/* * create a COW disk image * * Copyright (c) 2003 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" void *get_mmap_addr(unsigned long size) { return NULL; } void qemu_free(void *ptr) { free(ptr); } void *qemu_malloc(size_t size) { return malloc(size); } void *qemu_mallocz(size_t size) { void *ptr; ptr = qemu_malloc(size); if (!ptr) return NULL; memset(ptr, 0, size); return ptr; } char *qemu_strdup(const char *str) { char *ptr; ptr = qemu_malloc(strlen(str) + 1); if (!ptr) return NULL; strcpy(ptr, str); return ptr; } void pstrcpy(char *buf, int buf_size, const char *str) { int c; char *q = buf; if (buf_size <= 0) return; for(;;) { c = *str++; if (c == 0 || q >= buf + buf_size - 1) break; *q++ = c; } *q = '\0'; } /* strcat and truncate. */ char *pstrcat(char *buf, int buf_size, const char *s) { int len; len = strlen(buf); if (len < buf_size) pstrcpy(buf + len, buf_size - len, s); return buf; } int strstart(const char *str, const char *val, const char **ptr) { const char *p, *q; p = str; q = val; while (*q != '\0') { if (*p != *q) return 0; p++; q++; } if (ptr) *ptr = p; return 1; } void term_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vprintf(fmt, ap); va_end(ap); } void __attribute__((noreturn)) error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); fprintf(stderr, "qemu-img: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); exit(1); va_end(ap); } static void format_print(void *opaque, const char *name) { printf(" %s", name); } void help(void) { printf("qemu-img version " QEMU_VERSION ", Copyright (c) 2004-2005 Fabrice Bellard\n" "usage: qemu-img command [command options]\n" "QEMU disk image utility\n" "\n" "Command syntax:\n" " create [-e] [-b base_image] [-f fmt] filename [size]\n" " commit [-f fmt] filename\n" " convert [-c] [-e] [-f fmt] filename [-O output_fmt] output_filename\n" " info [-f fmt] filename\n" "\n" "Command parameters:\n" " 'filename' is a disk image filename\n" " 'base_image' is the read-only disk image which is used as base for a copy on\n" " write image; the copy on write image only stores the modified data\n" " 'fmt' is the disk image format. It is guessed automatically in most cases\n" " 'size' is the disk image size in kilobytes. Optional suffixes 'M' (megabyte)\n" " and 'G' (gigabyte) are supported\n" " 'output_filename' is the destination disk image filename\n" " 'output_fmt' is the destination format\n" " '-c' indicates that target image must be compressed (qcow format only)\n" " '-e' indicates that the target image must be encrypted (qcow format only)\n" ); printf("\nSupported format:"); bdrv_iterate_format(format_print, NULL); printf("\n"); exit(1); } #define NB_SUFFIXES 4 static void get_human_readable_size(char *buf, int buf_size, int64_t size) { char suffixes[NB_SUFFIXES] = "KMGT"; int64_t base; int i; if (size <= 999) { snprintf(buf, buf_size, "%lld", (long long) size); } else { base = 1024; for(i = 0; i < NB_SUFFIXES; i++) { if (size < (10 * base)) { snprintf(buf, buf_size, "%0.1f%c", (double)size / base, suffixes[i]); break; } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) { snprintf(buf, buf_size, "%lld%c", (long long) ((size + (base >> 1)) / base), suffixes[i]); break; } base = base * 1024; } } } #if defined(WIN32) /* XXX: put correct support for win32 */ static int read_password(char *buf, int buf_size) { int c, i; printf("Password: "); fflush(stdout); i = 0; for(;;) { c = getchar(); if (c == '\n') break; if (i < (buf_size - 1)) buf[i++] = c; } buf[i] = '\0'; return 0; } #else #include <termios.h> static struct termios oldtty; static void term_exit(void) { tcsetattr (0, TCSANOW, &oldtty); } static void term_init(void) { struct termios tty; tcgetattr (0, &tty); oldtty = tty; tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); tty.c_oflag |= OPOST; tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN); tty.c_cflag &= ~(CSIZE|PARENB); tty.c_cflag |= CS8; tty.c_cc[VMIN] = 1; tty.c_cc[VTIME] = 0; tcsetattr (0, TCSANOW, &tty); atexit(term_exit); } int read_password(char *buf, int buf_size) { uint8_t ch; int i, ret; printf("password: "); fflush(stdout); term_init(); i = 0; for(;;) { ret = read(0, &ch, 1); if (ret == -1) { if (errno == EAGAIN || errno == EINTR) { continue; } else { ret = -1; break; } } else if (ret == 0) { ret = -1; break; } else { if (ch == '\r') { ret = 0; break; } if (i < (buf_size - 1)) buf[i++] = ch; } } term_exit(); buf[i] = '\0'; printf("\n"); return ret; } #endif static BlockDriverState *bdrv_new_open(const char *filename, const char *fmt) { BlockDriverState *bs; BlockDriver *drv; char password[256]; bs = bdrv_new(""); if (!bs) error("Not enough memory"); if (fmt) { drv = bdrv_find_format(fmt); if (!drv) error("Unknown file format '%s'", fmt); } else { drv = NULL; } if (bdrv_open2(bs, filename, 0, drv) < 0) { error("Could not open '%s'", filename); } if (bdrv_is_encrypted(bs)) { printf("Disk image '%s' is encrypted.\n", filename); if (read_password(password, sizeof(password)) < 0) error("No password given"); if (bdrv_set_key(bs, password) < 0) error("invalid password"); } return bs; } static int img_create(int argc, char **argv) { int c, ret, encrypted; const char *fmt = "raw"; const char *filename; const char *base_filename = NULL; int64_t size; const char *p; BlockDriver *drv; encrypted = 0; for(;;) { c = getopt(argc, argv, "b:f:he"); if (c == -1) break; switch(c) { case 'h': help(); break; case 'b': base_filename = optarg; break; case 'f': fmt = optarg; break; case 'e': encrypted = 1; break; } } if (optind >= argc) help(); filename = argv[optind++]; size = 0; if (base_filename) { BlockDriverState *bs; bs = bdrv_new_open(base_filename, NULL); bdrv_get_geometry(bs, &size); size *= 512; bdrv_delete(bs); } else { if (optind >= argc) help(); p = argv[optind]; size = strtoul(p, (char **)&p, 0); if (*p == 'M') { size *= 1024 * 1024; } else if (*p == 'G') { size *= 1024 * 1024 * 1024; } else if (*p == 'k' || *p == 'K' || *p == '\0') { size *= 1024; } else { help(); } } drv = bdrv_find_format(fmt); if (!drv) error("Unknown file format '%s'", fmt); printf("Formating '%s', fmt=%s", filename, fmt); if (encrypted) printf(", encrypted"); if (base_filename) { printf(", backing_file=%s", base_filename); } printf(", size=%lld kB\n", (long long) (size / 1024)); ret = bdrv_create(drv, filename, size / 512, base_filename, encrypted); if (ret < 0) { if (ret == -ENOTSUP) { error("Formatting or formatting option not supported for file format '%s'", fmt); } else { error("Error while formatting"); } } return 0; } static int img_commit(int argc, char **argv) { int c, ret; const char *filename, *fmt; BlockDriver *drv; BlockDriverState *bs; fmt = NULL; for(;;) { c = getopt(argc, argv, "f:h"); if (c == -1) break; switch(c) { case 'h': help(); break; case 'f': fmt = optarg; break; } } if (optind >= argc) help(); filename = argv[optind++]; bs = bdrv_new(""); if (!bs) error("Not enough memory"); if (fmt) { drv = bdrv_find_format(fmt); if (!drv) error("Unknown file format '%s'", fmt); } else { drv = NULL; } if (bdrv_open2(bs, filename, 0, drv) < 0) { error("Could not open '%s'", filename); } ret = bdrv_commit(bs); switch(ret) { case 0: printf("Image committed.\n"); break; case -ENOENT: error("No disk inserted"); break; case -EACCES: error("Image is read-only"); break; case -ENOTSUP: error("Image is already committed"); break; default: error("Error while committing image"); break; } bdrv_delete(bs); return 0; } static int is_not_zero(const uint8_t *sector, int len) { int i; len >>= 2; for(i = 0;i < len; i++) { if (((uint32_t *)sector)[i] != 0) return 1; } return 0; } static int is_allocated_sectors(const uint8_t *buf, int n, int *pnum) { int v, i; if (n <= 0) { *pnum = 0; return 0; } v = is_not_zero(buf, 512); for(i = 1; i < n; i++) { buf += 512; if (v != is_not_zero(buf, 512)) break; } *pnum = i; return v; } #define IO_BUF_SIZE 65536 static int img_convert(int argc, char **argv) { int c, ret, n, n1, compress, cluster_size, cluster_sectors, encrypt; const char *filename, *fmt, *out_fmt, *out_filename; BlockDriver *drv; BlockDriverState *bs, *out_bs; int64_t total_sectors, nb_sectors, sector_num; uint8_t buf[IO_BUF_SIZE]; const uint8_t *buf1; fmt = NULL; out_fmt = "raw"; compress = 0; encrypt = 0; for(;;) { c = getopt(argc, argv, "f:O:hce"); if (c == -1) break; switch(c) { case 'h': help(); break; case 'f': fmt = optarg; break; case 'O': out_fmt = optarg; break; case 'c': compress = 1; break; case 'e': encrypt = 1; break; } } if (optind >= argc) help(); filename = argv[optind++]; if (optind >= argc) help(); out_filename = argv[optind++]; bs = bdrv_new_open(filename, fmt); drv = bdrv_find_format(out_fmt); if (!drv) error("Unknown file format '%s'", fmt); if (compress && drv != &bdrv_qcow) error("Compression not supported for this file format"); if (encrypt && drv != &bdrv_qcow) error("Encryption not supported for this file format"); if (compress && encrypt) error("Compression and encryption not supported at the same time"); bdrv_get_geometry(bs, &total_sectors); ret = bdrv_create(drv, out_filename, total_sectors, NULL, encrypt); if (ret < 0) { if (ret == -ENOTSUP) { error("Formatting not supported for file format '%s'", fmt); } else { error("Error while formatting '%s'", out_filename); } } out_bs = bdrv_new_open(out_filename, out_fmt); if (compress) { cluster_size = qcow_get_cluster_size(out_bs); if (cluster_size <= 0 || cluster_size > IO_BUF_SIZE) error("invalid cluster size"); cluster_sectors = cluster_size >> 9; sector_num = 0; for(;;) { nb_sectors = total_sectors - sector_num; if (nb_sectors <= 0) break; if (nb_sectors >= cluster_sectors) n = cluster_sectors; else n = nb_sectors; if (bdrv_read(bs, sector_num, buf, n) < 0) error("error while reading"); if (n < cluster_sectors) memset(buf + n * 512, 0, cluster_size - n * 512); if (is_not_zero(buf, cluster_size)) { if (qcow_compress_cluster(out_bs, sector_num, buf) != 0) error("error while compressing sector %lld", sector_num); } sector_num += n; } } else { sector_num = 0; for(;;) { nb_sectors = total_sectors - sector_num; if (nb_sectors <= 0) break; if (nb_sectors >= (IO_BUF_SIZE / 512)) n = (IO_BUF_SIZE / 512); else n = nb_sectors; if (bdrv_read(bs, sector_num, buf, n) < 0) error("error while reading"); /* NOTE: at the same time we convert, we do not write zero sectors to have a chance to compress the image. Ideally, we should add a specific call to have the info to go faster */ buf1 = buf; while (n > 0) { if (is_allocated_sectors(buf1, n, &n1)) { if (bdrv_write(out_bs, sector_num, buf1, n1) < 0) error("error while writing"); } sector_num += n1; n -= n1; buf1 += n1 * 512; } } } bdrv_delete(out_bs); bdrv_delete(bs); return 0; } #ifdef _WIN32 static int64_t get_allocated_file_size(const char *filename) { struct _stati64 st; if (_stati64(filename, &st) < 0) return -1; return st.st_size; } #else static int64_t get_allocated_file_size(const char *filename) { struct stat st; if (stat(filename, &st) < 0) return -1; return (int64_t)st.st_blocks * 512; } #endif static int img_info(int argc, char **argv) { int c; const char *filename, *fmt; BlockDriver *drv; BlockDriverState *bs; char fmt_name[128], size_buf[128], dsize_buf[128]; int64_t total_sectors, allocated_size; fmt = NULL; for(;;) { c = getopt(argc, argv, "f:h"); if (c == -1) break; switch(c) { case 'h': help(); break; case 'f': fmt = optarg; break; } } if (optind >= argc) help(); filename = argv[optind++]; bs = bdrv_new(""); if (!bs) error("Not enough memory"); if (fmt) { drv = bdrv_find_format(fmt); if (!drv) error("Unknown file format '%s'", fmt); } else { drv = NULL; } if (bdrv_open2(bs, filename, 0, drv) < 0) { error("Could not open '%s'", filename); } bdrv_get_format(bs, fmt_name, sizeof(fmt_name)); bdrv_get_geometry(bs, &total_sectors); get_human_readable_size(size_buf, sizeof(size_buf), total_sectors * 512); allocated_size = get_allocated_file_size(filename); if (allocated_size < 0) sprintf(dsize_buf, "unavailable"); else get_human_readable_size(dsize_buf, sizeof(dsize_buf), allocated_size); printf("image: %s\n" "file format: %s\n" "virtual size: %s (%lld bytes)\n" "disk size: %s\n", filename, fmt_name, size_buf, (long long) (total_sectors * 512), dsize_buf); if (bdrv_is_encrypted(bs)) printf("encrypted: yes\n"); bdrv_delete(bs); return 0; } int main(int argc, char **argv) { const char *cmd; bdrv_init(); if (argc < 2) help(); cmd = argv[1]; optind++; if (!strcmp(cmd, "create")) { img_create(argc, argv); } else if (!strcmp(cmd, "commit")) { img_commit(argc, argv); } else if (!strcmp(cmd, "convert")) { img_convert(argc, argv); } else if (!strcmp(cmd, "info")) { img_info(argc, argv); } else { help(); } return 0; }