/* * Copyright (c) 1995 Danny Gasparovski. * * Please read the file COPYRIGHT for the * terms and conditions of the copyright. */ #include #include "qemu-timer.h" static void ifs_insque(struct mbuf *ifm, struct mbuf *ifmhead) { ifm->ifs_next = ifmhead->ifs_next; ifmhead->ifs_next = ifm; ifm->ifs_prev = ifmhead; ifm->ifs_next->ifs_prev = ifm; } static void ifs_remque(struct mbuf *ifm) { ifm->ifs_prev->ifs_next = ifm->ifs_next; ifm->ifs_next->ifs_prev = ifm->ifs_prev; } void if_init(Slirp *slirp) { slirp->if_fastq.ifq_next = slirp->if_fastq.ifq_prev = &slirp->if_fastq; slirp->if_batchq.ifq_next = slirp->if_batchq.ifq_prev = &slirp->if_batchq; slirp->next_m = &slirp->if_batchq; } /* * if_output: Queue packet into an output queue. * There are 2 output queue's, if_fastq and if_batchq. * Each output queue is a doubly linked list of double linked lists * of mbufs, each list belonging to one "session" (socket). This * way, we can output packets fairly by sending one packet from each * session, instead of all the packets from one session, then all packets * from the next session, etc. Packets on the if_fastq get absolute * priority, but if one session hogs the link, it gets "downgraded" * to the batchq until it runs out of packets, then it'll return * to the fastq (eg. if the user does an ls -alR in a telnet session, * it'll temporarily get downgraded to the batchq) */ void if_output(struct socket *so, struct mbuf *ifm) { Slirp *slirp = ifm->slirp; struct mbuf *ifq; int on_fastq = 1; DEBUG_CALL("if_output"); DEBUG_ARG("so = %lx", (long)so); DEBUG_ARG("ifm = %lx", (long)ifm); /* * First remove the mbuf from m_usedlist, * since we're gonna use m_next and m_prev ourselves * XXX Shouldn't need this, gotta change dtom() etc. */ if (ifm->m_flags & M_USEDLIST) { remque(ifm); ifm->m_flags &= ~M_USEDLIST; } /* * See if there's already a batchq list for this session. * This can include an interactive session, which should go on fastq, * but gets too greedy... hence it'll be downgraded from fastq to batchq. * We mustn't put this packet back on the fastq (or we'll send it out of order) * XXX add cache here? */ for (ifq = slirp->if_batchq.ifq_prev; ifq != &slirp->if_batchq; ifq = ifq->ifq_prev) { if (so == ifq->ifq_so) { /* A match! */ ifm->ifq_so = so; ifs_insque(ifm, ifq->ifs_prev); goto diddit; } } /* No match, check which queue to put it on */ if (so && (so->so_iptos & IPTOS_LOWDELAY)) { ifq = slirp->if_fastq.ifq_prev; on_fastq = 1; /* * Check if this packet is a part of the last * packet's session */ if (ifq->ifq_so == so) { ifm->ifq_so = so; ifs_insque(ifm, ifq->ifs_prev); goto diddit; } } else ifq = slirp->if_batchq.ifq_prev; /* Create a new doubly linked list for this session */ ifm->ifq_so = so; ifs_init(ifm); insque(ifm, ifq); diddit: slirp->if_queued++; if (so) { /* Update *_queued */ so->so_queued++; so->so_nqueued++; /* * Check if the interactive session should be downgraded to * the batchq. A session is downgraded if it has queued 6 * packets without pausing, and at least 3 of those packets * have been sent over the link * (XXX These are arbitrary numbers, probably not optimal..) */ if (on_fastq && ((so->so_nqueued >= 6) && (so->so_nqueued - so->so_queued) >= 3)) { /* Remove from current queue... */ remque(ifm->ifs_next); /* ...And insert in the new. That'll teach ya! */ insque(ifm->ifs_next, &slirp->if_batchq); } } #ifndef FULL_BOLT /* * This prevents us from malloc()ing too many mbufs */ if_start(ifm->slirp); #endif } /* * Send a packet * We choose a packet based on it's position in the output queues; * If there are packets on the fastq, they are sent FIFO, before * everything else. Otherwise we choose the first packet from the * batchq and send it. the next packet chosen will be from the session * after this one, then the session after that one, and so on.. So, * for example, if there are 3 ftp session's fighting for bandwidth, * one packet will be sent from the first session, then one packet * from the second session, then one packet from the third, then back * to the first, etc. etc. */ void if_start(Slirp *slirp) { uint64_t now = qemu_get_clock_ns(rt_clock); int requeued = 0; struct mbuf *ifm, *ifqt; DEBUG_CALL("if_start"); if (slirp->if_queued == 0) return; /* Nothing to do */ again: /* check if we can really output */ if (!slirp_can_output(slirp->opaque)) return; /* * See which queue to get next packet from * If there's something in the fastq, select it immediately */ if (slirp->if_fastq.ifq_next != &slirp->if_fastq) { ifm = slirp->if_fastq.ifq_next; } else { /* Nothing on fastq, see if next_m is valid */ if (slirp->next_m != &slirp->if_batchq) ifm = slirp->next_m; else ifm = slirp->if_batchq.ifq_next; /* Set which packet to send on next iteration */ slirp->next_m = ifm->ifq_next; } /* Remove it from the queue */ ifqt = ifm->ifq_prev; remque(ifm); slirp->if_queued--; /* If there are more packets for this session, re-queue them */ if (ifm->ifs_next != /* ifm->ifs_prev != */ ifm) { insque(ifm->ifs_next, ifqt); ifs_remque(ifm); } /* Update so_queued */ if (ifm->ifq_so) { if (--ifm->ifq_so->so_queued == 0) /* If there's no more queued, reset nqueued */ ifm->ifq_so->so_nqueued = 0; } if (ifm->expiration_date < now) { /* Expired */ m_free(ifm); } else { /* Encapsulate the packet for sending */ if (if_encap(slirp, ifm)) { m_free(ifm); } else { /* re-queue */ insque(ifm, ifqt); requeued++; } } if (slirp->if_queued) goto again; slirp->if_queued = requeued; }