/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "config-host.h" #include "qemu-common.h" #include "hw/hw.h" #include "hw/qdev.h" #include "net/net.h" #include "monitor/monitor.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "audio/audio.h" #include "migration/migration.h" #include "qemu/sockets.h" #include "qemu/queue.h" #include "sysemu/cpus.h" #include "exec/memory.h" #include "qmp-commands.h" #include "trace.h" #include "qemu/bitops.h" #define SELF_ANNOUNCE_ROUNDS 5 #ifndef ETH_P_RARP #define ETH_P_RARP 0x8035 #endif #define ARP_HTYPE_ETH 0x0001 #define ARP_PTYPE_IP 0x0800 #define ARP_OP_REQUEST_REV 0x3 static int announce_self_create(uint8_t *buf, uint8_t *mac_addr) { /* Ethernet header. */ memset(buf, 0xff, 6); /* destination MAC addr */ memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ /* RARP header. */ *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ *(buf + 18) = 6; /* hardware addr length (ethernet) */ *(buf + 19) = 4; /* protocol addr length (IPv4) */ *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ memcpy(buf + 22, mac_addr, 6); /* source hw addr */ memset(buf + 28, 0x00, 4); /* source protocol addr */ memcpy(buf + 32, mac_addr, 6); /* target hw addr */ memset(buf + 38, 0x00, 4); /* target protocol addr */ /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ memset(buf + 42, 0x00, 18); return 60; /* len (FCS will be added by hardware) */ } static void qemu_announce_self_iter(NICState *nic, void *opaque) { uint8_t buf[60]; int len; len = announce_self_create(buf, nic->conf->macaddr.a); qemu_send_packet_raw(&nic->nc, buf, len); } static void qemu_announce_self_once(void *opaque) { static int count = SELF_ANNOUNCE_ROUNDS; QEMUTimer *timer = *(QEMUTimer **)opaque; qemu_foreach_nic(qemu_announce_self_iter, NULL); if (--count) { /* delay 50ms, 150ms, 250ms, ... */ qemu_mod_timer(timer, qemu_get_clock_ms(rt_clock) + 50 + (SELF_ANNOUNCE_ROUNDS - count - 1) * 100); } else { qemu_del_timer(timer); qemu_free_timer(timer); } } void qemu_announce_self(void) { static QEMUTimer *timer; timer = qemu_new_timer_ms(rt_clock, qemu_announce_self_once, &timer); qemu_announce_self_once(&timer); } /***********************************************************/ /* savevm/loadvm support */ #define IO_BUF_SIZE 32768 struct QEMUFile { const QEMUFileOps *ops; void *opaque; int is_write; int64_t buf_offset; /* start of buffer when writing, end of buffer when reading */ int buf_index; int buf_size; /* 0 when writing */ uint8_t buf[IO_BUF_SIZE]; int last_error; }; typedef struct QEMUFileStdio { FILE *stdio_file; QEMUFile *file; } QEMUFileStdio; typedef struct QEMUFileSocket { int fd; QEMUFile *file; } QEMUFileSocket; static int socket_get_fd(void *opaque) { QEMUFileSocket *s = opaque; return s->fd; } static int socket_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size) { QEMUFileSocket *s = opaque; ssize_t len; for (;;) { len = qemu_recv(s->fd, buf, size, 0); if (len != -1) { break; } if (socket_error() == EAGAIN) { assert(qemu_in_coroutine()); qemu_coroutine_yield(); } else if (socket_error() != EINTR) { break; } } if (len == -1) { len = -socket_error(); } return len; } static int socket_close(void *opaque) { QEMUFileSocket *s = opaque; closesocket(s->fd); g_free(s); return 0; } static int stdio_get_fd(void *opaque) { QEMUFileStdio *s = opaque; return fileno(s->stdio_file); } static int stdio_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size) { QEMUFileStdio *s = opaque; return fwrite(buf, 1, size, s->stdio_file); } static int stdio_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size) { QEMUFileStdio *s = opaque; FILE *fp = s->stdio_file; int bytes; for (;;) { clearerr(fp); bytes = fread(buf, 1, size, fp); if (bytes != 0 || !ferror(fp)) { break; } if (errno == EAGAIN) { assert(qemu_in_coroutine()); qemu_coroutine_yield(); } else if (errno != EINTR) { break; } } return bytes; } static int stdio_pclose(void *opaque) { QEMUFileStdio *s = opaque; int ret; ret = pclose(s->stdio_file); if (ret == -1) { ret = -errno; } g_free(s); return ret; } static int stdio_fclose(void *opaque) { QEMUFileStdio *s = opaque; int ret = 0; if (fclose(s->stdio_file) == EOF) { ret = -errno; } g_free(s); return ret; } static const QEMUFileOps stdio_pipe_read_ops = { .get_fd = stdio_get_fd, .get_buffer = stdio_get_buffer, .close = stdio_pclose }; static const QEMUFileOps stdio_pipe_write_ops = { .get_fd = stdio_get_fd, .put_buffer = stdio_put_buffer, .close = stdio_pclose }; QEMUFile *qemu_popen(FILE *stdio_file, const char *mode) { QEMUFileStdio *s; if (stdio_file == NULL || mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 0) { fprintf(stderr, "qemu_popen: Argument validity check failed\n"); return NULL; } s = g_malloc0(sizeof(QEMUFileStdio)); s->stdio_file = stdio_file; if(mode[0] == 'r') { s->file = qemu_fopen_ops(s, &stdio_pipe_read_ops); } else { s->file = qemu_fopen_ops(s, &stdio_pipe_write_ops); } return s->file; } QEMUFile *qemu_popen_cmd(const char *command, const char *mode) { FILE *popen_file; popen_file = popen(command, mode); if(popen_file == NULL) { return NULL; } return qemu_popen(popen_file, mode); } static const QEMUFileOps stdio_file_read_ops = { .get_fd = stdio_get_fd, .get_buffer = stdio_get_buffer, .close = stdio_fclose }; static const QEMUFileOps stdio_file_write_ops = { .get_fd = stdio_get_fd, .put_buffer = stdio_put_buffer, .close = stdio_fclose }; QEMUFile *qemu_fdopen(int fd, const char *mode) { QEMUFileStdio *s; if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 'b' || mode[2] != 0) { fprintf(stderr, "qemu_fdopen: Argument validity check failed\n"); return NULL; } s = g_malloc0(sizeof(QEMUFileStdio)); s->stdio_file = fdopen(fd, mode); if (!s->stdio_file) goto fail; if(mode[0] == 'r') { s->file = qemu_fopen_ops(s, &stdio_file_read_ops); } else { s->file = qemu_fopen_ops(s, &stdio_file_write_ops); } return s->file; fail: g_free(s); return NULL; } static const QEMUFileOps socket_read_ops = { .get_fd = socket_get_fd, .get_buffer = socket_get_buffer, .close = socket_close }; QEMUFile *qemu_fopen_socket(int fd) { QEMUFileSocket *s = g_malloc0(sizeof(QEMUFileSocket)); s->fd = fd; s->file = qemu_fopen_ops(s, &socket_read_ops); return s->file; } QEMUFile *qemu_fopen(const char *filename, const char *mode) { QEMUFileStdio *s; if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 'b' || mode[2] != 0) { fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); return NULL; } s = g_malloc0(sizeof(QEMUFileStdio)); s->stdio_file = fopen(filename, mode); if (!s->stdio_file) goto fail; if(mode[0] == 'w') { s->file = qemu_fopen_ops(s, &stdio_file_write_ops); } else { s->file = qemu_fopen_ops(s, &stdio_file_read_ops); } return s->file; fail: g_free(s); return NULL; } static int block_put_buffer(void *opaque, const uint8_t *buf, int64_t pos, int size) { bdrv_save_vmstate(opaque, buf, pos, size); return size; } static int block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size) { return bdrv_load_vmstate(opaque, buf, pos, size); } static int bdrv_fclose(void *opaque) { return bdrv_flush(opaque); } static const QEMUFileOps bdrv_read_ops = { .get_buffer = block_get_buffer, .close = bdrv_fclose }; static const QEMUFileOps bdrv_write_ops = { .put_buffer = block_put_buffer, .close = bdrv_fclose }; static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) { if (is_writable) return qemu_fopen_ops(bs, &bdrv_write_ops); return qemu_fopen_ops(bs, &bdrv_read_ops); } QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) { QEMUFile *f; f = g_malloc0(sizeof(QEMUFile)); f->opaque = opaque; f->ops = ops; f->is_write = 0; return f; } int qemu_file_get_error(QEMUFile *f) { return f->last_error; } static void qemu_file_set_error(QEMUFile *f, int ret) { if (f->last_error == 0) { f->last_error = ret; } } /** Flushes QEMUFile buffer * */ static int qemu_fflush(QEMUFile *f) { int ret = 0; if (!f->ops->put_buffer) return 0; if (f->is_write && f->buf_index > 0) { ret = f->ops->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index); if (ret >= 0) { f->buf_offset += f->buf_index; } f->buf_index = 0; } return ret; } static void qemu_fill_buffer(QEMUFile *f) { int len; int pending; if (!f->ops->get_buffer) return; if (f->is_write) abort(); pending = f->buf_size - f->buf_index; if (pending > 0) { memmove(f->buf, f->buf + f->buf_index, pending); } f->buf_index = 0; f->buf_size = pending; len = f->ops->get_buffer(f->opaque, f->buf + pending, f->buf_offset, IO_BUF_SIZE - pending); if (len > 0) { f->buf_size += len; f->buf_offset += len; } else if (len == 0) { qemu_file_set_error(f, -EIO); } else if (len != -EAGAIN) qemu_file_set_error(f, len); } int qemu_get_fd(QEMUFile *f) { if (f->ops->get_fd) { return f->ops->get_fd(f->opaque); } return -1; } /** Closes the file * * Returns negative error value if any error happened on previous operations or * while closing the file. Returns 0 or positive number on success. * * The meaning of return value on success depends on the specific backend * being used. */ int qemu_fclose(QEMUFile *f) { int ret; ret = qemu_fflush(f); if (f->ops->close) { int ret2 = f->ops->close(f->opaque); if (ret >= 0) { ret = ret2; } } /* If any error was spotted before closing, we should report it * instead of the close() return value. */ if (f->last_error) { ret = f->last_error; } g_free(f); return ret; } void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size) { int l; if (f->last_error) { return; } if (f->is_write == 0 && f->buf_index > 0) { fprintf(stderr, "Attempted to write to buffer while read buffer is not empty\n"); abort(); } while (size > 0) { l = IO_BUF_SIZE - f->buf_index; if (l > size) l = size; memcpy(f->buf + f->buf_index, buf, l); f->is_write = 1; f->buf_index += l; buf += l; size -= l; if (f->buf_index >= IO_BUF_SIZE) { int ret = qemu_fflush(f); if (ret < 0) { qemu_file_set_error(f, ret); break; } } } } void qemu_put_byte(QEMUFile *f, int v) { if (f->last_error) { return; } if (f->is_write == 0 && f->buf_index > 0) { fprintf(stderr, "Attempted to write to buffer while read buffer is not empty\n"); abort(); } f->buf[f->buf_index++] = v; f->is_write = 1; if (f->buf_index >= IO_BUF_SIZE) { int ret = qemu_fflush(f); if (ret < 0) { qemu_file_set_error(f, ret); } } } static void qemu_file_skip(QEMUFile *f, int size) { if (f->buf_index + size <= f->buf_size) { f->buf_index += size; } } static int qemu_peek_buffer(QEMUFile *f, uint8_t *buf, int size, size_t offset) { int pending; int index; if (f->is_write) { abort(); } index = f->buf_index + offset; pending = f->buf_size - index; if (pending < size) { qemu_fill_buffer(f); index = f->buf_index + offset; pending = f->buf_size - index; } if (pending <= 0) { return 0; } if (size > pending) { size = pending; } memcpy(buf, f->buf + index, size); return size; } int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size) { int pending = size; int done = 0; while (pending > 0) { int res; res = qemu_peek_buffer(f, buf, pending, 0); if (res == 0) { return done; } qemu_file_skip(f, res); buf += res; pending -= res; done += res; } return done; } static int qemu_peek_byte(QEMUFile *f, int offset) { int index = f->buf_index + offset; if (f->is_write) { abort(); } if (index >= f->buf_size) { qemu_fill_buffer(f); index = f->buf_index + offset; if (index >= f->buf_size) { return 0; } } return f->buf[index]; } int qemu_get_byte(QEMUFile *f) { int result; result = qemu_peek_byte(f, 0); qemu_file_skip(f, 1); return result; } static int64_t qemu_ftell(QEMUFile *f) { return f->buf_offset - f->buf_size + f->buf_index; } int qemu_file_rate_limit(QEMUFile *f) { if (f->ops->rate_limit) return f->ops->rate_limit(f->opaque); return 0; } int64_t qemu_file_get_rate_limit(QEMUFile *f) { if (f->ops->get_rate_limit) return f->ops->get_rate_limit(f->opaque); return 0; } int64_t qemu_file_set_rate_limit(QEMUFile *f, int64_t new_rate) { /* any failed or completed migration keeps its state to allow probing of * migration data, but has no associated file anymore */ if (f && f->ops->set_rate_limit) return f->ops->set_rate_limit(f->opaque, new_rate); return 0; } void qemu_put_be16(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be32(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 24); qemu_put_byte(f, v >> 16); qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be64(QEMUFile *f, uint64_t v) { qemu_put_be32(f, v >> 32); qemu_put_be32(f, v); } unsigned int qemu_get_be16(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } unsigned int qemu_get_be32(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 24; v |= qemu_get_byte(f) << 16; v |= qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } uint64_t qemu_get_be64(QEMUFile *f) { uint64_t v; v = (uint64_t)qemu_get_be32(f) << 32; v |= qemu_get_be32(f); return v; } /* timer */ void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = qemu_timer_expire_time_ns(ts); qemu_put_be64(f, expire_time); } void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = qemu_get_be64(f); if (expire_time != -1) { qemu_mod_timer_ns(ts, expire_time); } else { qemu_del_timer(ts); } } /* bool */ static int get_bool(QEMUFile *f, void *pv, size_t size) { bool *v = pv; *v = qemu_get_byte(f); return 0; } static void put_bool(QEMUFile *f, void *pv, size_t size) { bool *v = pv; qemu_put_byte(f, *v); } const VMStateInfo vmstate_info_bool = { .name = "bool", .get = get_bool, .put = put_bool, }; /* 8 bit int */ static int get_int8(QEMUFile *f, void *pv, size_t size) { int8_t *v = pv; qemu_get_s8s(f, v); return 0; } static void put_int8(QEMUFile *f, void *pv, size_t size) { int8_t *v = pv; qemu_put_s8s(f, v); } const VMStateInfo vmstate_info_int8 = { .name = "int8", .get = get_int8, .put = put_int8, }; /* 16 bit int */ static int get_int16(QEMUFile *f, void *pv, size_t size) { int16_t *v = pv; qemu_get_sbe16s(f, v); return 0; } static void put_int16(QEMUFile *f, void *pv, size_t size) { int16_t *v = pv; qemu_put_sbe16s(f, v); } const VMStateInfo vmstate_info_int16 = { .name = "int16", .get = get_int16, .put = put_int16, }; /* 32 bit int */ static int get_int32(QEMUFile *f, void *pv, size_t size) { int32_t *v = pv; qemu_get_sbe32s(f, v); return 0; } static void put_int32(QEMUFile *f, void *pv, size_t size) { int32_t *v = pv; qemu_put_sbe32s(f, v); } const VMStateInfo vmstate_info_int32 = { .name = "int32", .get = get_int32, .put = put_int32, }; /* 32 bit int. See that the received value is the same than the one in the field */ static int get_int32_equal(QEMUFile *f, void *pv, size_t size) { int32_t *v = pv; int32_t v2; qemu_get_sbe32s(f, &v2); if (*v == v2) return 0; return -EINVAL; } const VMStateInfo vmstate_info_int32_equal = { .name = "int32 equal", .get = get_int32_equal, .put = put_int32, }; /* 32 bit int. See that the received value is the less or the same than the one in the field */ static int get_int32_le(QEMUFile *f, void *pv, size_t size) { int32_t *old = pv; int32_t new; qemu_get_sbe32s(f, &new); if (*old <= new) return 0; return -EINVAL; } const VMStateInfo vmstate_info_int32_le = { .name = "int32 equal", .get = get_int32_le, .put = put_int32, }; /* 64 bit int */ static int get_int64(QEMUFile *f, void *pv, size_t size) { int64_t *v = pv; qemu_get_sbe64s(f, v); return 0; } static void put_int64(QEMUFile *f, void *pv, size_t size) { int64_t *v = pv; qemu_put_sbe64s(f, v); } const VMStateInfo vmstate_info_int64 = { .name = "int64", .get = get_int64, .put = put_int64, }; /* 8 bit unsigned int */ static int get_uint8(QEMUFile *f, void *pv, size_t size) { uint8_t *v = pv; qemu_get_8s(f, v); return 0; } static void put_uint8(QEMUFile *f, void *pv, size_t size) { uint8_t *v = pv; qemu_put_8s(f, v); } const VMStateInfo vmstate_info_uint8 = { .name = "uint8", .get = get_uint8, .put = put_uint8, }; /* 16 bit unsigned int */ static int get_uint16(QEMUFile *f, void *pv, size_t size) { uint16_t *v = pv; qemu_get_be16s(f, v); return 0; } static void put_uint16(QEMUFile *f, void *pv, size_t size) { uint16_t *v = pv; qemu_put_be16s(f, v); } const VMStateInfo vmstate_info_uint16 = { .name = "uint16", .get = get_uint16, .put = put_uint16, }; /* 32 bit unsigned int */ static int get_uint32(QEMUFile *f, void *pv, size_t size) { uint32_t *v = pv; qemu_get_be32s(f, v); return 0; } static void put_uint32(QEMUFile *f, void *pv, size_t size) { uint32_t *v = pv; qemu_put_be32s(f, v); } const VMStateInfo vmstate_info_uint32 = { .name = "uint32", .get = get_uint32, .put = put_uint32, }; /* 32 bit uint. See that the received value is the same than the one in the field */ static int get_uint32_equal(QEMUFile *f, void *pv, size_t size) { uint32_t *v = pv; uint32_t v2; qemu_get_be32s(f, &v2); if (*v == v2) { return 0; } return -EINVAL; } const VMStateInfo vmstate_info_uint32_equal = { .name = "uint32 equal", .get = get_uint32_equal, .put = put_uint32, }; /* 64 bit unsigned int */ static int get_uint64(QEMUFile *f, void *pv, size_t size) { uint64_t *v = pv; qemu_get_be64s(f, v); return 0; } static void put_uint64(QEMUFile *f, void *pv, size_t size) { uint64_t *v = pv; qemu_put_be64s(f, v); } const VMStateInfo vmstate_info_uint64 = { .name = "uint64", .get = get_uint64, .put = put_uint64, }; /* 8 bit int. See that the received value is the same than the one in the field */ static int get_uint8_equal(QEMUFile *f, void *pv, size_t size) { uint8_t *v = pv; uint8_t v2; qemu_get_8s(f, &v2); if (*v == v2) return 0; return -EINVAL; } const VMStateInfo vmstate_info_uint8_equal = { .name = "uint8 equal", .get = get_uint8_equal, .put = put_uint8, }; /* 16 bit unsigned int int. See that the received value is the same than the one in the field */ static int get_uint16_equal(QEMUFile *f, void *pv, size_t size) { uint16_t *v = pv; uint16_t v2; qemu_get_be16s(f, &v2); if (*v == v2) return 0; return -EINVAL; } const VMStateInfo vmstate_info_uint16_equal = { .name = "uint16 equal", .get = get_uint16_equal, .put = put_uint16, }; /* timers */ static int get_timer(QEMUFile *f, void *pv, size_t size) { QEMUTimer *v = pv; qemu_get_timer(f, v); return 0; } static void put_timer(QEMUFile *f, void *pv, size_t size) { QEMUTimer *v = pv; qemu_put_timer(f, v); } const VMStateInfo vmstate_info_timer = { .name = "timer", .get = get_timer, .put = put_timer, }; /* uint8_t buffers */ static int get_buffer(QEMUFile *f, void *pv, size_t size) { uint8_t *v = pv; qemu_get_buffer(f, v, size); return 0; } static void put_buffer(QEMUFile *f, void *pv, size_t size) { uint8_t *v = pv; qemu_put_buffer(f, v, size); } const VMStateInfo vmstate_info_buffer = { .name = "buffer", .get = get_buffer, .put = put_buffer, }; /* unused buffers: space that was used for some fields that are not useful anymore */ static int get_unused_buffer(QEMUFile *f, void *pv, size_t size) { uint8_t buf[1024]; int block_len; while (size > 0) { block_len = MIN(sizeof(buf), size); size -= block_len; qemu_get_buffer(f, buf, block_len); } return 0; } static void put_unused_buffer(QEMUFile *f, void *pv, size_t size) { static const uint8_t buf[1024]; int block_len; while (size > 0) { block_len = MIN(sizeof(buf), size); size -= block_len; qemu_put_buffer(f, buf, block_len); } } const VMStateInfo vmstate_info_unused_buffer = { .name = "unused_buffer", .get = get_unused_buffer, .put = put_unused_buffer, }; /* bitmaps (as defined by bitmap.h). Note that size here is the size * of the bitmap in bits. The on-the-wire format of a bitmap is 64 * bit words with the bits in big endian order. The in-memory format * is an array of 'unsigned long', which may be either 32 or 64 bits. */ /* This is the number of 64 bit words sent over the wire */ #define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64) static int get_bitmap(QEMUFile *f, void *pv, size_t size) { unsigned long *bmp = pv; int i, idx = 0; for (i = 0; i < BITS_TO_U64S(size); i++) { uint64_t w = qemu_get_be64(f); bmp[idx++] = w; if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) { bmp[idx++] = w >> 32; } } return 0; } static void put_bitmap(QEMUFile *f, void *pv, size_t size) { unsigned long *bmp = pv; int i, idx = 0; for (i = 0; i < BITS_TO_U64S(size); i++) { uint64_t w = bmp[idx++]; if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) { w |= ((uint64_t)bmp[idx++]) << 32; } qemu_put_be64(f, w); } } const VMStateInfo vmstate_info_bitmap = { .name = "bitmap", .get = get_bitmap, .put = put_bitmap, }; typedef struct CompatEntry { char idstr[256]; int instance_id; } CompatEntry; typedef struct SaveStateEntry { QTAILQ_ENTRY(SaveStateEntry) entry; char idstr[256]; int instance_id; int alias_id; int version_id; int section_id; SaveVMHandlers *ops; const VMStateDescription *vmsd; void *opaque; CompatEntry *compat; int no_migrate; int is_ram; } SaveStateEntry; static QTAILQ_HEAD(savevm_handlers, SaveStateEntry) savevm_handlers = QTAILQ_HEAD_INITIALIZER(savevm_handlers); static int global_section_id; static int calculate_new_instance_id(const char *idstr) { SaveStateEntry *se; int instance_id = 0; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (strcmp(idstr, se->idstr) == 0 && instance_id <= se->instance_id) { instance_id = se->instance_id + 1; } } return instance_id; } static int calculate_compat_instance_id(const char *idstr) { SaveStateEntry *se; int instance_id = 0; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!se->compat) continue; if (strcmp(idstr, se->compat->idstr) == 0 && instance_id <= se->compat->instance_id) { instance_id = se->compat->instance_id + 1; } } return instance_id; } /* TODO: Individual devices generally have very little idea about the rest of the system, so instance_id should be removed/replaced. Meanwhile pass -1 as instance_id if you do not already have a clearly distinguishing id for all instances of your device class. */ int register_savevm_live(DeviceState *dev, const char *idstr, int instance_id, int version_id, SaveVMHandlers *ops, void *opaque) { SaveStateEntry *se; se = g_malloc0(sizeof(SaveStateEntry)); se->version_id = version_id; se->section_id = global_section_id++; se->ops = ops; se->opaque = opaque; se->vmsd = NULL; se->no_migrate = 0; /* if this is a live_savem then set is_ram */ if (ops->save_live_setup != NULL) { se->is_ram = 1; } if (dev) { char *id = qdev_get_dev_path(dev); if (id) { pstrcpy(se->idstr, sizeof(se->idstr), id); pstrcat(se->idstr, sizeof(se->idstr), "/"); g_free(id); se->compat = g_malloc0(sizeof(CompatEntry)); pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); se->compat->instance_id = instance_id == -1 ? calculate_compat_instance_id(idstr) : instance_id; instance_id = -1; } } pstrcat(se->idstr, sizeof(se->idstr), idstr); if (instance_id == -1) { se->instance_id = calculate_new_instance_id(se->idstr); } else { se->instance_id = instance_id; } assert(!se->compat || se->instance_id == 0); /* add at the end of list */ QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry); return 0; } int register_savevm(DeviceState *dev, const char *idstr, int instance_id, int version_id, SaveStateHandler *save_state, LoadStateHandler *load_state, void *opaque) { SaveVMHandlers *ops = g_malloc0(sizeof(SaveVMHandlers)); ops->save_state = save_state; ops->load_state = load_state; return register_savevm_live(dev, idstr, instance_id, version_id, ops, opaque); } void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) { SaveStateEntry *se, *new_se; char id[256] = ""; if (dev) { char *path = qdev_get_dev_path(dev); if (path) { pstrcpy(id, sizeof(id), path); pstrcat(id, sizeof(id), "/"); g_free(path); } } pstrcat(id, sizeof(id), idstr); QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) { if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { QTAILQ_REMOVE(&savevm_handlers, se, entry); if (se->compat) { g_free(se->compat); } g_free(se->ops); g_free(se); } } } int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, const VMStateDescription *vmsd, void *opaque, int alias_id, int required_for_version) { SaveStateEntry *se; /* If this triggers, alias support can be dropped for the vmsd. */ assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); se = g_malloc0(sizeof(SaveStateEntry)); se->version_id = vmsd->version_id; se->section_id = global_section_id++; se->opaque = opaque; se->vmsd = vmsd; se->alias_id = alias_id; se->no_migrate = vmsd->unmigratable; if (dev) { char *id = qdev_get_dev_path(dev); if (id) { pstrcpy(se->idstr, sizeof(se->idstr), id); pstrcat(se->idstr, sizeof(se->idstr), "/"); g_free(id); se->compat = g_malloc0(sizeof(CompatEntry)); pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); se->compat->instance_id = instance_id == -1 ? calculate_compat_instance_id(vmsd->name) : instance_id; instance_id = -1; } } pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); if (instance_id == -1) { se->instance_id = calculate_new_instance_id(se->idstr); } else { se->instance_id = instance_id; } assert(!se->compat || se->instance_id == 0); /* add at the end of list */ QTAILQ_INSERT_TAIL(&savevm_handlers, se, entry); return 0; } int vmstate_register(DeviceState *dev, int instance_id, const VMStateDescription *vmsd, void *opaque) { return vmstate_register_with_alias_id(dev, instance_id, vmsd, opaque, -1, 0); } void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, void *opaque) { SaveStateEntry *se, *new_se; QTAILQ_FOREACH_SAFE(se, &savevm_handlers, entry, new_se) { if (se->vmsd == vmsd && se->opaque == opaque) { QTAILQ_REMOVE(&savevm_handlers, se, entry); if (se->compat) { g_free(se->compat); } g_free(se); } } } static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd, void *opaque); static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd, void *opaque); int vmstate_load_state(QEMUFile *f, const VMStateDescription *vmsd, void *opaque, int version_id) { VMStateField *field = vmsd->fields; int ret; if (version_id > vmsd->version_id) { return -EINVAL; } if (version_id < vmsd->minimum_version_id_old) { return -EINVAL; } if (version_id < vmsd->minimum_version_id) { return vmsd->load_state_old(f, opaque, version_id); } if (vmsd->pre_load) { int ret = vmsd->pre_load(opaque); if (ret) return ret; } while(field->name) { if ((field->field_exists && field->field_exists(opaque, version_id)) || (!field->field_exists && field->version_id <= version_id)) { void *base_addr = opaque + field->offset; int i, n_elems = 1; int size = field->size; if (field->flags & VMS_VBUFFER) { size = *(int32_t *)(opaque+field->size_offset); if (field->flags & VMS_MULTIPLY) { size *= field->size; } } if (field->flags & VMS_ARRAY) { n_elems = field->num; } else if (field->flags & VMS_VARRAY_INT32) { n_elems = *(int32_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT32) { n_elems = *(uint32_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT16) { n_elems = *(uint16_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT8) { n_elems = *(uint8_t *)(opaque+field->num_offset); } if (field->flags & VMS_POINTER) { base_addr = *(void **)base_addr + field->start; } for (i = 0; i < n_elems; i++) { void *addr = base_addr + size * i; if (field->flags & VMS_ARRAY_OF_POINTER) { addr = *(void **)addr; } if (field->flags & VMS_STRUCT) { ret = vmstate_load_state(f, field->vmsd, addr, field->vmsd->version_id); } else { ret = field->info->get(f, addr, size); } if (ret < 0) { return ret; } } } field++; } ret = vmstate_subsection_load(f, vmsd, opaque); if (ret != 0) { return ret; } if (vmsd->post_load) { return vmsd->post_load(opaque, version_id); } return 0; } void vmstate_save_state(QEMUFile *f, const VMStateDescription *vmsd, void *opaque) { VMStateField *field = vmsd->fields; if (vmsd->pre_save) { vmsd->pre_save(opaque); } while(field->name) { if (!field->field_exists || field->field_exists(opaque, vmsd->version_id)) { void *base_addr = opaque + field->offset; int i, n_elems = 1; int size = field->size; if (field->flags & VMS_VBUFFER) { size = *(int32_t *)(opaque+field->size_offset); if (field->flags & VMS_MULTIPLY) { size *= field->size; } } if (field->flags & VMS_ARRAY) { n_elems = field->num; } else if (field->flags & VMS_VARRAY_INT32) { n_elems = *(int32_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT32) { n_elems = *(uint32_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT16) { n_elems = *(uint16_t *)(opaque+field->num_offset); } else if (field->flags & VMS_VARRAY_UINT8) { n_elems = *(uint8_t *)(opaque+field->num_offset); } if (field->flags & VMS_POINTER) { base_addr = *(void **)base_addr + field->start; } for (i = 0; i < n_elems; i++) { void *addr = base_addr + size * i; if (field->flags & VMS_ARRAY_OF_POINTER) { addr = *(void **)addr; } if (field->flags & VMS_STRUCT) { vmstate_save_state(f, field->vmsd, addr); } else { field->info->put(f, addr, size); } } } field++; } vmstate_subsection_save(f, vmsd, opaque); } static int vmstate_load(QEMUFile *f, SaveStateEntry *se, int version_id) { if (!se->vmsd) { /* Old style */ return se->ops->load_state(f, se->opaque, version_id); } return vmstate_load_state(f, se->vmsd, se->opaque, version_id); } static void vmstate_save(QEMUFile *f, SaveStateEntry *se) { if (!se->vmsd) { /* Old style */ se->ops->save_state(f, se->opaque); return; } vmstate_save_state(f,se->vmsd, se->opaque); } #define QEMU_VM_FILE_MAGIC 0x5145564d #define QEMU_VM_FILE_VERSION_COMPAT 0x00000002 #define QEMU_VM_FILE_VERSION 0x00000003 #define QEMU_VM_EOF 0x00 #define QEMU_VM_SECTION_START 0x01 #define QEMU_VM_SECTION_PART 0x02 #define QEMU_VM_SECTION_END 0x03 #define QEMU_VM_SECTION_FULL 0x04 #define QEMU_VM_SUBSECTION 0x05 bool qemu_savevm_state_blocked(Error **errp) { SaveStateEntry *se; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (se->no_migrate) { error_set(errp, QERR_MIGRATION_NOT_SUPPORTED, se->idstr); return true; } } return false; } int qemu_savevm_state_begin(QEMUFile *f, const MigrationParams *params) { SaveStateEntry *se; int ret; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!se->ops || !se->ops->set_params) { continue; } se->ops->set_params(params, se->opaque); } qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); QTAILQ_FOREACH(se, &savevm_handlers, entry) { int len; if (!se->ops || !se->ops->save_live_setup) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_START); qemu_put_be32(f, se->section_id); /* ID string */ len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); ret = se->ops->save_live_setup(f, se->opaque); if (ret < 0) { qemu_savevm_state_cancel(); return ret; } } ret = qemu_file_get_error(f); if (ret != 0) { qemu_savevm_state_cancel(); } return ret; } /* * this function has three return values: * negative: there was one error, and we have -errno. * 0 : We haven't finished, caller have to go again * 1 : We have finished, we can go to complete phase */ int qemu_savevm_state_iterate(QEMUFile *f) { SaveStateEntry *se; int ret = 1; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!se->ops || !se->ops->save_live_iterate) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } if (qemu_file_rate_limit(f)) { return 0; } trace_savevm_section_start(); /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_PART); qemu_put_be32(f, se->section_id); ret = se->ops->save_live_iterate(f, se->opaque); trace_savevm_section_end(se->section_id); if (ret <= 0) { /* Do not proceed to the next vmstate before this one reported completion of the current stage. This serializes the migration and reduces the probability that a faster changing state is synchronized over and over again. */ break; } } if (ret != 0) { return ret; } ret = qemu_file_get_error(f); if (ret != 0) { qemu_savevm_state_cancel(); } return ret; } int qemu_savevm_state_complete(QEMUFile *f) { SaveStateEntry *se; int ret; cpu_synchronize_all_states(); QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!se->ops || !se->ops->save_live_complete) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } trace_savevm_section_start(); /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_END); qemu_put_be32(f, se->section_id); ret = se->ops->save_live_complete(f, se->opaque); trace_savevm_section_end(se->section_id); if (ret < 0) { return ret; } } QTAILQ_FOREACH(se, &savevm_handlers, entry) { int len; if ((!se->ops || !se->ops->save_state) && !se->vmsd) { continue; } trace_savevm_section_start(); /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_FULL); qemu_put_be32(f, se->section_id); /* ID string */ len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); vmstate_save(f, se); trace_savevm_section_end(se->section_id); } qemu_put_byte(f, QEMU_VM_EOF); return qemu_file_get_error(f); } uint64_t qemu_savevm_state_pending(QEMUFile *f, uint64_t max_size) { SaveStateEntry *se; uint64_t ret = 0; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!se->ops || !se->ops->save_live_pending) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } ret += se->ops->save_live_pending(f, se->opaque, max_size); } return ret; } void qemu_savevm_state_cancel(void) { SaveStateEntry *se; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (se->ops && se->ops->cancel) { se->ops->cancel(se->opaque); } } } static int qemu_savevm_state(QEMUFile *f) { int ret; MigrationParams params = { .blk = 0, .shared = 0 }; if (qemu_savevm_state_blocked(NULL)) { ret = -EINVAL; goto out; } ret = qemu_savevm_state_begin(f, ¶ms); if (ret < 0) goto out; do { ret = qemu_savevm_state_iterate(f); if (ret < 0) goto out; } while (ret == 0); ret = qemu_savevm_state_complete(f); out: if (ret == 0) { ret = qemu_file_get_error(f); } return ret; } static int qemu_save_device_state(QEMUFile *f) { SaveStateEntry *se; qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); cpu_synchronize_all_states(); QTAILQ_FOREACH(se, &savevm_handlers, entry) { int len; if (se->is_ram) { continue; } if ((!se->ops || !se->ops->save_state) && !se->vmsd) { continue; } /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_FULL); qemu_put_be32(f, se->section_id); /* ID string */ len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); vmstate_save(f, se); } qemu_put_byte(f, QEMU_VM_EOF); return qemu_file_get_error(f); } static SaveStateEntry *find_se(const char *idstr, int instance_id) { SaveStateEntry *se; QTAILQ_FOREACH(se, &savevm_handlers, entry) { if (!strcmp(se->idstr, idstr) && (instance_id == se->instance_id || instance_id == se->alias_id)) return se; /* Migrating from an older version? */ if (strstr(se->idstr, idstr) && se->compat) { if (!strcmp(se->compat->idstr, idstr) && (instance_id == se->compat->instance_id || instance_id == se->alias_id)) return se; } } return NULL; } static const VMStateDescription *vmstate_get_subsection(const VMStateSubsection *sub, char *idstr) { while(sub && sub->needed) { if (strcmp(idstr, sub->vmsd->name) == 0) { return sub->vmsd; } sub++; } return NULL; } static int vmstate_subsection_load(QEMUFile *f, const VMStateDescription *vmsd, void *opaque) { while (qemu_peek_byte(f, 0) == QEMU_VM_SUBSECTION) { char idstr[256]; int ret; uint8_t version_id, len, size; const VMStateDescription *sub_vmsd; len = qemu_peek_byte(f, 1); if (len < strlen(vmsd->name) + 1) { /* subsection name has be be "section_name/a" */ return 0; } size = qemu_peek_buffer(f, (uint8_t *)idstr, len, 2); if (size != len) { return 0; } idstr[size] = 0; if (strncmp(vmsd->name, idstr, strlen(vmsd->name)) != 0) { /* it don't have a valid subsection name */ return 0; } sub_vmsd = vmstate_get_subsection(vmsd->subsections, idstr); if (sub_vmsd == NULL) { return -ENOENT; } qemu_file_skip(f, 1); /* subsection */ qemu_file_skip(f, 1); /* len */ qemu_file_skip(f, len); /* idstr */ version_id = qemu_get_be32(f); ret = vmstate_load_state(f, sub_vmsd, opaque, version_id); if (ret) { return ret; } } return 0; } static void vmstate_subsection_save(QEMUFile *f, const VMStateDescription *vmsd, void *opaque) { const VMStateSubsection *sub = vmsd->subsections; while (sub && sub->needed) { if (sub->needed(opaque)) { const VMStateDescription *vmsd = sub->vmsd; uint8_t len; qemu_put_byte(f, QEMU_VM_SUBSECTION); len = strlen(vmsd->name); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)vmsd->name, len); qemu_put_be32(f, vmsd->version_id); vmstate_save_state(f, vmsd, opaque); } sub++; } } typedef struct LoadStateEntry { QLIST_ENTRY(LoadStateEntry) entry; SaveStateEntry *se; int section_id; int version_id; } LoadStateEntry; int qemu_loadvm_state(QEMUFile *f) { QLIST_HEAD(, LoadStateEntry) loadvm_handlers = QLIST_HEAD_INITIALIZER(loadvm_handlers); LoadStateEntry *le, *new_le; uint8_t section_type; unsigned int v; int ret; if (qemu_savevm_state_blocked(NULL)) { return -EINVAL; } v = qemu_get_be32(f); if (v != QEMU_VM_FILE_MAGIC) return -EINVAL; v = qemu_get_be32(f); if (v == QEMU_VM_FILE_VERSION_COMPAT) { fprintf(stderr, "SaveVM v2 format is obsolete and don't work anymore\n"); return -ENOTSUP; } if (v != QEMU_VM_FILE_VERSION) return -ENOTSUP; while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { uint32_t instance_id, version_id, section_id; SaveStateEntry *se; char idstr[257]; int len; switch (section_type) { case QEMU_VM_SECTION_START: case QEMU_VM_SECTION_FULL: /* Read section start */ section_id = qemu_get_be32(f); len = qemu_get_byte(f); qemu_get_buffer(f, (uint8_t *)idstr, len); idstr[len] = 0; instance_id = qemu_get_be32(f); version_id = qemu_get_be32(f); /* Find savevm section */ se = find_se(idstr, instance_id); if (se == NULL) { fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id); ret = -EINVAL; goto out; } /* Validate version */ if (version_id > se->version_id) { fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n", version_id, idstr, se->version_id); ret = -EINVAL; goto out; } /* Add entry */ le = g_malloc0(sizeof(*le)); le->se = se; le->section_id = section_id; le->version_id = version_id; QLIST_INSERT_HEAD(&loadvm_handlers, le, entry); ret = vmstate_load(f, le->se, le->version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n", instance_id, idstr); goto out; } break; case QEMU_VM_SECTION_PART: case QEMU_VM_SECTION_END: section_id = qemu_get_be32(f); QLIST_FOREACH(le, &loadvm_handlers, entry) { if (le->section_id == section_id) { break; } } if (le == NULL) { fprintf(stderr, "Unknown savevm section %d\n", section_id); ret = -EINVAL; goto out; } ret = vmstate_load(f, le->se, le->version_id); if (ret < 0) { fprintf(stderr, "qemu: warning: error while loading state section id %d\n", section_id); goto out; } break; default: fprintf(stderr, "Unknown savevm section type %d\n", section_type); ret = -EINVAL; goto out; } } cpu_synchronize_all_post_init(); ret = 0; out: QLIST_FOREACH_SAFE(le, &loadvm_handlers, entry, new_le) { QLIST_REMOVE(le, entry); g_free(le); } if (ret == 0) { ret = qemu_file_get_error(f); } return ret; } static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info, const char *name) { QEMUSnapshotInfo *sn_tab, *sn; int nb_sns, i, ret; ret = -ENOENT; nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) return ret; for(i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) { *sn_info = *sn; ret = 0; break; } } g_free(sn_tab); return ret; } /* * Deletes snapshots of a given name in all opened images. */ static int del_existing_snapshots(Monitor *mon, const char *name) { BlockDriverState *bs; QEMUSnapshotInfo sn1, *snapshot = &sn1; int ret; bs = NULL; while ((bs = bdrv_next(bs))) { if (bdrv_can_snapshot(bs) && bdrv_snapshot_find(bs, snapshot, name) >= 0) { ret = bdrv_snapshot_delete(bs, name); if (ret < 0) { monitor_printf(mon, "Error while deleting snapshot on '%s'\n", bdrv_get_device_name(bs)); return -1; } } } return 0; } void do_savevm(Monitor *mon, const QDict *qdict) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; int ret; QEMUFile *f; int saved_vm_running; uint64_t vm_state_size; qemu_timeval tv; struct tm tm; const char *name = qdict_get_try_str(qdict, "name"); /* Verify if there is a device that doesn't support snapshots and is writable */ bs = NULL; while ((bs = bdrv_next(bs))) { if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { continue; } if (!bdrv_can_snapshot(bs)) { monitor_printf(mon, "Device '%s' is writable but does not support snapshots.\n", bdrv_get_device_name(bs)); return; } } bs = bdrv_snapshots(); if (!bs) { monitor_printf(mon, "No block device can accept snapshots\n"); return; } saved_vm_running = runstate_is_running(); vm_stop(RUN_STATE_SAVE_VM); memset(sn, 0, sizeof(*sn)); /* fill auxiliary fields */ qemu_gettimeofday(&tv); sn->date_sec = tv.tv_sec; sn->date_nsec = tv.tv_usec * 1000; sn->vm_clock_nsec = qemu_get_clock_ns(vm_clock); if (name) { ret = bdrv_snapshot_find(bs, old_sn, name); if (ret >= 0) { pstrcpy(sn->name, sizeof(sn->name), old_sn->name); pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); } else { pstrcpy(sn->name, sizeof(sn->name), name); } } else { /* cast below needed for OpenBSD where tv_sec is still 'long' */ localtime_r((const time_t *)&tv.tv_sec, &tm); strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); } /* Delete old snapshots of the same name */ if (name && del_existing_snapshots(mon, name) < 0) { goto the_end; } /* save the VM state */ f = qemu_fopen_bdrv(bs, 1); if (!f) { monitor_printf(mon, "Could not open VM state file\n"); goto the_end; } ret = qemu_savevm_state(f); vm_state_size = qemu_ftell(f); qemu_fclose(f); if (ret < 0) { monitor_printf(mon, "Error %d while writing VM\n", ret); goto the_end; } /* create the snapshots */ bs1 = NULL; while ((bs1 = bdrv_next(bs1))) { if (bdrv_can_snapshot(bs1)) { /* Write VM state size only to the image that contains the state */ sn->vm_state_size = (bs == bs1 ? vm_state_size : 0); ret = bdrv_snapshot_create(bs1, sn); if (ret < 0) { monitor_printf(mon, "Error while creating snapshot on '%s'\n", bdrv_get_device_name(bs1)); } } } the_end: if (saved_vm_running) vm_start(); } void qmp_xen_save_devices_state(const char *filename, Error **errp) { QEMUFile *f; int saved_vm_running; int ret; saved_vm_running = runstate_is_running(); vm_stop(RUN_STATE_SAVE_VM); f = qemu_fopen(filename, "wb"); if (!f) { error_set(errp, QERR_OPEN_FILE_FAILED, filename); goto the_end; } ret = qemu_save_device_state(f); qemu_fclose(f); if (ret < 0) { error_set(errp, QERR_IO_ERROR); } the_end: if (saved_vm_running) vm_start(); } int load_vmstate(const char *name) { BlockDriverState *bs, *bs_vm_state; QEMUSnapshotInfo sn; QEMUFile *f; int ret; bs_vm_state = bdrv_snapshots(); if (!bs_vm_state) { error_report("No block device supports snapshots"); return -ENOTSUP; } /* Don't even try to load empty VM states */ ret = bdrv_snapshot_find(bs_vm_state, &sn, name); if (ret < 0) { return ret; } else if (sn.vm_state_size == 0) { error_report("This is a disk-only snapshot. Revert to it offline " "using qemu-img."); return -EINVAL; } /* Verify if there is any device that doesn't support snapshots and is writable and check if the requested snapshot is available too. */ bs = NULL; while ((bs = bdrv_next(bs))) { if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) { continue; } if (!bdrv_can_snapshot(bs)) { error_report("Device '%s' is writable but does not support snapshots.", bdrv_get_device_name(bs)); return -ENOTSUP; } ret = bdrv_snapshot_find(bs, &sn, name); if (ret < 0) { error_report("Device '%s' does not have the requested snapshot '%s'", bdrv_get_device_name(bs), name); return ret; } } /* Flush all IO requests so they don't interfere with the new state. */ bdrv_drain_all(); bs = NULL; while ((bs = bdrv_next(bs))) { if (bdrv_can_snapshot(bs)) { ret = bdrv_snapshot_goto(bs, name); if (ret < 0) { error_report("Error %d while activating snapshot '%s' on '%s'", ret, name, bdrv_get_device_name(bs)); return ret; } } } /* restore the VM state */ f = qemu_fopen_bdrv(bs_vm_state, 0); if (!f) { error_report("Could not open VM state file"); return -EINVAL; } qemu_system_reset(VMRESET_SILENT); ret = qemu_loadvm_state(f); qemu_fclose(f); if (ret < 0) { error_report("Error %d while loading VM state", ret); return ret; } return 0; } void do_delvm(Monitor *mon, const QDict *qdict) { BlockDriverState *bs, *bs1; int ret; const char *name = qdict_get_str(qdict, "name"); bs = bdrv_snapshots(); if (!bs) { monitor_printf(mon, "No block device supports snapshots\n"); return; } bs1 = NULL; while ((bs1 = bdrv_next(bs1))) { if (bdrv_can_snapshot(bs1)) { ret = bdrv_snapshot_delete(bs1, name); if (ret < 0) { if (ret == -ENOTSUP) monitor_printf(mon, "Snapshots not supported on device '%s'\n", bdrv_get_device_name(bs1)); else monitor_printf(mon, "Error %d while deleting snapshot on " "'%s'\n", ret, bdrv_get_device_name(bs1)); } } } } void do_info_snapshots(Monitor *mon) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo *sn_tab, *sn, s, *sn_info = &s; int nb_sns, i, ret, available; int total; int *available_snapshots; char buf[256]; bs = bdrv_snapshots(); if (!bs) { monitor_printf(mon, "No available block device supports snapshots\n"); return; } nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns < 0) { monitor_printf(mon, "bdrv_snapshot_list: error %d\n", nb_sns); return; } if (nb_sns == 0) { monitor_printf(mon, "There is no snapshot available.\n"); return; } available_snapshots = g_malloc0(sizeof(int) * nb_sns); total = 0; for (i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; available = 1; bs1 = NULL; while ((bs1 = bdrv_next(bs1))) { if (bdrv_can_snapshot(bs1) && bs1 != bs) { ret = bdrv_snapshot_find(bs1, sn_info, sn->id_str); if (ret < 0) { available = 0; break; } } } if (available) { available_snapshots[total] = i; total++; } } if (total > 0) { monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL)); for (i = 0; i < total; i++) { sn = &sn_tab[available_snapshots[i]]; monitor_printf(mon, "%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn)); } } else { monitor_printf(mon, "There is no suitable snapshot available\n"); } g_free(sn_tab); g_free(available_snapshots); } void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) { qemu_ram_set_idstr(memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK, memory_region_name(mr), dev); } void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) { /* Nothing do to while the implementation is in RAMBlock */ } void vmstate_register_ram_global(MemoryRegion *mr) { vmstate_register_ram(mr, NULL); } /* page = zrun nzrun | zrun nzrun page zrun = length nzrun = length byte... length = uleb128 encoded integer */ int xbzrle_encode_buffer(uint8_t *old_buf, uint8_t *new_buf, int slen, uint8_t *dst, int dlen) { uint32_t zrun_len = 0, nzrun_len = 0; int d = 0, i = 0; long res, xor; uint8_t *nzrun_start = NULL; g_assert(!(((uintptr_t)old_buf | (uintptr_t)new_buf | slen) % sizeof(long))); while (i < slen) { /* overflow */ if (d + 2 > dlen) { return -1; } /* not aligned to sizeof(long) */ res = (slen - i) % sizeof(long); while (res && old_buf[i] == new_buf[i]) { zrun_len++; i++; res--; } /* word at a time for speed */ if (!res) { while (i < slen && (*(long *)(old_buf + i)) == (*(long *)(new_buf + i))) { i += sizeof(long); zrun_len += sizeof(long); } /* go over the rest */ while (i < slen && old_buf[i] == new_buf[i]) { zrun_len++; i++; } } /* buffer unchanged */ if (zrun_len == slen) { return 0; } /* skip last zero run */ if (i == slen) { return d; } d += uleb128_encode_small(dst + d, zrun_len); zrun_len = 0; nzrun_start = new_buf + i; /* overflow */ if (d + 2 > dlen) { return -1; } /* not aligned to sizeof(long) */ res = (slen - i) % sizeof(long); while (res && old_buf[i] != new_buf[i]) { i++; nzrun_len++; res--; } /* word at a time for speed, use of 32-bit long okay */ if (!res) { /* truncation to 32-bit long okay */ long mask = (long)0x0101010101010101ULL; while (i < slen) { xor = *(long *)(old_buf + i) ^ *(long *)(new_buf + i); if ((xor - mask) & ~xor & (mask << 7)) { /* found the end of an nzrun within the current long */ while (old_buf[i] != new_buf[i]) { nzrun_len++; i++; } break; } else { i += sizeof(long); nzrun_len += sizeof(long); } } } d += uleb128_encode_small(dst + d, nzrun_len); /* overflow */ if (d + nzrun_len > dlen) { return -1; } memcpy(dst + d, nzrun_start, nzrun_len); d += nzrun_len; nzrun_len = 0; } return d; } int xbzrle_decode_buffer(uint8_t *src, int slen, uint8_t *dst, int dlen) { int i = 0, d = 0; int ret; uint32_t count = 0; while (i < slen) { /* zrun */ if ((slen - i) < 2) { return -1; } ret = uleb128_decode_small(src + i, &count); if (ret < 0 || (i && !count)) { return -1; } i += ret; d += count; /* overflow */ if (d > dlen) { return -1; } /* nzrun */ if ((slen - i) < 2) { return -1; } ret = uleb128_decode_small(src + i, &count); if (ret < 0 || !count) { return -1; } i += ret; /* overflow */ if (d + count > dlen || i + count > slen) { return -1; } memcpy(dst + d, src + i, count); d += count; i += count; } return d; }