HXCOMM Use DEFHEADING() to define headings in both help text and texi HXCOMM Text between STEXI and ETEXI are copied to texi version and HXCOMM discarded from C version HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct HXCOMM option structures, enums and help message. HXCOMM HXCOMM can be used for comments, discarded from both texi and C DEFHEADING(Standard options:) STEXI @table @option ETEXI DEF("help", 0, QEMU_OPTION_h, "-h or -help display this help and exit\n") STEXI @item -h Display help and exit ETEXI DEF("version", 0, QEMU_OPTION_version, "-version display version information and exit\n") STEXI @item -version Display version information and exit ETEXI DEF("M", HAS_ARG, QEMU_OPTION_M, "-M machine select emulated machine (-M ? for list)\n") STEXI @item -M @var{machine} Select the emulated @var{machine} (@code{-M ?} for list) ETEXI DEF("cpu", HAS_ARG, QEMU_OPTION_cpu, "-cpu cpu select CPU (-cpu ? for list)\n") STEXI @item -cpu @var{model} Select CPU model (-cpu ? for list and additional feature selection) ETEXI DEF("smp", HAS_ARG, QEMU_OPTION_smp, "-smp n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n" " set the number of CPUs to 'n' [default=1]\n" " maxcpus= maximum number of total cpus, including\n" " offline CPUs for hotplug, etc\n" " cores= number of CPU cores on one socket\n" " threads= number of threads on one CPU core\n" " sockets= number of discrete sockets in the system\n") STEXI @item -smp @var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}] Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs to 4. For the PC target, the number of @var{cores} per socket, the number of @var{threads} per cores and the total number of @var{sockets} can be specified. Missing values will be computed. If any on the three values is given, the total number of CPUs @var{n} can be omitted. @var{maxcpus} specifies the maximum number of hotpluggable CPUs. ETEXI DEF("numa", HAS_ARG, QEMU_OPTION_numa, "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n") STEXI @item -numa @var{opts} Simulate a multi node NUMA system. If mem and cpus are omitted, resources are split equally. ETEXI DEF("fda", HAS_ARG, QEMU_OPTION_fda, "-fda/-fdb file use 'file' as floppy disk 0/1 image\n") DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "") STEXI @item -fda @var{file} @item -fdb @var{file} Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}). ETEXI DEF("hda", HAS_ARG, QEMU_OPTION_hda, "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n") DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "") DEF("hdc", HAS_ARG, QEMU_OPTION_hdc, "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n") DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "") STEXI @item -hda @var{file} @item -hdb @var{file} @item -hdc @var{file} @item -hdd @var{file} Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}). ETEXI DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom, "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n") STEXI @item -cdrom @var{file} Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and @option{-cdrom} at the same time). You can use the host CD-ROM by using @file{/dev/cdrom} as filename (@pxref{host_drives}). ETEXI DEF("drive", HAS_ARG, QEMU_OPTION_drive, "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n" " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n" " [,cache=writethrough|writeback|none][,format=f][,serial=s]\n" " [,addr=A][,id=name][,aio=threads|native]\n" " use 'file' as a drive image\n") DEF("set", HAS_ARG, QEMU_OPTION_set, "-set group.id.arg=value\n" " set parameter for item of type \n" " i.e. -set drive.$id.file=/path/to/image\n") DEF("global", HAS_ARG, QEMU_OPTION_global, "-global driver.property=value\n" " set a global default for a driver property\n") STEXI @item -drive @var{option}[,@var{option}[,@var{option}[,...]]] Define a new drive. Valid options are: @table @option @item file=@var{file} This option defines which disk image (@pxref{disk_images}) to use with this drive. If the filename contains comma, you must double it (for instance, "file=my,,file" to use file "my,file"). @item if=@var{interface} This option defines on which type on interface the drive is connected. Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio. @item bus=@var{bus},unit=@var{unit} These options define where is connected the drive by defining the bus number and the unit id. @item index=@var{index} This option defines where is connected the drive by using an index in the list of available connectors of a given interface type. @item media=@var{media} This option defines the type of the media: disk or cdrom. @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}] These options have the same definition as they have in @option{-hdachs}. @item snapshot=@var{snapshot} @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}). @item cache=@var{cache} @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data. @item aio=@var{aio} @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO. @item format=@var{format} Specify which disk @var{format} will be used rather than detecting the format. Can be used to specifiy format=raw to avoid interpreting an untrusted format header. @item serial=@var{serial} This option specifies the serial number to assign to the device. @item addr=@var{addr} Specify the controller's PCI address (if=virtio only). @end table By default, writethrough caching is used for all block device. This means that the host page cache will be used to read and write data but write notification will be sent to the guest only when the data has been reported as written by the storage subsystem. Writeback caching will report data writes as completed as soon as the data is present in the host page cache. This is safe as long as you trust your host. If your host crashes or loses power, then the guest may experience data corruption. When using the @option{-snapshot} option, writeback caching is used by default. The host page cache can be avoided entirely with @option{cache=none}. This will attempt to do disk IO directly to the guests memory. QEMU may still perform an internal copy of the data. Some block drivers perform badly with @option{cache=writethrough}, most notably, qcow2. If performance is more important than correctness, @option{cache=writeback} should be used with qcow2. Instead of @option{-cdrom} you can use: @example qemu -drive file=file,index=2,media=cdrom @end example Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can use: @example qemu -drive file=file,index=0,media=disk qemu -drive file=file,index=1,media=disk qemu -drive file=file,index=2,media=disk qemu -drive file=file,index=3,media=disk @end example You can connect a CDROM to the slave of ide0: @example qemu -drive file=file,if=ide,index=1,media=cdrom @end example If you don't specify the "file=" argument, you define an empty drive: @example qemu -drive if=ide,index=1,media=cdrom @end example You can connect a SCSI disk with unit ID 6 on the bus #0: @example qemu -drive file=file,if=scsi,bus=0,unit=6 @end example Instead of @option{-fda}, @option{-fdb}, you can use: @example qemu -drive file=file,index=0,if=floppy qemu -drive file=file,index=1,if=floppy @end example By default, @var{interface} is "ide" and @var{index} is automatically incremented: @example qemu -drive file=a -drive file=b" @end example is interpreted like: @example qemu -hda a -hdb b @end example ETEXI DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock, "-mtdblock file use 'file' as on-board Flash memory image\n") STEXI @item -mtdblock @var{file} Use @var{file} as on-board Flash memory image. ETEXI DEF("sd", HAS_ARG, QEMU_OPTION_sd, "-sd file use 'file' as SecureDigital card image\n") STEXI @item -sd @var{file} Use @var{file} as SecureDigital card image. ETEXI DEF("pflash", HAS_ARG, QEMU_OPTION_pflash, "-pflash file use 'file' as a parallel flash image\n") STEXI @item -pflash @var{file} Use @var{file} as a parallel flash image. ETEXI DEF("boot", HAS_ARG, QEMU_OPTION_boot, "-boot [order=drives][,once=drives][,menu=on|off]\n" " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n") STEXI @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off] Specify boot order @var{drives} as a string of drive letters. Valid drive letters depend on the target achitecture. The x86 PC uses: a, b (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot from network adapter 1-4), hard disk boot is the default. To apply a particular boot order only on the first startup, specify it via @option{once}. Interactive boot menus/prompts can be enabled via @option{menu=on} as far as firmware/BIOS supports them. The default is non-interactive boot. @example # try to boot from network first, then from hard disk qemu -boot order=nc # boot from CD-ROM first, switch back to default order after reboot qemu -boot once=d @end example Note: The legacy format '-boot @var{drives}' is still supported but its use is discouraged as it may be removed from future versions. ETEXI DEF("snapshot", 0, QEMU_OPTION_snapshot, "-snapshot write to temporary files instead of disk image files\n") STEXI @item -snapshot Write to temporary files instead of disk image files. In this case, the raw disk image you use is not written back. You can however force the write back by pressing @key{C-a s} (@pxref{disk_images}). ETEXI DEF("m", HAS_ARG, QEMU_OPTION_m, "-m megs set virtual RAM size to megs MB [default=%d]\n") STEXI @item -m @var{megs} Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB. Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or gigabytes respectively. ETEXI DEF("k", HAS_ARG, QEMU_OPTION_k, "-k language use keyboard layout (for example 'fr' for French)\n") STEXI @item -k @var{language} Use keyboard layout @var{language} (for example @code{fr} for French). This option is only needed where it is not easy to get raw PC keycodes (e.g. on Macs, with some X11 servers or with a VNC display). You don't normally need to use it on PC/Linux or PC/Windows hosts. The available layouts are: @example ar de-ch es fo fr-ca hu ja mk no pt-br sv da en-gb et fr fr-ch is lt nl pl ru th de en-us fi fr-be hr it lv nl-be pt sl tr @end example The default is @code{en-us}. ETEXI #ifdef HAS_AUDIO DEF("audio-help", 0, QEMU_OPTION_audio_help, "-audio-help print list of audio drivers and their options\n") #endif STEXI @item -audio-help Will show the audio subsystem help: list of drivers, tunable parameters. ETEXI #ifdef HAS_AUDIO DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw, "-soundhw c1,... enable audio support\n" " and only specified sound cards (comma separated list)\n" " use -soundhw ? to get the list of supported cards\n" " use -soundhw all to enable all of them\n") #endif STEXI @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all Enable audio and selected sound hardware. Use ? to print all available sound hardware. @example qemu -soundhw sb16,adlib disk.img qemu -soundhw es1370 disk.img qemu -soundhw ac97 disk.img qemu -soundhw all disk.img qemu -soundhw ? @end example Note that Linux's i810_audio OSS kernel (for AC97) module might require manually specifying clocking. @example modprobe i810_audio clocking=48000 @end example ETEXI STEXI @end table ETEXI DEF("usb", 0, QEMU_OPTION_usb, "-usb enable the USB driver (will be the default soon)\n") STEXI USB options: @table @option @item -usb Enable the USB driver (will be the default soon) ETEXI DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice, "-usbdevice name add the host or guest USB device 'name'\n") STEXI @item -usbdevice @var{devname} Add the USB device @var{devname}. @xref{usb_devices}. @table @option @item mouse Virtual Mouse. This will override the PS/2 mouse emulation when activated. @item tablet Pointer device that uses absolute coordinates (like a touchscreen). This means qemu is able to report the mouse position without having to grab the mouse. Also overrides the PS/2 mouse emulation when activated. @item disk:[format=@var{format}]:@var{file} Mass storage device based on file. The optional @var{format} argument will be used rather than detecting the format. Can be used to specifiy @code{format=raw} to avoid interpreting an untrusted format header. @item host:@var{bus}.@var{addr} Pass through the host device identified by @var{bus}.@var{addr} (Linux only). @item host:@var{vendor_id}:@var{product_id} Pass through the host device identified by @var{vendor_id}:@var{product_id} (Linux only). @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev} Serial converter to host character device @var{dev}, see @code{-serial} for the available devices. @item braille Braille device. This will use BrlAPI to display the braille output on a real or fake device. @item net:@var{options} Network adapter that supports CDC ethernet and RNDIS protocols. @end table ETEXI DEF("device", HAS_ARG, QEMU_OPTION_device, "-device driver[,options] add device\n") STEXI @item -device @var{driver}[,@var{option}[,...]] Add device @var{driver}. Depending on the device type, @var{option} (typically @var{key}=@var{value}) may be useful. ETEXI DEF("name", HAS_ARG, QEMU_OPTION_name, "-name string1[,process=string2]\n" " set the name of the guest\n" " string1 sets the window title and string2 the process name (on Linux)\n") STEXI @item -name @var{name} Sets the @var{name} of the guest. This name will be displayed in the SDL window caption. The @var{name} will also be used for the VNC server. Also optionally set the top visible process name in Linux. ETEXI DEF("uuid", HAS_ARG, QEMU_OPTION_uuid, "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n" " specify machine UUID\n") STEXI @item -uuid @var{uuid} Set system UUID. ETEXI STEXI @end table ETEXI DEFHEADING() DEFHEADING(Display options:) STEXI @table @option ETEXI DEF("nographic", 0, QEMU_OPTION_nographic, "-nographic disable graphical output and redirect serial I/Os to console\n") STEXI @item -nographic Normally, QEMU uses SDL to display the VGA output. With this option, you can totally disable graphical output so that QEMU is a simple command line application. The emulated serial port is redirected on the console. Therefore, you can still use QEMU to debug a Linux kernel with a serial console. ETEXI #ifdef CONFIG_CURSES DEF("curses", 0, QEMU_OPTION_curses, "-curses use a curses/ncurses interface instead of SDL\n") #endif STEXI @item -curses Normally, QEMU uses SDL to display the VGA output. With this option, QEMU can display the VGA output when in text mode using a curses/ncurses interface. Nothing is displayed in graphical mode. ETEXI #ifdef CONFIG_SDL DEF("no-frame", 0, QEMU_OPTION_no_frame, "-no-frame open SDL window without a frame and window decorations\n") #endif STEXI @item -no-frame Do not use decorations for SDL windows and start them using the whole available screen space. This makes the using QEMU in a dedicated desktop workspace more convenient. ETEXI #ifdef CONFIG_SDL DEF("alt-grab", 0, QEMU_OPTION_alt_grab, "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n") #endif STEXI @item -alt-grab Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). ETEXI #ifdef CONFIG_SDL DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab, "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n") #endif STEXI @item -ctrl-grab Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). ETEXI #ifdef CONFIG_SDL DEF("no-quit", 0, QEMU_OPTION_no_quit, "-no-quit disable SDL window close capability\n") #endif STEXI @item -no-quit Disable SDL window close capability. ETEXI #ifdef CONFIG_SDL DEF("sdl", 0, QEMU_OPTION_sdl, "-sdl enable SDL\n") #endif STEXI @item -sdl Enable SDL. ETEXI DEF("portrait", 0, QEMU_OPTION_portrait, "-portrait rotate graphical output 90 deg left (only PXA LCD)\n") STEXI @item -portrait Rotate graphical output 90 deg left (only PXA LCD). ETEXI DEF("vga", HAS_ARG, QEMU_OPTION_vga, "-vga [std|cirrus|vmware|xenfb|none]\n" " select video card type\n") STEXI @item -vga @var{type} Select type of VGA card to emulate. Valid values for @var{type} are @table @option @item cirrus Cirrus Logic GD5446 Video card. All Windows versions starting from Windows 95 should recognize and use this graphic card. For optimal performances, use 16 bit color depth in the guest and the host OS. (This one is the default) @item std Standard VGA card with Bochs VBE extensions. If your guest OS supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want to use high resolution modes (>= 1280x1024x16) then you should use this option. @item vmware VMWare SVGA-II compatible adapter. Use it if you have sufficiently recent XFree86/XOrg server or Windows guest with a driver for this card. @item none Disable VGA card. @end table ETEXI DEF("full-screen", 0, QEMU_OPTION_full_screen, "-full-screen start in full screen\n") STEXI @item -full-screen Start in full screen. ETEXI #if defined(TARGET_PPC) || defined(TARGET_SPARC) DEF("g", 1, QEMU_OPTION_g , "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n") #endif STEXI ETEXI DEF("vnc", HAS_ARG, QEMU_OPTION_vnc , "-vnc display start a VNC server on display\n") STEXI @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]] Normally, QEMU uses SDL to display the VGA output. With this option, you can have QEMU listen on VNC display @var{display} and redirect the VGA display over the VNC session. It is very useful to enable the usb tablet device when using this option (option @option{-usbdevice tablet}). When using the VNC display, you must use the @option{-k} parameter to set the keyboard layout if you are not using en-us. Valid syntax for the @var{display} is @table @option @item @var{host}:@var{d} TCP connections will only be allowed from @var{host} on display @var{d}. By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can be omitted in which case the server will accept connections from any host. @item unix:@var{path} Connections will be allowed over UNIX domain sockets where @var{path} is the location of a unix socket to listen for connections on. @item none VNC is initialized but not started. The monitor @code{change} command can be used to later start the VNC server. @end table Following the @var{display} value there may be one or more @var{option} flags separated by commas. Valid options are @table @option @item reverse Connect to a listening VNC client via a ``reverse'' connection. The client is specified by the @var{display}. For reverse network connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument is a TCP port number, not a display number. @item password Require that password based authentication is used for client connections. The password must be set separately using the @code{change} command in the @ref{pcsys_monitor} @item tls Require that client use TLS when communicating with the VNC server. This uses anonymous TLS credentials so is susceptible to a man-in-the-middle attack. It is recommended that this option be combined with either the @option{x509} or @option{x509verify} options. @item x509=@var{/path/to/certificate/dir} Valid if @option{tls} is specified. Require that x509 credentials are used for negotiating the TLS session. The server will send its x509 certificate to the client. It is recommended that a password be set on the VNC server to provide authentication of the client when this is used. The path following this option specifies where the x509 certificates are to be loaded from. See the @ref{vnc_security} section for details on generating certificates. @item x509verify=@var{/path/to/certificate/dir} Valid if @option{tls} is specified. Require that x509 credentials are used for negotiating the TLS session. The server will send its x509 certificate to the client, and request that the client send its own x509 certificate. The server will validate the client's certificate against the CA certificate, and reject clients when validation fails. If the certificate authority is trusted, this is a sufficient authentication mechanism. You may still wish to set a password on the VNC server as a second authentication layer. The path following this option specifies where the x509 certificates are to be loaded from. See the @ref{vnc_security} section for details on generating certificates. @item sasl Require that the client use SASL to authenticate with the VNC server. The exact choice of authentication method used is controlled from the system / user's SASL configuration file for the 'qemu' service. This is typically found in /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an environment variable SASL_CONF_PATH can be used to make it search alternate locations for the service config. While some SASL auth methods can also provide data encryption (eg GSSAPI), it is recommended that SASL always be combined with the 'tls' and 'x509' settings to enable use of SSL and server certificates. This ensures a data encryption preventing compromise of authentication credentials. See the @ref{vnc_security} section for details on using SASL authentication. @item acl Turn on access control lists for checking of the x509 client certificate and SASL party. For x509 certs, the ACL check is made against the certificate's distinguished name. This is something that looks like @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is made against the username, which depending on the SASL plugin, may include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}. When the @option{acl} flag is set, the initial access list will be empty, with a @code{deny} policy. Thus no one will be allowed to use the VNC server until the ACLs have been loaded. This can be achieved using the @code{acl} monitor command. @end table ETEXI STEXI @end table ETEXI DEFHEADING() #ifdef TARGET_I386 DEFHEADING(i386 target only:) #endif STEXI @table @option ETEXI #ifdef TARGET_I386 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack, "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n") #endif STEXI @item -win2k-hack Use it when installing Windows 2000 to avoid a disk full bug. After Windows 2000 is installed, you no longer need this option (this option slows down the IDE transfers). ETEXI #ifdef TARGET_I386 HXCOMM Deprecated by -rtc DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "") #endif #ifdef TARGET_I386 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk, "-no-fd-bootchk disable boot signature checking for floppy disks\n") #endif STEXI @item -no-fd-bootchk Disable boot signature checking for floppy disks in Bochs BIOS. It may be needed to boot from old floppy disks. ETEXI #ifdef TARGET_I386 DEF("no-acpi", 0, QEMU_OPTION_no_acpi, "-no-acpi disable ACPI\n") #endif STEXI @item -no-acpi Disable ACPI (Advanced Configuration and Power Interface) support. Use it if your guest OS complains about ACPI problems (PC target machine only). ETEXI #ifdef TARGET_I386 DEF("no-hpet", 0, QEMU_OPTION_no_hpet, "-no-hpet disable HPET\n") #endif STEXI @item -no-hpet Disable HPET support. ETEXI #ifdef TARGET_I386 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon, "-balloon none disable balloon device\n" "-balloon virtio[,addr=str]\n" " enable virtio balloon device (default)\n") #endif STEXI @item -balloon none Disable balloon device. @item -balloon virtio[,addr=@var{addr}] Enable virtio balloon device (default), optionally with PCI address @var{addr}. ETEXI #ifdef TARGET_I386 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable, "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n" " ACPI table description\n") #endif STEXI @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...] Add ACPI table with specified header fields and context from specified files. ETEXI #ifdef TARGET_I386 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios, "-smbios file=binary\n" " load SMBIOS entry from binary file\n" "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n" " specify SMBIOS type 0 fields\n" "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n" " [,uuid=uuid][,sku=str][,family=str]\n" " specify SMBIOS type 1 fields\n") #endif STEXI @item -smbios file=@var{binary} Load SMBIOS entry from binary file. @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}] Specify SMBIOS type 0 fields @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}] Specify SMBIOS type 1 fields ETEXI #ifdef TARGET_I386 DEFHEADING() #endif STEXI @end table ETEXI DEFHEADING(Network options:) STEXI @table @option ETEXI HXCOMM Legacy slirp options (now moved to -net user): #ifdef CONFIG_SLIRP DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "") DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "") DEF("redir", HAS_ARG, QEMU_OPTION_redir, "") #ifndef _WIN32 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "") #endif #endif DEF("net", HAS_ARG, QEMU_OPTION_net, "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n" " create a new Network Interface Card and connect it to VLAN 'n'\n" #ifdef CONFIG_SLIRP "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n" " [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n" " [,hostfwd=rule][,guestfwd=rule]" #ifndef _WIN32 "[,smb=dir[,smbserver=addr]]\n" #endif " connect the user mode network stack to VLAN 'n', configure its\n" " DHCP server and enabled optional services\n" #endif #ifdef _WIN32 "-net tap[,vlan=n][,name=str],ifname=name\n" " connect the host TAP network interface to VLAN 'n'\n" #else "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile][,sndbuf=nbytes][,vnet_hdr=on|off]\n" " connect the host TAP network interface to VLAN 'n' and use the\n" " network scripts 'file' (default=%s)\n" " and 'dfile' (default=%s)\n" " use '[down]script=no' to disable script execution\n" " use 'fd=h' to connect to an already opened TAP interface\n" " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n" " default of 'sndbuf=1048576' can be disabled using 'sndbuf=0')\n" " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n" " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n" #endif "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n" " connect the vlan 'n' to another VLAN using a socket connection\n" "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n" " connect the vlan 'n' to multicast maddr and port\n" #ifdef CONFIG_VDE "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n" " connect the vlan 'n' to port 'n' of a vde switch running\n" " on host and listening for incoming connections on 'socketpath'.\n" " Use group 'groupname' and mode 'octalmode' to change default\n" " ownership and permissions for communication port.\n" #endif "-net dump[,vlan=n][,file=f][,len=n]\n" " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n" "-net none use it alone to have zero network devices. If no -net option\n" " is provided, the default is '-net nic -net user'\n") DEF("netdev", HAS_ARG, QEMU_OPTION_netdev, "-netdev [" #ifdef CONFIG_SLIRP "user|" #endif "tap|" #ifdef CONFIG_VDE "vde|" #endif "socket],id=str[,option][,option][,...]\n") STEXI @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}] Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n} = 0 is the default). The NIC is an e1000 by default on the PC target. Optionally, the MAC address can be changed to @var{mac}, the device address set to @var{addr} (PCI cards only), and a @var{name} can be assigned for use in monitor commands. Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors that the card should have; this option currently only affects virtio cards; set @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single NIC is created. Qemu can emulate several different models of network card. Valid values for @var{type} are @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er}, @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139}, @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}. Not all devices are supported on all targets. Use -net nic,model=? for a list of available devices for your target. @item -net user[,@var{option}][,@var{option}][,...] Use the user mode network stack which requires no administrator privilege to run. Valid options are: @table @option @item vlan=@var{n} Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default). @item name=@var{name} Assign symbolic name for use in monitor commands. @item net=@var{addr}[/@var{mask}] Set IP network address the guest will see. Optionally specify the netmask, either in the form a.b.c.d or as number of valid top-most bits. Default is 10.0.2.0/8. @item host=@var{addr} Specify the guest-visible address of the host. Default is the 2nd IP in the guest network, i.e. x.x.x.2. @item restrict=y|yes|n|no If this options is enabled, the guest will be isolated, i.e. it will not be able to contact the host and no guest IP packets will be routed over the host to the outside. This option does not affect explicitly set forwarding rule. @item hostname=@var{name} Specifies the client hostname reported by the builtin DHCP server. @item dhcpstart=@var{addr} Specify the first of the 16 IPs the built-in DHCP server can assign. Default is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31. @item dns=@var{addr} Specify the guest-visible address of the virtual nameserver. The address must be different from the host address. Default is the 3rd IP in the guest network, i.e. x.x.x.3. @item tftp=@var{dir} When using the user mode network stack, activate a built-in TFTP server. The files in @var{dir} will be exposed as the root of a TFTP server. The TFTP client on the guest must be configured in binary mode (use the command @code{bin} of the Unix TFTP client). @item bootfile=@var{file} When using the user mode network stack, broadcast @var{file} as the BOOTP filename. In conjunction with @option{tftp}, this can be used to network boot a guest from a local directory. Example (using pxelinux): @example qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0 @end example @item smb=@var{dir}[,smbserver=@var{addr}] When using the user mode network stack, activate a built-in SMB server so that Windows OSes can access to the host files in @file{@var{dir}} transparently. The IP address of the SMB server can be set to @var{addr}. By default the 4th IP in the guest network is used, i.e. x.x.x.4. In the guest Windows OS, the line: @example 10.0.2.4 smbserver @end example must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me) or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000). Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}. Note that a SAMBA server must be installed on the host OS in @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from Red Hat 9, Fedora Core 3 and OpenSUSE 11.x. @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport} Redirect incoming TCP or UDP connections to the host port @var{hostport} to the guest IP address @var{guestaddr} on guest port @var{guestport}. If @var{guestaddr} is not specified, its value is x.x.x.15 (default first address given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can be bound to a specific host interface. If no connection type is set, TCP is used. This option can be given multiple times. For example, to redirect host X11 connection from screen 1 to guest screen 0, use the following: @example # on the host qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...] # this host xterm should open in the guest X11 server xterm -display :1 @end example To redirect telnet connections from host port 5555 to telnet port on the guest, use the following: @example # on the host qemu -net user,hostfwd=tcp:5555::23 [...] telnet localhost 5555 @end example Then when you use on the host @code{telnet localhost 5555}, you connect to the guest telnet server. @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev} Forward guest TCP connections to the IP address @var{server} on port @var{port} to the character device @var{dev}. This option can be given multiple times. @end table Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still processed and applied to -net user. Mixing them with the new configuration syntax gives undefined results. Their use for new applications is discouraged as they will be removed from future versions. @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}] Connect the host TAP network interface @var{name} to VLAN @var{n}, use the network script @var{file} to configure it and the network script @var{dfile} to deconfigure it. If @var{name} is not provided, the OS automatically provides one. @option{fd}=@var{h} can be used to specify the handle of an already opened host TAP interface. The default network configure script is @file{/etc/qemu-ifup} and the default network deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no} to disable script execution. Example: @example qemu linux.img -net nic -net tap @end example More complicated example (two NICs, each one connected to a TAP device) @example qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \ -net nic,vlan=1 -net tap,vlan=1,ifname=tap1 @end example @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}] Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual machine using a TCP socket connection. If @option{listen} is specified, QEMU waits for incoming connections on @var{port} (@var{host} is optional). @option{connect} is used to connect to another QEMU instance using the @option{listen} option. @option{fd}=@var{h} specifies an already opened TCP socket. Example: @example # launch a first QEMU instance qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \ -net socket,listen=:1234 # connect the VLAN 0 of this instance to the VLAN 0 # of the first instance qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \ -net socket,connect=127.0.0.1:1234 @end example @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}] Create a VLAN @var{n} shared with another QEMU virtual machines using a UDP multicast socket, effectively making a bus for every QEMU with same multicast address @var{maddr} and @var{port}. NOTES: @enumerate @item Several QEMU can be running on different hosts and share same bus (assuming correct multicast setup for these hosts). @item mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see @url{http://user-mode-linux.sf.net}. @item Use @option{fd=h} to specify an already opened UDP multicast socket. @end enumerate Example: @example # launch one QEMU instance qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \ -net socket,mcast=230.0.0.1:1234 # launch another QEMU instance on same "bus" qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \ -net socket,mcast=230.0.0.1:1234 # launch yet another QEMU instance on same "bus" qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \ -net socket,mcast=230.0.0.1:1234 @end example Example (User Mode Linux compat.): @example # launch QEMU instance (note mcast address selected # is UML's default) qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \ -net socket,mcast=239.192.168.1:1102 # launch UML /path/to/linux ubd0=/path/to/root_fs eth0=mcast @end example @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}] Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname} and MODE @var{octalmode} to change default ownership and permissions for communication port. This option is available only if QEMU has been compiled with vde support enabled. Example: @example # launch vde switch vde_switch -F -sock /tmp/myswitch # launch QEMU instance qemu linux.img -net nic -net vde,sock=/tmp/myswitch @end example @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}] Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default). At most @var{len} bytes (64k by default) per packet are stored. The file format is libpcap, so it can be analyzed with tools such as tcpdump or Wireshark. @item -net none Indicate that no network devices should be configured. It is used to override the default configuration (@option{-net nic -net user}) which is activated if no @option{-net} options are provided. @end table ETEXI DEFHEADING() DEFHEADING(Character device options:) DEF("chardev", HAS_ARG, QEMU_OPTION_chardev, "-chardev null,id=id\n" "-chardev socket,id=id[,host=host],port=host[,to=to][,ipv4][,ipv6][,nodelay]\n" " [,server][,nowait][,telnet] (tcp)\n" "-chardev socket,id=id,path=path[,server][,nowait][,telnet] (unix)\n" "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n" " [,localport=localport][,ipv4][,ipv6]\n" "-chardev msmouse,id=id\n" "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n" "-chardev file,id=id,path=path\n" "-chardev pipe,id=id,path=path\n" #ifdef _WIN32 "-chardev console,id=id\n" "-chardev serial,id=id,path=path\n" #else "-chardev pty,id=id\n" "-chardev stdio,id=id\n" #endif #ifdef CONFIG_BRLAPI "-chardev braille,id=id\n" #endif #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \ || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__) "-chardev tty,id=id,path=path\n" #endif #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__) "-chardev parport,id=id,path=path\n" #endif ) STEXI The general form of a character device option is: @table @option @item -chardev @var{backend} ,id=@var{id} [,@var{options}] Backend is one of: @option{null}, @option{socket}, @option{udp}, @option{msmouse}, @option{vc}, @option{file}, @option{pipe}, @option{console}, @option{serial}, @option{pty}, @option{stdio}, @option{braille}, @option{tty}, @option{parport}. The specific backend will determine the applicable options. All devices must have an id, which can be any string up to 127 characters long. It is used to uniquely identify this device in other command line directives. Options to each backend are described below. @item -chardev null ,id=@var{id} A void device. This device will not emit any data, and will drop any data it receives. The null backend does not take any options. @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] Create a two-way stream socket, which can be either a TCP or a unix socket. A unix socket will be created if @option{path} is specified. Behaviour is undefined if TCP options are specified for a unix socket. @option{server} specifies that the socket shall be a listening socket. @option{nowait} specifies that QEMU should not block waiting for a client to connect to a listening socket. @option{telnet} specifies that traffic on the socket should interpret telnet escape sequences. TCP and unix socket options are given below: @table @option @item TCP options: port=@var{host} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay] @option{host} for a listening socket specifies the local address to be bound. For a connecting socket species the remote host to connect to. @option{host} is optional for listening sockets. If not specified it defaults to @code{0.0.0.0}. @option{port} for a listening socket specifies the local port to be bound. For a connecting socket specifies the port on the remote host to connect to. @option{port} can be given as either a port number or a service name. @option{port} is required. @option{to} is only relevant to listening sockets. If it is specified, and @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up to and including @option{to} until it succeeds. @option{to} must be specified as a port number. @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. If neither is specified the socket may use either protocol. @option{nodelay} disables the Nagle algorithm. @item unix options: path=@var{path} @option{path} specifies the local path of the unix socket. @option{path} is required. @end table @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6] Sends all traffic from the guest to a remote host over UDP. @option{host} specifies the remote host to connect to. If not specified it defaults to @code{localhost}. @option{port} specifies the port on the remote host to connect to. @option{port} is required. @option{localaddr} specifies the local address to bind to. If not specified it defaults to @code{0.0.0.0}. @option{localport} specifies the local port to bind to. If not specified any available local port will be used. @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used. If neither is specified the device may use either protocol. @item -chardev msmouse ,id=@var{id} Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not take any options. @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]] Connect to a QEMU text console. @option{vc} may optionally be given a specific size. @option{width} and @option{height} specify the width and height respectively of the console, in pixels. @option{cols} and @option{rows} specify that the console be sized to fit a text console with the given dimensions. @item -chardev file ,id=@var{id} ,path=@var{path} Log all traffic received from the guest to a file. @option{path} specifies the path of the file to be opened. This file will be created if it does not already exist, and overwritten if it does. @option{path} is required. @item -chardev pipe ,id=@var{id} ,path=@var{path} Create a two-way connection to the guest. The behaviour differs slightly between Windows hosts and other hosts: On Windows, a single duplex pipe will be created at @file{\\.pipe\@option{path}}. On other hosts, 2 pipes will be created called @file{@option{path}.in} and @file{@option{path}.out}. Data written to @file{@option{path}.in} will be received by the guest. Data written by the guest can be read from @file{@option{path}.out}. QEMU will not create these fifos, and requires them to be present. @option{path} forms part of the pipe path as described above. @option{path} is required. @item -chardev console ,id=@var{id} Send traffic from the guest to QEMU's standard output. @option{console} does not take any options. @option{console} is only available on Windows hosts. @item -chardev serial ,id=@var{id} ,path=@option{path} Send traffic from the guest to a serial device on the host. @option{serial} is only available on Windows hosts. @option{path} specifies the name of the serial device to open. @item -chardev pty ,id=@var{id} Create a new pseudo-terminal on the host and connect to it. @option{pty} does not take any options. @option{pty} is not available on Windows hosts. @item -chardev stdio ,id=@var{id} Connect to standard input and standard output of the qemu process. @option{stdio} does not take any options. @option{stdio} is not available on Windows hosts. @item -chardev braille ,id=@var{id} Connect to a local BrlAPI server. @option{braille} does not take any options. @item -chardev tty ,id=@var{id} ,path=@var{path} Connect to a local tty device. @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and DragonFlyBSD hosts. @option{path} specifies the path to the tty. @option{path} is required. @item -chardev parport ,id=@var{id} ,path=@var{path} @option{parport} is only available on Linux, FreeBSD and DragonFlyBSD hosts. Connect to a local parallel port. @option{path} specifies the path to the parallel port device. @option{path} is required. @end table ETEXI DEFHEADING() DEFHEADING(Bluetooth(R) options:) DEF("bt", HAS_ARG, QEMU_OPTION_bt, \ "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \ "-bt hci,host[:id]\n" \ " use host's HCI with the given name\n" \ "-bt hci[,vlan=n]\n" \ " emulate a standard HCI in virtual scatternet 'n'\n" \ "-bt vhci[,vlan=n]\n" \ " add host computer to virtual scatternet 'n' using VHCI\n" \ "-bt device:dev[,vlan=n]\n" \ " emulate a bluetooth device 'dev' in scatternet 'n'\n") STEXI @table @option @item -bt hci[...] Defines the function of the corresponding Bluetooth HCI. -bt options are matched with the HCIs present in the chosen machine type. For example when emulating a machine with only one HCI built into it, only the first @code{-bt hci[...]} option is valid and defines the HCI's logic. The Transport Layer is decided by the machine type. Currently the machines @code{n800} and @code{n810} have one HCI and all other machines have none. @anchor{bt-hcis} The following three types are recognized: @table @option @item -bt hci,null (default) The corresponding Bluetooth HCI assumes no internal logic and will not respond to any HCI commands or emit events. @item -bt hci,host[:@var{id}] (@code{bluez} only) The corresponding HCI passes commands / events to / from the physical HCI identified by the name @var{id} (default: @code{hci0}) on the computer running QEMU. Only available on @code{bluez} capable systems like Linux. @item -bt hci[,vlan=@var{n}] Add a virtual, standard HCI that will participate in the Bluetooth scatternet @var{n} (default @code{0}). Similarly to @option{-net} VLANs, devices inside a bluetooth network @var{n} can only communicate with other devices in the same network (scatternet). @end table @item -bt vhci[,vlan=@var{n}] (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached to the host bluetooth stack instead of to the emulated target. This allows the host and target machines to participate in a common scatternet and communicate. Requires the Linux @code{vhci} driver installed. Can be used as following: @example qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5 @end example @item -bt device:@var{dev}[,vlan=@var{n}] Emulate a bluetooth device @var{dev} and place it in network @var{n} (default @code{0}). QEMU can only emulate one type of bluetooth devices currently: @table @option @item keyboard Virtual wireless keyboard implementing the HIDP bluetooth profile. @end table @end table ETEXI DEFHEADING() DEFHEADING(Linux/Multiboot boot specific:) STEXI When using these options, you can use a given Linux or Multiboot kernel without installing it in the disk image. It can be useful for easier testing of various kernels. @table @option ETEXI DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \ "-kernel bzImage use 'bzImage' as kernel image\n") STEXI @item -kernel @var{bzImage} Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel or in multiboot format. ETEXI DEF("append", HAS_ARG, QEMU_OPTION_append, \ "-append cmdline use 'cmdline' as kernel command line\n") STEXI @item -append @var{cmdline} Use @var{cmdline} as kernel command line ETEXI DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \ "-initrd file use 'file' as initial ram disk\n") STEXI @item -initrd @var{file} Use @var{file} as initial ram disk. @item -initrd "@var{file1} arg=foo,@var{file2}" This syntax is only available with multiboot. Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the first module. ETEXI STEXI @end table ETEXI DEFHEADING() DEFHEADING(Debug/Expert options:) STEXI @table @option ETEXI DEF("serial", HAS_ARG, QEMU_OPTION_serial, \ "-serial dev redirect the serial port to char device 'dev'\n") STEXI @item -serial @var{dev} Redirect the virtual serial port to host character device @var{dev}. The default device is @code{vc} in graphical mode and @code{stdio} in non graphical mode. This option can be used several times to simulate up to 4 serial ports. Use @code{-serial none} to disable all serial ports. Available character devices are: @table @option @item vc[:@var{W}x@var{H}] Virtual console. Optionally, a width and height can be given in pixel with @example vc:800x600 @end example It is also possible to specify width or height in characters: @example vc:80Cx24C @end example @item pty [Linux only] Pseudo TTY (a new PTY is automatically allocated) @item none No device is allocated. @item null void device @item /dev/XXX [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port parameters are set according to the emulated ones. @item /dev/parport@var{N} [Linux only, parallel port only] Use host parallel port @var{N}. Currently SPP and EPP parallel port features can be used. @item file:@var{filename} Write output to @var{filename}. No character can be read. @item stdio [Unix only] standard input/output @item pipe:@var{filename} name pipe @var{filename} @item COM@var{n} [Windows only] Use host serial port @var{n} @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}] This implements UDP Net Console. When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}. When not using a specified @var{src_port} a random port is automatically chosen. If you just want a simple readonly console you can use @code{netcat} or @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as: @code{nc -u -l -p 4555}. Any time qemu writes something to that port it will appear in the netconsole session. If you plan to send characters back via netconsole or you want to stop and start qemu a lot of times, you should have qemu use the same source port each time by using something like @code{-serial udp::4555@@:4556} to qemu. Another approach is to use a patched version of netcat which can listen to a TCP port and send and receive characters via udp. If you have a patched version of netcat which activates telnet remote echo and single char transfer, then you can use the following options to step up a netcat redirector to allow telnet on port 5555 to access the qemu port. @table @code @item Qemu Options: -serial udp::4555@@:4556 @item netcat options: -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T @item telnet options: localhost 5555 @end table @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay] The TCP Net Console has two modes of operation. It can send the serial I/O to a location or wait for a connection from a location. By default the TCP Net Console is sent to @var{host} at the @var{port}. If you use the @var{server} option QEMU will wait for a client socket application to connect to the port before continuing, unless the @code{nowait} option was specified. The @code{nodelay} option disables the Nagle buffering algorithm. If @var{host} is omitted, 0.0.0.0 is assumed. Only one TCP connection at a time is accepted. You can use @code{telnet} to connect to the corresponding character device. @table @code @item Example to send tcp console to 192.168.0.2 port 4444 -serial tcp:192.168.0.2:4444 @item Example to listen and wait on port 4444 for connection -serial tcp::4444,server @item Example to not wait and listen on ip 192.168.0.100 port 4444 -serial tcp:192.168.0.100:4444,server,nowait @end table @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay] The telnet protocol is used instead of raw tcp sockets. The options work the same as if you had specified @code{-serial tcp}. The difference is that the port acts like a telnet server or client using telnet option negotiation. This will also allow you to send the MAGIC_SYSRQ sequence if you use a telnet that supports sending the break sequence. Typically in unix telnet you do it with Control-] and then type "send break" followed by pressing the enter key. @item unix:@var{path}[,server][,nowait] A unix domain socket is used instead of a tcp socket. The option works the same as if you had specified @code{-serial tcp} except the unix domain socket @var{path} is used for connections. @item mon:@var{dev_string} This is a special option to allow the monitor to be multiplexed onto another serial port. The monitor is accessed with key sequence of @key{Control-a} and then pressing @key{c}. See monitor access @ref{pcsys_keys} in the -nographic section for more keys. @var{dev_string} should be any one of the serial devices specified above. An example to multiplex the monitor onto a telnet server listening on port 4444 would be: @table @code @item -serial mon:telnet::4444,server,nowait @end table @item braille Braille device. This will use BrlAPI to display the braille output on a real or fake device. @item msmouse Three button serial mouse. Configure the guest to use Microsoft protocol. @end table ETEXI DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \ "-parallel dev redirect the parallel port to char device 'dev'\n") STEXI @item -parallel @var{dev} Redirect the virtual parallel port to host device @var{dev} (same devices as the serial port). On Linux hosts, @file{/dev/parportN} can be used to use hardware devices connected on the corresponding host parallel port. This option can be used several times to simulate up to 3 parallel ports. Use @code{-parallel none} to disable all parallel ports. ETEXI DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \ "-monitor dev redirect the monitor to char device 'dev'\n") STEXI @item -monitor @var{dev} Redirect the monitor to host device @var{dev} (same devices as the serial port). The default device is @code{vc} in graphical mode and @code{stdio} in non graphical mode. ETEXI DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \ "-qmp dev like -monitor but opens in 'control' mode\n") DEF("mon", HAS_ARG, QEMU_OPTION_mon, \ "-mon chardev=[name][,mode=readline|control][,default]\n") STEXI @item -mon chardev=[name][,mode=readline|control][,default] Setup monitor on chardev @var{name}. ETEXI DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \ "-debugcon dev redirect the debug console to char device 'dev'\n") STEXI @item -debugcon @var{dev} Redirect the debug console to host device @var{dev} (same devices as the serial port). The debug console is an I/O port which is typically port 0xe9; writing to that I/O port sends output to this device. The default device is @code{vc} in graphical mode and @code{stdio} in non graphical mode. ETEXI DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \ "-pidfile file write PID to 'file'\n") STEXI @item -pidfile @var{file} Store the QEMU process PID in @var{file}. It is useful if you launch QEMU from a script. ETEXI DEF("singlestep", 0, QEMU_OPTION_singlestep, \ "-singlestep always run in singlestep mode\n") STEXI @item -singlestep Run the emulation in single step mode. ETEXI DEF("S", 0, QEMU_OPTION_S, \ "-S freeze CPU at startup (use 'c' to start execution)\n") STEXI @item -S Do not start CPU at startup (you must type 'c' in the monitor). ETEXI DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \ "-gdb dev wait for gdb connection on 'dev'\n") STEXI @item -gdb @var{dev} Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical connections will likely be TCP-based, but also UDP, pseudo TTY, or even stdio are reasonable use case. The latter is allowing to start qemu from within gdb and establish the connection via a pipe: @example (gdb) target remote | exec qemu -gdb stdio ... @end example ETEXI DEF("s", 0, QEMU_OPTION_s, \ "-s shorthand for -gdb tcp::%s\n") STEXI @item -s Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234 (@pxref{gdb_usage}). ETEXI DEF("d", HAS_ARG, QEMU_OPTION_d, \ "-d item1,... output log to %s (use -d ? for a list of log items)\n") STEXI @item -d Output log in /tmp/qemu.log ETEXI DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \ "-hdachs c,h,s[,t]\n" \ " force hard disk 0 physical geometry and the optional BIOS\n" \ " translation (t=none or lba) (usually qemu can guess them)\n") STEXI @item -hdachs @var{c},@var{h},@var{s},[,@var{t}] Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <= @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS translation mode (@var{t}=none, lba or auto). Usually QEMU can guess all those parameters. This option is useful for old MS-DOS disk images. ETEXI DEF("L", HAS_ARG, QEMU_OPTION_L, \ "-L path set the directory for the BIOS, VGA BIOS and keymaps\n") STEXI @item -L @var{path} Set the directory for the BIOS, VGA BIOS and keymaps. ETEXI DEF("bios", HAS_ARG, QEMU_OPTION_bios, \ "-bios file set the filename for the BIOS\n") STEXI @item -bios @var{file} Set the filename for the BIOS. ETEXI #ifdef CONFIG_KVM DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \ "-enable-kvm enable KVM full virtualization support\n") #endif STEXI @item -enable-kvm Enable KVM full virtualization support. This option is only available if KVM support is enabled when compiling. ETEXI #ifdef CONFIG_XEN DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid, "-xen-domid id specify xen guest domain id\n") DEF("xen-create", 0, QEMU_OPTION_xen_create, "-xen-create create domain using xen hypercalls, bypassing xend\n" " warning: should not be used when xend is in use\n") DEF("xen-attach", 0, QEMU_OPTION_xen_attach, "-xen-attach attach to existing xen domain\n" " xend will use this when starting qemu\n") #endif DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \ "-no-reboot exit instead of rebooting\n") STEXI @item -no-reboot Exit instead of rebooting. ETEXI DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \ "-no-shutdown stop before shutdown\n") STEXI @item -no-shutdown Don't exit QEMU on guest shutdown, but instead only stop the emulation. This allows for instance switching to monitor to commit changes to the disk image. ETEXI DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \ "-loadvm [tag|id]\n" \ " start right away with a saved state (loadvm in monitor)\n") STEXI @item -loadvm @var{file} Start right away with a saved state (@code{loadvm} in monitor) ETEXI #ifndef _WIN32 DEF("daemonize", 0, QEMU_OPTION_daemonize, \ "-daemonize daemonize QEMU after initializing\n") #endif STEXI @item -daemonize Daemonize the QEMU process after initialization. QEMU will not detach from standard IO until it is ready to receive connections on any of its devices. This option is a useful way for external programs to launch QEMU without having to cope with initialization race conditions. ETEXI DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \ "-option-rom rom load a file, rom, into the option ROM space\n") STEXI @item -option-rom @var{file} Load the contents of @var{file} as an option ROM. This option is useful to load things like EtherBoot. ETEXI DEF("clock", HAS_ARG, QEMU_OPTION_clock, \ "-clock force the use of the given methods for timer alarm.\n" \ " To see what timers are available use -clock ?\n") STEXI @item -clock @var{method} Force the use of the given methods for timer alarm. To see what timers are available use -clock ?. ETEXI HXCOMM Options deprecated by -rtc DEF("localtime", 0, QEMU_OPTION_localtime, "") DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "") #ifdef TARGET_I386 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \ "-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]\n" \ " set the RTC base and clock, enable drift fix for clock ticks\n") #else DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \ "-rtc [base=utc|localtime|date][,clock=host|vm]\n" \ " set the RTC base and clock\n") #endif STEXI @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew] Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current UTC or local time, respectively. @code{localtime} is required for correct date in MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC. By default the RTC is driven by the host system time. This allows to use the RTC as accurate reference clock inside the guest, specifically if the host time is smoothly following an accurate external reference clock, e.g. via NTP. If you want to isolate the guest time from the host, even prevent it from progressing during suspension, you can set @option{clock} to @code{vm} instead. Enable @option{driftfix} (i386 targets only) if you experience time drift problems, specifically with Windows' ACPI HAL. This option will try to figure out how many timer interrupts were not processed by the Windows guest and will re-inject them. ETEXI DEF("icount", HAS_ARG, QEMU_OPTION_icount, \ "-icount [N|auto]\n" \ " enable virtual instruction counter with 2^N clock ticks per\n" \ " instruction\n") STEXI @item -icount [@var{N}|auto] Enable virtual instruction counter. The virtual cpu will execute one instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified then the virtual cpu speed will be automatically adjusted to keep virtual time within a few seconds of real time. Note that while this option can give deterministic behavior, it does not provide cycle accurate emulation. Modern CPUs contain superscalar out of order cores with complex cache hierarchies. The number of instructions executed often has little or no correlation with actual performance. ETEXI DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \ "-watchdog i6300esb|ib700\n" \ " enable virtual hardware watchdog [default=none]\n") STEXI @item -watchdog @var{model} Create a virtual hardware watchdog device. Once enabled (by a guest action), the watchdog must be periodically polled by an agent inside the guest or else the guest will be restarted. The @var{model} is the model of hardware watchdog to emulate. Choices for model are: @code{ib700} (iBASE 700) which is a very simple ISA watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O controller hub) which is a much more featureful PCI-based dual-timer watchdog. Choose a model for which your guest has drivers. Use @code{-watchdog ?} to list available hardware models. Only one watchdog can be enabled for a guest. ETEXI DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \ "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \ " action when watchdog fires [default=reset]\n") STEXI @item -watchdog-action @var{action} The @var{action} controls what QEMU will do when the watchdog timer expires. The default is @code{reset} (forcefully reset the guest). Other possible actions are: @code{shutdown} (attempt to gracefully shutdown the guest), @code{poweroff} (forcefully poweroff the guest), @code{pause} (pause the guest), @code{debug} (print a debug message and continue), or @code{none} (do nothing). Note that the @code{shutdown} action requires that the guest responds to ACPI signals, which it may not be able to do in the sort of situations where the watchdog would have expired, and thus @code{-watchdog-action shutdown} is not recommended for production use. Examples: @table @code @item -watchdog i6300esb -watchdog-action pause @item -watchdog ib700 @end table ETEXI DEF("echr", HAS_ARG, QEMU_OPTION_echr, \ "-echr chr set terminal escape character instead of ctrl-a\n") STEXI @item -echr @var{numeric_ascii_value} Change the escape character used for switching to the monitor when using monitor and serial sharing. The default is @code{0x01} when using the @code{-nographic} option. @code{0x01} is equal to pressing @code{Control-a}. You can select a different character from the ascii control keys where 1 through 26 map to Control-a through Control-z. For instance you could use the either of the following to change the escape character to Control-t. @table @code @item -echr 0x14 @item -echr 20 @end table ETEXI DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \ "-virtioconsole c\n" \ " set virtio console\n") STEXI @item -virtioconsole @var{c} Set virtio console. ETEXI DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \ "-show-cursor show cursor\n") STEXI ETEXI DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \ "-tb-size n set TB size\n") STEXI ETEXI DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \ "-incoming p prepare for incoming migration, listen on port p\n") STEXI ETEXI DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \ "-nodefaults don't create default devices\n") STEXI @item -nodefaults Don't create default devices. ETEXI #ifndef _WIN32 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \ "-chroot dir chroot to dir just before starting the VM\n") #endif STEXI @item -chroot @var{dir} Immediately before starting guest execution, chroot to the specified directory. Especially useful in combination with -runas. ETEXI #ifndef _WIN32 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \ "-runas user change to user id user just before starting the VM\n") #endif STEXI @item -runas @var{user} Immediately before starting guest execution, drop root privileges, switching to the specified user. ETEXI #if defined(TARGET_SPARC) || defined(TARGET_PPC) DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env, "-prom-env variable=value\n" " set OpenBIOS nvram variables\n") #endif #if defined(TARGET_ARM) || defined(TARGET_M68K) DEF("semihosting", 0, QEMU_OPTION_semihosting, "-semihosting semihosting mode\n") #endif #if defined(TARGET_ARM) DEF("old-param", 0, QEMU_OPTION_old_param, "-old-param old param mode\n") #endif DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig, "-readconfig \n") STEXI @item -readconfig @var{file} Read device configuration from @var{file}. ETEXI DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig, "-writeconfig \n" " read/write config file\n") STEXI @item -writeconfig @var{file} Write device configuration to @var{file}. ETEXI HXCOMM This is the last statement. Insert new options before this line! STEXI @end table ETEXI