaction_begin(); mr->size = s; memory_region_update_pending = true; memory_region_transaction_commit(); } static void memory_region_readd_subregion(MemoryRegion *mr) { MemoryRegion *container = mr->container; if (container) { memory_region_transaction_begin(); memory_region_ref(mr); memory_region_del_subregion(container, mr); memory_region_add_subregion_common(container, mr->addr, mr); memory_region_unref(mr); memory_region_transaction_commit(); } } void memory_region_set_address(MemoryRegion *mr, hwaddr addr) { if (addr != mr->addr) { mr->addr = addr; memory_region_readd_subregion(mr); } } void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset) { assert(mr->alias); if (offset == mr->alias_offset) { return; } memory_region_transaction_begin(); mr->alias_offset = offset; memory_region_update_pending |= mr->enabled; memory_region_transaction_commit(); } uint64_t memory_region_get_alignment(const MemoryRegion *mr) { return mr->align; } static int cmp_flatrange_addr(const void *addr_, const void *fr_) { const AddrRange *addr = addr_; const FlatRange *fr = fr_; if (int128_le(addrrange_end(*addr), fr->addr.start)) { return -1; } else if (int128_ge(addr->start, addrrange_end(fr->addr))) { return 1; } return 0; } static FlatRange *flatview_lookup(FlatView *view, AddrRange addr) { return bsearch(&addr, view->ranges, view->nr, sizeof(FlatRange), cmp_flatrange_addr); } bool memory_region_is_mapped(MemoryRegion *mr) { return !!mr->container || mr->mapped_via_alias; } /* Same as memory_region_find, but it does not add a reference to the * returned region. It must be called from an RCU critical section. */ static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret = { .mr = NULL }; MemoryRegion *root; AddressSpace *as; AddrRange range; FlatView *view; FlatRange *fr; addr += mr->addr; for (root = mr; root->container; ) { root = root->container; addr += root->addr; } as = memory_region_to_address_space(root); if (!as) { return ret; } range = addrrange_make(int128_make64(addr), int128_make64(size)); view = address_space_to_flatview(as); fr = flatview_lookup(view, range); if (!fr) { return ret; } while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) { --fr; } ret.mr = fr->mr; ret.fv = view; range = addrrange_intersection(range, fr->addr); ret.offset_within_region = fr->offset_in_region; ret.offset_within_region += int128_get64(int128_sub(range.start, fr->addr.start)); ret.size = range.size; ret.offset_within_address_space = int128_get64(range.start); ret.readonly = fr->readonly; ret.nonvolatile = fr->nonvolatile; return ret; } MemoryRegionSection memory_region_find(MemoryRegion *mr, hwaddr addr, uint64_t size) { MemoryRegionSection ret; RCU_READ_LOCK_GUARD(); ret = memory_region_find_rcu(mr, addr, size); if (ret.mr) { memory_region_ref(ret.mr); } return ret; } MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s) { MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1); *tmp = *s; if (tmp->mr) { memory_region_ref(tmp->mr); } if (tmp->fv) { bool ret = flatview_ref(tmp->fv); g_assert(ret); } return tmp; } void memory_region_section_free_copy(MemoryRegionSection *s) { if (s->fv) { flatview_unref(s->fv); } if (s->mr) { memory_region_unref(s->mr); } g_free(s); } bool memory_region_present(MemoryRegion *container, hwaddr addr) { MemoryRegion *mr; RCU_READ_LOCK_GUARD(); mr = memory_region_find_rcu(container, addr, 1).mr; return mr && mr != container; } void memory_global_dirty_log_sync(void) { memory_region_sync_dirty_bitmap(NULL); } void memory_global_after_dirty_log_sync(void) { MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward); } /* * Dirty track stop flags that are postponed due to VM being stopped. Should * only be used within vmstate_change hook. */ static unsigned int postponed_stop_flags; static VMChangeStateEntry *vmstate_change; static void memory_global_dirty_log_stop_postponed_run(void); void memory_global_dirty_log_start(unsigned int flags) { unsigned int old_flags; assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); if (vmstate_change) { /* If there is postponed stop(), operate on it first */ postponed_stop_flags &= ~flags; memory_global_dirty_log_stop_postponed_run(); } flags &= ~global_dirty_tracking; if (!flags) { return; } old_flags = global_dirty_tracking; global_dirty_tracking |= flags; trace_global_dirty_changed(global_dirty_tracking); if (!old_flags) { MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward); memory_region_transaction_begin(); memory_region_update_pending = true; memory_region_transaction_commit(); } } static void memory_global_dirty_log_do_stop(unsigned int flags) { assert(flags && !(flags & (~GLOBAL_DIRTY_MASK))); assert((global_dirty_tracking & flags) == flags); global_dirty_tracking &= ~flags; trace_global_dirty_changed(global_dirty_tracking); if (!global_dirty_tracking) { memory_region_transaction_begin(); memory_region_update_pending = true; memory_region_transaction_commit(); MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse); } } /* * Execute the postponed dirty log stop operations if there is, then reset * everything (including the flags and the vmstate change hook). */ static void memory_global_dirty_log_stop_postponed_run(void) { /* This must be called with the vmstate handler registered */ assert(vmstate_change); /* Note: postponed_stop_flags can be cleared in log start routine */ if (postponed_stop_flags) { memory_global_dirty_log_do_stop(postponed_stop_flags); postponed_stop_flags = 0; } qemu_del_vm_change_state_handler(vmstate_change); vmstate_change = NULL; } static void memory_vm_change_state_handler(void *opaque, bool running, RunState state) { if (running) { memory_global_dirty_log_stop_postponed_run(); } } void memory_global_dirty_log_stop(unsigned int flags) { if (!runstate_is_running()) { /* Postpone the dirty log stop, e.g., to when VM starts again */ if (vmstate_change) { /* Batch with previous postponed flags */ postponed_stop_flags |= flags; } else { postponed_stop_flags = flags; vmstate_change = qemu_add_vm_change_state_handler( memory_vm_change_state_handler, NULL); } return; } memory_global_dirty_log_do_stop(flags); } static void listener_add_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; if (listener->begin) { listener->begin(listener); } if (global_dirty_tracking) { if (listener->log_global_start) { listener->log_global_start(listener); } } view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { MemoryRegionSection section = section_from_flat_range(fr, view); if (listener->region_add) { listener->region_add(listener, §ion); } if (fr->dirty_log_mask && listener->log_start) { listener->log_start(listener, §ion, 0, fr->dirty_log_mask); } } if (listener->commit) { listener->commit(listener); } flatview_unref(view); } static void listener_del_address_space(MemoryListener *listener, AddressSpace *as) { FlatView *view; FlatRange *fr; if (listener->begin) { listener->begin(listener); } view = address_space_get_flatview(as); FOR_EACH_FLAT_RANGE(fr, view) { MemoryRegionSection section = section_from_flat_range(fr, view); if (fr->dirty_log_mask && listener->log_stop) { listener->log_stop(listener, §ion, fr->dirty_log_mask, 0); } if (listener->region_del) { listener->region_del(listener, §ion); } } if (listener->commit) { listener->commit(listener); } flatview_unref(view); } void memory_listener_register(MemoryListener *listener, AddressSpace *as) { MemoryListener *other = NULL; /* Only one of them can be defined for a listener */ assert(!(listener->log_sync && listener->log_sync_global)); listener->address_space = as; if (QTAILQ_EMPTY(&memory_listeners) || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) { QTAILQ_INSERT_TAIL(&memory_listeners, listener, link); } else { QTAILQ_FOREACH(other, &memory_listeners, link) { if (listener->priority < other->priority) { break; } } QTAILQ_INSERT_BEFORE(other, listener, link); } if (QTAILQ_EMPTY(&as->listeners) || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) { QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as); } else { QTAILQ_FOREACH(other, &as->listeners, link_as) { if (listener->priority < other->priority) { break; } } QTAILQ_INSERT_BEFORE(other, listener, link_as); } listener_add_address_space(listener, as); } void memory_listener_unregister(MemoryListener *listener) { if (!listener->address_space) { return; } listener_del_address_space(listener, listener->address_space); QTAILQ_REMOVE(&memory_listeners, listener, link); QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as); listener->address_space = NULL; } void address_space_remove_listeners(AddressSpace *as) { while (!QTAILQ_EMPTY(&as->listeners)) { memory_listener_unregister(QTAILQ_FIRST(&as->listeners)); } } void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name) { memory_region_ref(root); as->root = root; as->current_map = NULL; as->ioeventfd_nb = 0; as->ioeventfds = NULL; QTAILQ_INIT(&as->listeners); QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link); as->name = g_strdup(name ? name : "anonymous"); address_space_update_topology(as); address_space_update_ioeventfds(as); } static void do_address_space_destroy(AddressSpace *as) { assert(QTAILQ_EMPTY(&as->listeners)); flatview_unref(as->current_map); g_free(as->name); g_free(as->ioeventfds); memory_region_unref(as->root); } void address_space_destroy(AddressSpace *as) { MemoryRegion *root = as->root; /* Flush out anything from MemoryListeners listening in on this */ memory_region_transaction_begin(); as->root = NULL; memory_region_transaction_commit(); QTAILQ_REMOVE(&address_spaces, as, address_spaces_link); /* At this point, as->dispatch and as->current_map are dummy * entries that the guest should never use. Wait for the old * values to expire before freeing the data. */ as->root = root; call_rcu(as, do_address_space_destroy, rcu); } static const char *memory_region_type(MemoryRegion *mr) { if (mr->alias) { return memory_region_type(mr->alias); } if (memory_region_is_ram_device(mr)) { return "ramd"; } else if (memory_region_is_romd(mr)) { return "romd"; } else if (memory_region_is_rom(mr)) { return "rom"; } else if (memory_region_is_ram(mr)) { return "ram"; } else { return "i/o"; } } typedef struct MemoryRegionList MemoryRegionList; struct MemoryRegionList { const MemoryRegion *mr; QTAILQ_ENTRY(MemoryRegionList) mrqueue; }; typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead; #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ int128_sub((size), int128_one())) : 0) #define MTREE_INDENT " " static void mtree_expand_owner(const char *label, Object *obj) { DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE); qemu_printf(" %s:{%s", label, dev ? "dev" : "obj"); if (dev && dev->id) { qemu_printf(" id=%s", dev->id); } else { char *canonical_path = object_get_canonical_path(obj); if (canonical_path) { qemu_printf(" path=%s", canonical_path); g_free(canonical_path); } else { qemu_printf(" type=%s", object_get_typename(obj)); } } qemu_printf("}"); } static void mtree_print_mr_owner(const MemoryRegion *mr) { Object *owner = mr->owner; Object *parent = memory_region_owner((MemoryRegion *)mr); if (!owner && !parent) { qemu_printf(" orphan"); return; } if (owner) { mtree_expand_owner("owner", owner); } if (parent && parent != owner) { mtree_expand_owner("parent", parent); } } static void mtree_print_mr(const MemoryRegion *mr, unsigned int level, hwaddr base, MemoryRegionListHead *alias_print_queue, bool owner, bool display_disabled) { MemoryRegionList *new_ml, *ml, *next_ml; MemoryRegionListHead submr_print_queue; const MemoryRegion *submr; unsigned int i; hwaddr cur_start, cur_end; if (!mr) { return; } cur_start = base + mr->addr; cur_end = cur_start + MR_SIZE(mr->size); /* * Try to detect overflow of memory region. This should never * happen normally. When it happens, we dump something to warn the * user who is observing this. */ if (cur_start < base || cur_end < cur_start) { qemu_printf("[DETECTED OVERFLOW!] "); } if (mr->alias) { MemoryRegionList *ml; bool found = false; /* check if the alias is already in the queue */ QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) { if (ml->mr == mr->alias) { found = true; } } if (!found) { ml = g_new(MemoryRegionList, 1); ml->mr = mr->alias; QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue); } if (mr->enabled || display_disabled) { for (i = 0; i < level; i++) { qemu_printf(MTREE_INDENT); } qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx "-" TARGET_FMT_plx "%s", cur_start, cur_end, mr->priority, mr->nonvolatile ? "nv-" : "", memory_region_type((MemoryRegion *)mr), memory_region_name(mr), memory_region_name(mr->alias), mr->alias_offset, mr->alias_offset + MR_SIZE(mr->size), mr->enabled ? "" : " [disabled]"); if (owner) { mtree_print_mr_owner(mr); } qemu_printf("\n"); } } else { if (mr->enabled || display_disabled) { for (i = 0; i < level; i++) { qemu_printf(MTREE_INDENT); } qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s%s): %s%s", cur_start, cur_end, mr->priority, mr->nonvolatile ? "nv-" : "", memory_region_type((MemoryRegion *)mr), memory_region_name(mr), mr->enabled ? "" : " [disabled]"); if (owner) { mtree_print_mr_owner(mr); } qemu_printf("\n"); } } QTAILQ_INIT(&submr_print_queue); QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) { new_ml = g_new(MemoryRegionList, 1); new_ml->mr = submr; QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { if (new_ml->mr->addr < ml->mr->addr || (new_ml->mr->addr == ml->mr->addr && new_ml->mr->priority > ml->mr->priority)) { QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue); new_ml = NULL; break; } } if (new_ml) { QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue); } } QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) { mtree_print_mr(ml->mr, level + 1, cur_start, alias_print_queue, owner, display_disabled); } QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) { g_free(ml); } } struct FlatViewInfo { int counter; bool dispatch_tree; bool owner; AccelClass *ac; }; static void mtree_print_flatview(gpointer key, gpointer value, gpointer user_data) { FlatView *view = key; GArray *fv_address_spaces = value; struct FlatViewInfo *fvi = user_data; FlatRange *range = &view->ranges[0]; MemoryRegion *mr; int n = view->nr; int i; AddressSpace *as; qemu_printf("FlatView #%d\n", fvi->counter); ++fvi->counter; for (i = 0; i < fv_address_spaces->len; ++i) { as = g_array_index(fv_address_spaces, AddressSpace*, i); qemu_printf(" AS \"%s\", root: %s", as->name, memory_region_name(as->root)); if (as->root->alias) { qemu_printf(", alias %s", memory_region_name(as->root->alias)); } qemu_printf("\n"); } qemu_printf(" Root memory region: %s\n", view->root ? memory_region_name(view->root) : "(none)"); if (n <= 0) { qemu_printf(MTREE_INDENT "No rendered FlatView\n\n"); return; } while (n--) { mr = range->mr; if (range->offset_in_region) { qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s%s): %s @" TARGET_FMT_plx, int128_get64(range->addr.start), int128_get64(range->addr.start) + MR_SIZE(range->addr.size), mr->priority, range->nonvolatile ? "nv-" : "", range->readonly ? "rom" : memory_region_type(mr), memory_region_name(mr), range->offset_in_region); } else { qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s%s): %s", int128_get64(range->addr.start), int128_get64(range->addr.start) + MR_SIZE(range->addr.size), mr->priority, range->nonvolatile ? "nv-" : "", range->readonly ? "rom" : memory_region_type(mr), memory_region_name(mr)); } if (fvi->owner) { mtree_print_mr_owner(mr); } if (fvi->ac) { for (i = 0; i < fv_address_spaces->len; ++i) { as = g_array_index(fv_address_spaces, AddressSpace*, i); if (fvi->ac->has_memory(current_machine, as, int128_get64(range->addr.start), MR_SIZE(range->addr.size) + 1)) { qemu_printf(" %s", fvi->ac->name); } } } qemu_printf("\n"); range++; } #if !defined(CONFIG_USER_ONLY) if (fvi->dispatch_tree && view->root) { mtree_print_dispatch(view->dispatch, view->root); } #endif qemu_printf("\n"); } static gboolean mtree_info_flatview_free(gpointer key, gpointer value, gpointer user_data) { FlatView *view = key; GArray *fv_address_spaces = value; g_array_unref(fv_address_spaces); flatview_unref(view); return true; } static void mtree_info_flatview(bool dispatch_tree, bool owner) { struct FlatViewInfo fvi = { .counter = 0, .dispatch_tree = dispatch_tree, .owner = owner, }; AddressSpace *as; FlatView *view; GArray *fv_address_spaces; GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); AccelClass *ac = ACCEL_GET_CLASS(current_accel()); if (ac->has_memory) { fvi.ac = ac; } /* Gather all FVs in one table */ QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { view = address_space_get_flatview(as); fv_address_spaces = g_hash_table_lookup(views, view); if (!fv_address_spaces) { fv_address_spaces = g_array_new(false, false, sizeof(as)); g_hash_table_insert(views, view, fv_address_spaces); } g_array_append_val(fv_address_spaces, as); } /* Print */ g_hash_table_foreach(views, mtree_print_flatview, &fvi); /* Free */ g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0); g_hash_table_unref(views); } struct AddressSpaceInfo { MemoryRegionListHead *ml_head; bool owner; bool disabled; }; /* Returns negative value if a < b; zero if a = b; positive value if a > b. */ static gint address_space_compare_name(gconstpointer a, gconstpointer b) { const AddressSpace *as_a = a; const AddressSpace *as_b = b; return g_strcmp0(as_a->name, as_b->name); } static void mtree_print_as_name(gpointer data, gpointer user_data) { AddressSpace *as = data; qemu_printf("address-space: %s\n", as->name); } static void mtree_print_as(gpointer key, gpointer value, gpointer user_data) { MemoryRegion *mr = key; GSList *as_same_root_mr_list = value; struct AddressSpaceInfo *asi = user_data; g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL); mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled); qemu_printf("\n"); } static gboolean mtree_info_as_free(gpointer key, gpointer value, gpointer user_data) { GSList *as_same_root_mr_list = value; g_slist_free(as_same_root_mr_list); return true; } static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled) { MemoryRegionListHead ml_head; MemoryRegionList *ml, *ml2; AddressSpace *as; GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal); GSList *as_same_root_mr_list; struct AddressSpaceInfo asi = { .ml_head = &ml_head, .owner = owner, .disabled = disabled, }; QTAILQ_INIT(&ml_head); QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) { /* Create hashtable, key=AS root MR, value = list of AS */ as_same_root_mr_list = g_hash_table_lookup(views, as->root); as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as, address_space_compare_name); g_hash_table_insert(views, as->root, as_same_root_mr_list); } /* print address spaces */ g_hash_table_foreach(views, mtree_print_as, &asi); g_hash_table_foreach_remove(views, mtree_info_as_free, 0); g_hash_table_unref(views); /* print aliased regions */ QTAILQ_FOREACH(ml, &ml_head, mrqueue) { qemu_printf("memory-region: %s\n", memory_region_name(ml->mr)); mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled); qemu_printf("\n"); } QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) { g_free(ml); } } void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled) { if (flatview) { mtree_info_flatview(dispatch_tree, owner); } else { mtree_info_as(dispatch_tree, owner, disabled); } } void memory_region_init_ram(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp) { DeviceState *owner_dev; Error *err = NULL; memory_region_init_ram_nomigrate(mr, owner, name, size, &err); if (err) { error_propagate(errp, err); return; } /* This will assert if owner is neither NULL nor a DeviceState. * We only want the owner here for the purposes of defining a * unique name for migration. TODO: Ideally we should implement * a naming scheme for Objects which are not DeviceStates, in * which case we can relax this restriction. */ owner_dev = DEVICE(owner); vmstate_register_ram(mr, owner_dev); } void memory_region_init_rom(MemoryRegion *mr, Object *owner, const char *name, uint64_t size, Error **errp) { DeviceState *owner_dev; Error *err = NULL; memory_region_init_rom_nomigrate(mr, owner, name, size, &err); if (err) { error_propagate(errp, err); return; } /* This will assert if owner is neither NULL nor a DeviceState. * We only want the owner here for the purposes of defining a * unique name for migration. TODO: Ideally we should implement * a naming scheme for Objects which are not DeviceStates, in * which case we can relax this restriction. */ owner_dev = DEVICE(owner); vmstate_register_ram(mr, owner_dev); } void memory_region_init_rom_device(MemoryRegion *mr, Object *owner, const MemoryRegionOps *ops, void *opaque, const char *name, uint64_t size, Error **errp) { DeviceState *owner_dev; Error *err = NULL; memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque, name, size, &err); if (err) { error_propagate(errp, err); return; } /* This will assert if owner is neither NULL nor a DeviceState. * We only want the owner here for the purposes of defining a * unique name for migration. TODO: Ideally we should implement * a naming scheme for Objects which are not DeviceStates, in * which case we can relax this restriction. */ owner_dev = DEVICE(owner); vmstate_register_ram(mr, owner_dev); } /* * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for * the fuzz_dma_read_cb callback */ #ifdef CONFIG_FUZZ void __attribute__((weak)) fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) { } #endif static const TypeInfo memory_region_info = { .parent = TYPE_OBJECT, .name = TYPE_MEMORY_REGION, .class_size = sizeof(MemoryRegionClass), .instance_size = sizeof(MemoryRegion), .instance_init = memory_region_initfn, .instance_finalize = memory_region_finalize, }; static const TypeInfo iommu_memory_region_info = { .parent = TYPE_MEMORY_REGION, .name = TYPE_IOMMU_MEMORY_REGION, .class_size = sizeof(IOMMUMemoryRegionClass), .instance_size = sizeof(IOMMUMemoryRegion), .instance_init = iommu_memory_region_initfn, .abstract = true, }; static const TypeInfo ram_discard_manager_info = { .parent = TYPE_INTERFACE, .name = TYPE_RAM_DISCARD_MANAGER, .class_size = sizeof(RamDiscardManagerClass), }; static void memory_register_types(void) { type_register_static(&memory_region_info); type_register_static(&iommu_memory_region_info); type_register_static(&ram_discard_manager_info); } type_init(memory_register_types)