/* * QEMU disk image utility * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qapi-visit.h" #include "qapi/qmp-output-visitor.h" #include "qapi/qmp/qjson.h" #include "qemu-common.h" #include "qemu/option.h" #include "qemu/error-report.h" #include "qemu/osdep.h" #include "sysemu/sysemu.h" #include "block/block_int.h" #include <getopt.h> #include <stdio.h> #include <stdarg.h> #ifdef _WIN32 #include <windows.h> #endif typedef struct img_cmd_t { const char *name; int (*handler)(int argc, char **argv); } img_cmd_t; enum { OPTION_OUTPUT = 256, OPTION_BACKING_CHAIN = 257, }; typedef enum OutputFormat { OFORMAT_JSON, OFORMAT_HUMAN, } OutputFormat; /* Default to cache=writeback as data integrity is not important for qemu-tcg. */ #define BDRV_O_FLAGS BDRV_O_CACHE_WB #define BDRV_DEFAULT_CACHE "writeback" static void format_print(void *opaque, const char *name) { printf(" %s", name); } /* Please keep in synch with qemu-img.texi */ static void help(void) { const char *help_msg = "qemu-img version " QEMU_VERSION ", Copyright (c) 2004-2008 Fabrice Bellard\n" "usage: qemu-img command [command options]\n" "QEMU disk image utility\n" "\n" "Command syntax:\n" #define DEF(option, callback, arg_string) \ " " arg_string "\n" #include "qemu-img-cmds.h" #undef DEF #undef GEN_DOCS "\n" "Command parameters:\n" " 'filename' is a disk image filename\n" " 'fmt' is the disk image format. It is guessed automatically in most cases\n" " 'cache' is the cache mode used to write the output disk image, the valid\n" " options are: 'none', 'writeback' (default, except for convert), 'writethrough',\n" " 'directsync' and 'unsafe' (default for convert)\n" " 'size' is the disk image size in bytes. Optional suffixes\n" " 'k' or 'K' (kilobyte, 1024), 'M' (megabyte, 1024k), 'G' (gigabyte, 1024M)\n" " and T (terabyte, 1024G) are supported. 'b' is ignored.\n" " 'output_filename' is the destination disk image filename\n" " 'output_fmt' is the destination format\n" " 'options' is a comma separated list of format specific options in a\n" " name=value format. Use -o ? for an overview of the options supported by the\n" " used format\n" " '-c' indicates that target image must be compressed (qcow format only)\n" " '-u' enables unsafe rebasing. It is assumed that old and new backing file\n" " match exactly. The image doesn't need a working backing file before\n" " rebasing in this case (useful for renaming the backing file)\n" " '-h' with or without a command shows this help and lists the supported formats\n" " '-p' show progress of command (only certain commands)\n" " '-q' use Quiet mode - do not print any output (except errors)\n" " '-S' indicates the consecutive number of bytes that must contain only zeros\n" " for qemu-img to create a sparse image during conversion\n" " '--output' takes the format in which the output must be done (human or json)\n" "\n" "Parameters to check subcommand:\n" " '-r' tries to repair any inconsistencies that are found during the check.\n" " '-r leaks' repairs only cluster leaks, whereas '-r all' fixes all\n" " kinds of errors, with a higher risk of choosing the wrong fix or\n" " hiding corruption that has already occurred.\n" "\n" "Parameters to snapshot subcommand:\n" " 'snapshot' is the name of the snapshot to create, apply or delete\n" " '-a' applies a snapshot (revert disk to saved state)\n" " '-c' creates a snapshot\n" " '-d' deletes a snapshot\n" " '-l' lists all snapshots in the given image\n" "\n" "Parameters to compare subcommand:\n" " '-f' first image format\n" " '-F' second image format\n" " '-s' run in Strict mode - fail on different image size or sector allocation\n"; printf("%s\nSupported formats:", help_msg); bdrv_iterate_format(format_print, NULL); printf("\n"); exit(1); } static int qprintf(bool quiet, const char *fmt, ...) { int ret = 0; if (!quiet) { va_list args; va_start(args, fmt); ret = vprintf(fmt, args); va_end(args); } return ret; } #if defined(WIN32) /* XXX: put correct support for win32 */ static int read_password(char *buf, int buf_size) { int c, i; printf("Password: "); fflush(stdout); i = 0; for(;;) { c = getchar(); if (c == '\n') break; if (i < (buf_size - 1)) buf[i++] = c; } buf[i] = '\0'; return 0; } #else #include <termios.h> static struct termios oldtty; static void term_exit(void) { tcsetattr (0, TCSANOW, &oldtty); } static void term_init(void) { struct termios tty; tcgetattr (0, &tty); oldtty = tty; tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP |INLCR|IGNCR|ICRNL|IXON); tty.c_oflag |= OPOST; tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN); tty.c_cflag &= ~(CSIZE|PARENB); tty.c_cflag |= CS8; tty.c_cc[VMIN] = 1; tty.c_cc[VTIME] = 0; tcsetattr (0, TCSANOW, &tty); atexit(term_exit); } static int read_password(char *buf, int buf_size) { uint8_t ch; int i, ret; printf("password: "); fflush(stdout); term_init(); i = 0; for(;;) { ret = read(0, &ch, 1); if (ret == -1) { if (errno == EAGAIN || errno == EINTR) { continue; } else { ret = -1; break; } } else if (ret == 0) { ret = -1; break; } else { if (ch == '\r') { ret = 0; break; } if (i < (buf_size - 1)) buf[i++] = ch; } } term_exit(); buf[i] = '\0'; printf("\n"); return ret; } #endif static int print_block_option_help(const char *filename, const char *fmt) { BlockDriver *drv, *proto_drv; QEMUOptionParameter *create_options = NULL; /* Find driver and parse its options */ drv = bdrv_find_format(fmt); if (!drv) { error_report("Unknown file format '%s'", fmt); return 1; } proto_drv = bdrv_find_protocol(filename); if (!proto_drv) { error_report("Unknown protocol '%s'", filename); return 1; } create_options = append_option_parameters(create_options, drv->create_options); create_options = append_option_parameters(create_options, proto_drv->create_options); print_option_help(create_options); free_option_parameters(create_options); return 0; } static BlockDriverState *bdrv_new_open(const char *filename, const char *fmt, int flags, bool require_io, bool quiet) { BlockDriverState *bs; BlockDriver *drv; char password[256]; int ret; bs = bdrv_new("image"); if (fmt) { drv = bdrv_find_format(fmt); if (!drv) { error_report("Unknown file format '%s'", fmt); goto fail; } } else { drv = NULL; } ret = bdrv_open(bs, filename, NULL, flags, drv); if (ret < 0) { error_report("Could not open '%s': %s", filename, strerror(-ret)); goto fail; } if (bdrv_is_encrypted(bs) && require_io) { qprintf(quiet, "Disk image '%s' is encrypted.\n", filename); if (read_password(password, sizeof(password)) < 0) { error_report("No password given"); goto fail; } if (bdrv_set_key(bs, password) < 0) { error_report("invalid password"); goto fail; } } return bs; fail: if (bs) { bdrv_delete(bs); } return NULL; } static int add_old_style_options(const char *fmt, QEMUOptionParameter *list, const char *base_filename, const char *base_fmt) { if (base_filename) { if (set_option_parameter(list, BLOCK_OPT_BACKING_FILE, base_filename)) { error_report("Backing file not supported for file format '%s'", fmt); return -1; } } if (base_fmt) { if (set_option_parameter(list, BLOCK_OPT_BACKING_FMT, base_fmt)) { error_report("Backing file format not supported for file " "format '%s'", fmt); return -1; } } return 0; } static int img_create(int argc, char **argv) { int c; uint64_t img_size = -1; const char *fmt = "raw"; const char *base_fmt = NULL; const char *filename; const char *base_filename = NULL; char *options = NULL; Error *local_err = NULL; bool quiet = false; for(;;) { c = getopt(argc, argv, "F:b:f:he6o:q"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'F': base_fmt = optarg; break; case 'b': base_filename = optarg; break; case 'f': fmt = optarg; break; case 'e': error_report("option -e is deprecated, please use \'-o " "encryption\' instead!"); return 1; case '6': error_report("option -6 is deprecated, please use \'-o " "compat6\' instead!"); return 1; case 'o': options = optarg; break; case 'q': quiet = true; break; } } /* Get the filename */ if (optind >= argc) { help(); } filename = argv[optind++]; /* Get image size, if specified */ if (optind < argc) { int64_t sval; char *end; sval = strtosz_suffix(argv[optind++], &end, STRTOSZ_DEFSUFFIX_B); if (sval < 0 || *end) { if (sval == -ERANGE) { error_report("Image size must be less than 8 EiB!"); } else { error_report("Invalid image size specified! You may use k, M, " "G or T suffixes for "); error_report("kilobytes, megabytes, gigabytes and terabytes."); } return 1; } img_size = (uint64_t)sval; } if (options && is_help_option(options)) { return print_block_option_help(filename, fmt); } bdrv_img_create(filename, fmt, base_filename, base_fmt, options, img_size, BDRV_O_FLAGS, &local_err, quiet); if (error_is_set(&local_err)) { error_report("%s", error_get_pretty(local_err)); error_free(local_err); return 1; } return 0; } static void dump_json_image_check(ImageCheck *check, bool quiet) { Error *errp = NULL; QString *str; QmpOutputVisitor *ov = qmp_output_visitor_new(); QObject *obj; visit_type_ImageCheck(qmp_output_get_visitor(ov), &check, NULL, &errp); obj = qmp_output_get_qobject(ov); str = qobject_to_json_pretty(obj); assert(str != NULL); qprintf(quiet, "%s\n", qstring_get_str(str)); qobject_decref(obj); qmp_output_visitor_cleanup(ov); QDECREF(str); } static void dump_human_image_check(ImageCheck *check, bool quiet) { if (!(check->corruptions || check->leaks || check->check_errors)) { qprintf(quiet, "No errors were found on the image.\n"); } else { if (check->corruptions) { qprintf(quiet, "\n%" PRId64 " errors were found on the image.\n" "Data may be corrupted, or further writes to the image " "may corrupt it.\n", check->corruptions); } if (check->leaks) { qprintf(quiet, "\n%" PRId64 " leaked clusters were found on the image.\n" "This means waste of disk space, but no harm to data.\n", check->leaks); } if (check->check_errors) { qprintf(quiet, "\n%" PRId64 " internal errors have occurred during the check.\n", check->check_errors); } } if (check->total_clusters != 0 && check->allocated_clusters != 0) { qprintf(quiet, "%" PRId64 "/%" PRId64 " = %0.2f%% allocated, " "%0.2f%% fragmented, %0.2f%% compressed clusters\n", check->allocated_clusters, check->total_clusters, check->allocated_clusters * 100.0 / check->total_clusters, check->fragmented_clusters * 100.0 / check->allocated_clusters, check->compressed_clusters * 100.0 / check->allocated_clusters); } if (check->image_end_offset) { qprintf(quiet, "Image end offset: %" PRId64 "\n", check->image_end_offset); } } static int collect_image_check(BlockDriverState *bs, ImageCheck *check, const char *filename, const char *fmt, int fix) { int ret; BdrvCheckResult result; ret = bdrv_check(bs, &result, fix); if (ret < 0) { return ret; } check->filename = g_strdup(filename); check->format = g_strdup(bdrv_get_format_name(bs)); check->check_errors = result.check_errors; check->corruptions = result.corruptions; check->has_corruptions = result.corruptions != 0; check->leaks = result.leaks; check->has_leaks = result.leaks != 0; check->corruptions_fixed = result.corruptions_fixed; check->has_corruptions_fixed = result.corruptions != 0; check->leaks_fixed = result.leaks_fixed; check->has_leaks_fixed = result.leaks != 0; check->image_end_offset = result.image_end_offset; check->has_image_end_offset = result.image_end_offset != 0; check->total_clusters = result.bfi.total_clusters; check->has_total_clusters = result.bfi.total_clusters != 0; check->allocated_clusters = result.bfi.allocated_clusters; check->has_allocated_clusters = result.bfi.allocated_clusters != 0; check->fragmented_clusters = result.bfi.fragmented_clusters; check->has_fragmented_clusters = result.bfi.fragmented_clusters != 0; check->compressed_clusters = result.bfi.compressed_clusters; check->has_compressed_clusters = result.bfi.compressed_clusters != 0; return 0; } /* * Checks an image for consistency. Exit codes: * * 0 - Check completed, image is good * 1 - Check not completed because of internal errors * 2 - Check completed, image is corrupted * 3 - Check completed, image has leaked clusters, but is good otherwise */ static int img_check(int argc, char **argv) { int c, ret; OutputFormat output_format = OFORMAT_HUMAN; const char *filename, *fmt, *output; BlockDriverState *bs; int fix = 0; int flags = BDRV_O_FLAGS | BDRV_O_CHECK; ImageCheck *check; bool quiet = false; fmt = NULL; output = NULL; for(;;) { int option_index = 0; static const struct option long_options[] = { {"help", no_argument, 0, 'h'}, {"format", required_argument, 0, 'f'}, {"repair", no_argument, 0, 'r'}, {"output", required_argument, 0, OPTION_OUTPUT}, {0, 0, 0, 0} }; c = getopt_long(argc, argv, "f:hr:q", long_options, &option_index); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case 'r': flags |= BDRV_O_RDWR; if (!strcmp(optarg, "leaks")) { fix = BDRV_FIX_LEAKS; } else if (!strcmp(optarg, "all")) { fix = BDRV_FIX_LEAKS | BDRV_FIX_ERRORS; } else { help(); } break; case OPTION_OUTPUT: output = optarg; break; case 'q': quiet = true; break; } } if (optind >= argc) { help(); } filename = argv[optind++]; if (output && !strcmp(output, "json")) { output_format = OFORMAT_JSON; } else if (output && !strcmp(output, "human")) { output_format = OFORMAT_HUMAN; } else if (output) { error_report("--output must be used with human or json as argument."); return 1; } bs = bdrv_new_open(filename, fmt, flags, true, quiet); if (!bs) { return 1; } check = g_new0(ImageCheck, 1); ret = collect_image_check(bs, check, filename, fmt, fix); if (ret == -ENOTSUP) { if (output_format == OFORMAT_HUMAN) { error_report("This image format does not support checks"); } ret = 1; goto fail; } if (check->corruptions_fixed || check->leaks_fixed) { int corruptions_fixed, leaks_fixed; leaks_fixed = check->leaks_fixed; corruptions_fixed = check->corruptions_fixed; if (output_format == OFORMAT_HUMAN) { qprintf(quiet, "The following inconsistencies were found and repaired:\n\n" " %" PRId64 " leaked clusters\n" " %" PRId64 " corruptions\n\n" "Double checking the fixed image now...\n", check->leaks_fixed, check->corruptions_fixed); } ret = collect_image_check(bs, check, filename, fmt, 0); check->leaks_fixed = leaks_fixed; check->corruptions_fixed = corruptions_fixed; } switch (output_format) { case OFORMAT_HUMAN: dump_human_image_check(check, quiet); break; case OFORMAT_JSON: dump_json_image_check(check, quiet); break; } if (ret || check->check_errors) { ret = 1; goto fail; } if (check->corruptions) { ret = 2; } else if (check->leaks) { ret = 3; } else { ret = 0; } fail: qapi_free_ImageCheck(check); bdrv_delete(bs); return ret; } static int img_commit(int argc, char **argv) { int c, ret, flags; const char *filename, *fmt, *cache; BlockDriverState *bs; bool quiet = false; fmt = NULL; cache = BDRV_DEFAULT_CACHE; for(;;) { c = getopt(argc, argv, "f:ht:q"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case 't': cache = optarg; break; case 'q': quiet = true; break; } } if (optind >= argc) { help(); } filename = argv[optind++]; flags = BDRV_O_RDWR; ret = bdrv_parse_cache_flags(cache, &flags); if (ret < 0) { error_report("Invalid cache option: %s", cache); return -1; } bs = bdrv_new_open(filename, fmt, flags, true, quiet); if (!bs) { return 1; } ret = bdrv_commit(bs); switch(ret) { case 0: qprintf(quiet, "Image committed.\n"); break; case -ENOENT: error_report("No disk inserted"); break; case -EACCES: error_report("Image is read-only"); break; case -ENOTSUP: error_report("Image is already committed"); break; default: error_report("Error while committing image"); break; } bdrv_delete(bs); if (ret) { return 1; } return 0; } /* * Returns true iff the first sector pointed to by 'buf' contains at least * a non-NUL byte. * * 'pnum' is set to the number of sectors (including and immediately following * the first one) that are known to be in the same allocated/unallocated state. */ static int is_allocated_sectors(const uint8_t *buf, int n, int *pnum) { bool is_zero; int i; if (n <= 0) { *pnum = 0; return 0; } is_zero = buffer_is_zero(buf, 512); for(i = 1; i < n; i++) { buf += 512; if (is_zero != buffer_is_zero(buf, 512)) { break; } } *pnum = i; return !is_zero; } /* * Like is_allocated_sectors, but if the buffer starts with a used sector, * up to 'min' consecutive sectors containing zeros are ignored. This avoids * breaking up write requests for only small sparse areas. */ static int is_allocated_sectors_min(const uint8_t *buf, int n, int *pnum, int min) { int ret; int num_checked, num_used; if (n < min) { min = n; } ret = is_allocated_sectors(buf, n, pnum); if (!ret) { return ret; } num_used = *pnum; buf += BDRV_SECTOR_SIZE * *pnum; n -= *pnum; num_checked = num_used; while (n > 0) { ret = is_allocated_sectors(buf, n, pnum); buf += BDRV_SECTOR_SIZE * *pnum; n -= *pnum; num_checked += *pnum; if (ret) { num_used = num_checked; } else if (*pnum >= min) { break; } } *pnum = num_used; return 1; } /* * Compares two buffers sector by sector. Returns 0 if the first sector of both * buffers matches, non-zero otherwise. * * pnum is set to the number of sectors (including and immediately following * the first one) that are known to have the same comparison result */ static int compare_sectors(const uint8_t *buf1, const uint8_t *buf2, int n, int *pnum) { int res, i; if (n <= 0) { *pnum = 0; return 0; } res = !!memcmp(buf1, buf2, 512); for(i = 1; i < n; i++) { buf1 += 512; buf2 += 512; if (!!memcmp(buf1, buf2, 512) != res) { break; } } *pnum = i; return res; } #define IO_BUF_SIZE (2 * 1024 * 1024) static int64_t sectors_to_bytes(int64_t sectors) { return sectors << BDRV_SECTOR_BITS; } static int64_t sectors_to_process(int64_t total, int64_t from) { return MIN(total - from, IO_BUF_SIZE >> BDRV_SECTOR_BITS); } /* * Check if passed sectors are empty (not allocated or contain only 0 bytes) * * Returns 0 in case sectors are filled with 0, 1 if sectors contain non-zero * data and negative value on error. * * @param bs: Driver used for accessing file * @param sect_num: Number of first sector to check * @param sect_count: Number of sectors to check * @param filename: Name of disk file we are checking (logging purpose) * @param buffer: Allocated buffer for storing read data * @param quiet: Flag for quiet mode */ static int check_empty_sectors(BlockDriverState *bs, int64_t sect_num, int sect_count, const char *filename, uint8_t *buffer, bool quiet) { int pnum, ret = 0; ret = bdrv_read(bs, sect_num, buffer, sect_count); if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s: %s", sectors_to_bytes(sect_num), filename, strerror(-ret)); return ret; } ret = is_allocated_sectors(buffer, sect_count, &pnum); if (ret || pnum != sect_count) { qprintf(quiet, "Content mismatch at offset %" PRId64 "!\n", sectors_to_bytes(ret ? sect_num : sect_num + pnum)); return 1; } return 0; } /* * Compares two images. Exit codes: * * 0 - Images are identical * 1 - Images differ * >1 - Error occurred */ static int img_compare(int argc, char **argv) { const char *fmt1 = NULL, *fmt2 = NULL, *filename1, *filename2; BlockDriverState *bs1, *bs2; int64_t total_sectors1, total_sectors2; uint8_t *buf1 = NULL, *buf2 = NULL; int pnum1, pnum2; int allocated1, allocated2; int ret = 0; /* return value - 0 Ident, 1 Different, >1 Error */ bool progress = false, quiet = false, strict = false; int64_t total_sectors; int64_t sector_num = 0; int64_t nb_sectors; int c, pnum; uint64_t bs_sectors; uint64_t progress_base; for (;;) { c = getopt(argc, argv, "hpf:F:sq"); if (c == -1) { break; } switch (c) { case '?': case 'h': help(); break; case 'f': fmt1 = optarg; break; case 'F': fmt2 = optarg; break; case 'p': progress = true; break; case 'q': quiet = true; break; case 's': strict = true; break; } } /* Progress is not shown in Quiet mode */ if (quiet) { progress = false; } if (optind > argc - 2) { help(); } filename1 = argv[optind++]; filename2 = argv[optind++]; /* Initialize before goto out */ qemu_progress_init(progress, 2.0); bs1 = bdrv_new_open(filename1, fmt1, BDRV_O_FLAGS, true, quiet); if (!bs1) { error_report("Can't open file %s", filename1); ret = 2; goto out3; } bs2 = bdrv_new_open(filename2, fmt2, BDRV_O_FLAGS, true, quiet); if (!bs2) { error_report("Can't open file %s", filename2); ret = 2; goto out2; } buf1 = qemu_blockalign(bs1, IO_BUF_SIZE); buf2 = qemu_blockalign(bs2, IO_BUF_SIZE); bdrv_get_geometry(bs1, &bs_sectors); total_sectors1 = bs_sectors; bdrv_get_geometry(bs2, &bs_sectors); total_sectors2 = bs_sectors; total_sectors = MIN(total_sectors1, total_sectors2); progress_base = MAX(total_sectors1, total_sectors2); qemu_progress_print(0, 100); if (strict && total_sectors1 != total_sectors2) { ret = 1; qprintf(quiet, "Strict mode: Image size mismatch!\n"); goto out; } for (;;) { nb_sectors = sectors_to_process(total_sectors, sector_num); if (nb_sectors <= 0) { break; } allocated1 = bdrv_is_allocated_above(bs1, NULL, sector_num, nb_sectors, &pnum1); if (allocated1 < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename1); goto out; } allocated2 = bdrv_is_allocated_above(bs2, NULL, sector_num, nb_sectors, &pnum2); if (allocated2 < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename2); goto out; } nb_sectors = MIN(pnum1, pnum2); if (allocated1 == allocated2) { if (allocated1) { ret = bdrv_read(bs1, sector_num, buf1, nb_sectors); if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s:" " %s", sectors_to_bytes(sector_num), filename1, strerror(-ret)); ret = 4; goto out; } ret = bdrv_read(bs2, sector_num, buf2, nb_sectors); if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s: %s", sectors_to_bytes(sector_num), filename2, strerror(-ret)); ret = 4; goto out; } ret = compare_sectors(buf1, buf2, nb_sectors, &pnum); if (ret || pnum != nb_sectors) { ret = 1; qprintf(quiet, "Content mismatch at offset %" PRId64 "!\n", sectors_to_bytes( ret ? sector_num : sector_num + pnum)); goto out; } } } else { if (strict) { ret = 1; qprintf(quiet, "Strict mode: Offset %" PRId64 " allocation mismatch!\n", sectors_to_bytes(sector_num)); goto out; } if (allocated1) { ret = check_empty_sectors(bs1, sector_num, nb_sectors, filename1, buf1, quiet); } else { ret = check_empty_sectors(bs2, sector_num, nb_sectors, filename2, buf1, quiet); } if (ret) { if (ret < 0) { ret = 4; error_report("Error while reading offset %" PRId64 ": %s", sectors_to_bytes(sector_num), strerror(-ret)); } goto out; } } sector_num += nb_sectors; qemu_progress_print(((float) nb_sectors / progress_base)*100, 100); } if (total_sectors1 != total_sectors2) { BlockDriverState *bs_over; int64_t total_sectors_over; const char *filename_over; qprintf(quiet, "Warning: Image size mismatch!\n"); if (total_sectors1 > total_sectors2) { total_sectors_over = total_sectors1; bs_over = bs1; filename_over = filename1; } else { total_sectors_over = total_sectors2; bs_over = bs2; filename_over = filename2; } for (;;) { nb_sectors = sectors_to_process(total_sectors_over, sector_num); if (nb_sectors <= 0) { break; } ret = bdrv_is_allocated_above(bs_over, NULL, sector_num, nb_sectors, &pnum); if (ret < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename_over); goto out; } nb_sectors = pnum; if (ret) { ret = check_empty_sectors(bs_over, sector_num, nb_sectors, filename_over, buf1, quiet); if (ret) { if (ret < 0) { ret = 4; error_report("Error while reading offset %" PRId64 " of %s: %s", sectors_to_bytes(sector_num), filename_over, strerror(-ret)); } goto out; } } sector_num += nb_sectors; qemu_progress_print(((float) nb_sectors / progress_base)*100, 100); } } qprintf(quiet, "Images are identical.\n"); ret = 0; out: bdrv_delete(bs2); qemu_vfree(buf1); qemu_vfree(buf2); out2: bdrv_delete(bs1); out3: qemu_progress_end(); return ret; } static int img_convert(int argc, char **argv) { int c, ret = 0, n, n1, bs_n, bs_i, compress, cluster_size, cluster_sectors; int progress = 0, flags; const char *fmt, *out_fmt, *cache, *out_baseimg, *out_filename; BlockDriver *drv, *proto_drv; BlockDriverState **bs = NULL, *out_bs = NULL; int64_t total_sectors, nb_sectors, sector_num, bs_offset; uint64_t bs_sectors; uint8_t * buf = NULL; const uint8_t *buf1; BlockDriverInfo bdi; QEMUOptionParameter *param = NULL, *create_options = NULL; QEMUOptionParameter *out_baseimg_param; char *options = NULL; const char *snapshot_name = NULL; float local_progress = 0; int min_sparse = 8; /* Need at least 4k of zeros for sparse detection */ bool quiet = false; fmt = NULL; out_fmt = "raw"; cache = "unsafe"; out_baseimg = NULL; compress = 0; for(;;) { c = getopt(argc, argv, "f:O:B:s:hce6o:pS:t:q"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case 'O': out_fmt = optarg; break; case 'B': out_baseimg = optarg; break; case 'c': compress = 1; break; case 'e': error_report("option -e is deprecated, please use \'-o " "encryption\' instead!"); return 1; case '6': error_report("option -6 is deprecated, please use \'-o " "compat6\' instead!"); return 1; case 'o': options = optarg; break; case 's': snapshot_name = optarg; break; case 'S': { int64_t sval; char *end; sval = strtosz_suffix(optarg, &end, STRTOSZ_DEFSUFFIX_B); if (sval < 0 || *end) { error_report("Invalid minimum zero buffer size for sparse output specified"); return 1; } min_sparse = sval / BDRV_SECTOR_SIZE; break; } case 'p': progress = 1; break; case 't': cache = optarg; break; case 'q': quiet = true; break; } } if (quiet) { progress = 0; } bs_n = argc - optind - 1; if (bs_n < 1) { help(); } out_filename = argv[argc - 1]; /* Initialize before goto out */ qemu_progress_init(progress, 2.0); if (options && is_help_option(options)) { ret = print_block_option_help(out_filename, out_fmt); goto out; } if (bs_n > 1 && out_baseimg) { error_report("-B makes no sense when concatenating multiple input " "images"); ret = -1; goto out; } qemu_progress_print(0, 100); bs = g_malloc0(bs_n * sizeof(BlockDriverState *)); total_sectors = 0; for (bs_i = 0; bs_i < bs_n; bs_i++) { bs[bs_i] = bdrv_new_open(argv[optind + bs_i], fmt, BDRV_O_FLAGS, true, quiet); if (!bs[bs_i]) { error_report("Could not open '%s'", argv[optind + bs_i]); ret = -1; goto out; } bdrv_get_geometry(bs[bs_i], &bs_sectors); total_sectors += bs_sectors; } if (snapshot_name != NULL) { if (bs_n > 1) { error_report("No support for concatenating multiple snapshot"); ret = -1; goto out; } if (bdrv_snapshot_load_tmp(bs[0], snapshot_name) < 0) { error_report("Failed to load snapshot"); ret = -1; goto out; } } /* Find driver and parse its options */ drv = bdrv_find_format(out_fmt); if (!drv) { error_report("Unknown file format '%s'", out_fmt); ret = -1; goto out; } proto_drv = bdrv_find_protocol(out_filename); if (!proto_drv) { error_report("Unknown protocol '%s'", out_filename); ret = -1; goto out; } create_options = append_option_parameters(create_options, drv->create_options); create_options = append_option_parameters(create_options, proto_drv->create_options); if (options) { param = parse_option_parameters(options, create_options, param); if (param == NULL) { error_report("Invalid options for file format '%s'.", out_fmt); ret = -1; goto out; } } else { param = parse_option_parameters("", create_options, param); } set_option_parameter_int(param, BLOCK_OPT_SIZE, total_sectors * 512); ret = add_old_style_options(out_fmt, param, out_baseimg, NULL); if (ret < 0) { goto out; } /* Get backing file name if -o backing_file was used */ out_baseimg_param = get_option_parameter(param, BLOCK_OPT_BACKING_FILE); if (out_baseimg_param) { out_baseimg = out_baseimg_param->value.s; } /* Check if compression is supported */ if (compress) { QEMUOptionParameter *encryption = get_option_parameter(param, BLOCK_OPT_ENCRYPT); QEMUOptionParameter *preallocation = get_option_parameter(param, BLOCK_OPT_PREALLOC); if (!drv->bdrv_write_compressed) { error_report("Compression not supported for this file format"); ret = -1; goto out; } if (encryption && encryption->value.n) { error_report("Compression and encryption not supported at " "the same time"); ret = -1; goto out; } if (preallocation && preallocation->value.s && strcmp(preallocation->value.s, "off")) { error_report("Compression and preallocation not supported at " "the same time"); ret = -1; goto out; } } /* Create the new image */ ret = bdrv_create(drv, out_filename, param); if (ret < 0) { if (ret == -ENOTSUP) { error_report("Formatting not supported for file format '%s'", out_fmt); } else if (ret == -EFBIG) { error_report("The image size is too large for file format '%s'", out_fmt); } else { error_report("%s: error while converting %s: %s", out_filename, out_fmt, strerror(-ret)); } goto out; } flags = BDRV_O_RDWR; ret = bdrv_parse_cache_flags(cache, &flags); if (ret < 0) { error_report("Invalid cache option: %s", cache); return -1; } out_bs = bdrv_new_open(out_filename, out_fmt, flags, true, quiet); if (!out_bs) { ret = -1; goto out; } bs_i = 0; bs_offset = 0; bdrv_get_geometry(bs[0], &bs_sectors); buf = qemu_blockalign(out_bs, IO_BUF_SIZE); if (compress) { ret = bdrv_get_info(out_bs, &bdi); if (ret < 0) { error_report("could not get block driver info"); goto out; } cluster_size = bdi.cluster_size; if (cluster_size <= 0 || cluster_size > IO_BUF_SIZE) { error_report("invalid cluster size"); ret = -1; goto out; } cluster_sectors = cluster_size >> 9; sector_num = 0; nb_sectors = total_sectors; if (nb_sectors != 0) { local_progress = (float)100 / (nb_sectors / MIN(nb_sectors, cluster_sectors)); } for(;;) { int64_t bs_num; int remainder; uint8_t *buf2; nb_sectors = total_sectors - sector_num; if (nb_sectors <= 0) break; if (nb_sectors >= cluster_sectors) n = cluster_sectors; else n = nb_sectors; bs_num = sector_num - bs_offset; assert (bs_num >= 0); remainder = n; buf2 = buf; while (remainder > 0) { int nlow; while (bs_num == bs_sectors) { bs_i++; assert (bs_i < bs_n); bs_offset += bs_sectors; bdrv_get_geometry(bs[bs_i], &bs_sectors); bs_num = 0; /* printf("changing part: sector_num=%" PRId64 ", " "bs_i=%d, bs_offset=%" PRId64 ", bs_sectors=%" PRId64 "\n", sector_num, bs_i, bs_offset, bs_sectors); */ } assert (bs_num < bs_sectors); nlow = (remainder > bs_sectors - bs_num) ? bs_sectors - bs_num : remainder; ret = bdrv_read(bs[bs_i], bs_num, buf2, nlow); if (ret < 0) { error_report("error while reading sector %" PRId64 ": %s", bs_num, strerror(-ret)); goto out; } buf2 += nlow * 512; bs_num += nlow; remainder -= nlow; } assert (remainder == 0); if (!buffer_is_zero(buf, n * BDRV_SECTOR_SIZE)) { ret = bdrv_write_compressed(out_bs, sector_num, buf, n); if (ret != 0) { error_report("error while compressing sector %" PRId64 ": %s", sector_num, strerror(-ret)); goto out; } } sector_num += n; qemu_progress_print(local_progress, 100); } /* signal EOF to align */ bdrv_write_compressed(out_bs, 0, NULL, 0); } else { int has_zero_init = bdrv_has_zero_init(out_bs); sector_num = 0; // total number of sectors converted so far nb_sectors = total_sectors - sector_num; if (nb_sectors != 0) { local_progress = (float)100 / (nb_sectors / MIN(nb_sectors, IO_BUF_SIZE / 512)); } for(;;) { nb_sectors = total_sectors - sector_num; if (nb_sectors <= 0) { break; } if (nb_sectors >= (IO_BUF_SIZE / 512)) { n = (IO_BUF_SIZE / 512); } else { n = nb_sectors; } while (sector_num - bs_offset >= bs_sectors) { bs_i ++; assert (bs_i < bs_n); bs_offset += bs_sectors; bdrv_get_geometry(bs[bs_i], &bs_sectors); /* printf("changing part: sector_num=%" PRId64 ", bs_i=%d, " "bs_offset=%" PRId64 ", bs_sectors=%" PRId64 "\n", sector_num, bs_i, bs_offset, bs_sectors); */ } if (n > bs_offset + bs_sectors - sector_num) { n = bs_offset + bs_sectors - sector_num; } if (has_zero_init) { /* If the output image is being created as a copy on write image, assume that sectors which are unallocated in the input image are present in both the output's and input's base images (no need to copy them). */ if (out_baseimg) { if (!bdrv_is_allocated(bs[bs_i], sector_num - bs_offset, n, &n1)) { sector_num += n1; continue; } /* The next 'n1' sectors are allocated in the input image. Copy only those as they may be followed by unallocated sectors. */ n = n1; } } else { n1 = n; } ret = bdrv_read(bs[bs_i], sector_num - bs_offset, buf, n); if (ret < 0) { error_report("error while reading sector %" PRId64 ": %s", sector_num - bs_offset, strerror(-ret)); goto out; } /* NOTE: at the same time we convert, we do not write zero sectors to have a chance to compress the image. Ideally, we should add a specific call to have the info to go faster */ buf1 = buf; while (n > 0) { /* If the output image is being created as a copy on write image, copy all sectors even the ones containing only NUL bytes, because they may differ from the sectors in the base image. If the output is to a host device, we also write out sectors that are entirely 0, since whatever data was already there is garbage, not 0s. */ if (!has_zero_init || out_baseimg || is_allocated_sectors_min(buf1, n, &n1, min_sparse)) { ret = bdrv_write(out_bs, sector_num, buf1, n1); if (ret < 0) { error_report("error while writing sector %" PRId64 ": %s", sector_num, strerror(-ret)); goto out; } } sector_num += n1; n -= n1; buf1 += n1 * 512; } qemu_progress_print(local_progress, 100); } } out: qemu_progress_end(); free_option_parameters(create_options); free_option_parameters(param); qemu_vfree(buf); if (out_bs) { bdrv_delete(out_bs); } if (bs) { for (bs_i = 0; bs_i < bs_n; bs_i++) { if (bs[bs_i]) { bdrv_delete(bs[bs_i]); } } g_free(bs); } if (ret) { return 1; } return 0; } static void dump_snapshots(BlockDriverState *bs) { QEMUSnapshotInfo *sn_tab, *sn; int nb_sns, i; char buf[256]; nb_sns = bdrv_snapshot_list(bs, &sn_tab); if (nb_sns <= 0) return; printf("Snapshot list:\n"); printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL)); for(i = 0; i < nb_sns; i++) { sn = &sn_tab[i]; printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn)); } g_free(sn_tab); } static void dump_json_image_info_list(ImageInfoList *list) { Error *errp = NULL; QString *str; QmpOutputVisitor *ov = qmp_output_visitor_new(); QObject *obj; visit_type_ImageInfoList(qmp_output_get_visitor(ov), &list, NULL, &errp); obj = qmp_output_get_qobject(ov); str = qobject_to_json_pretty(obj); assert(str != NULL); printf("%s\n", qstring_get_str(str)); qobject_decref(obj); qmp_output_visitor_cleanup(ov); QDECREF(str); } static void collect_snapshots(BlockDriverState *bs , ImageInfo *info) { int i, sn_count; QEMUSnapshotInfo *sn_tab = NULL; SnapshotInfoList *info_list, *cur_item = NULL; sn_count = bdrv_snapshot_list(bs, &sn_tab); for (i = 0; i < sn_count; i++) { info->has_snapshots = true; info_list = g_new0(SnapshotInfoList, 1); info_list->value = g_new0(SnapshotInfo, 1); info_list->value->id = g_strdup(sn_tab[i].id_str); info_list->value->name = g_strdup(sn_tab[i].name); info_list->value->vm_state_size = sn_tab[i].vm_state_size; info_list->value->date_sec = sn_tab[i].date_sec; info_list->value->date_nsec = sn_tab[i].date_nsec; info_list->value->vm_clock_sec = sn_tab[i].vm_clock_nsec / 1000000000; info_list->value->vm_clock_nsec = sn_tab[i].vm_clock_nsec % 1000000000; /* XXX: waiting for the qapi to support qemu-queue.h types */ if (!cur_item) { info->snapshots = cur_item = info_list; } else { cur_item->next = info_list; cur_item = info_list; } } g_free(sn_tab); } static void dump_json_image_info(ImageInfo *info) { Error *errp = NULL; QString *str; QmpOutputVisitor *ov = qmp_output_visitor_new(); QObject *obj; visit_type_ImageInfo(qmp_output_get_visitor(ov), &info, NULL, &errp); obj = qmp_output_get_qobject(ov); str = qobject_to_json_pretty(obj); assert(str != NULL); printf("%s\n", qstring_get_str(str)); qobject_decref(obj); qmp_output_visitor_cleanup(ov); QDECREF(str); } static void collect_image_info(BlockDriverState *bs, ImageInfo *info, const char *filename, const char *fmt) { uint64_t total_sectors; char backing_filename[1024]; char backing_filename2[1024]; BlockDriverInfo bdi; bdrv_get_geometry(bs, &total_sectors); info->filename = g_strdup(filename); info->format = g_strdup(bdrv_get_format_name(bs)); info->virtual_size = total_sectors * 512; info->actual_size = bdrv_get_allocated_file_size(bs); info->has_actual_size = info->actual_size >= 0; if (bdrv_is_encrypted(bs)) { info->encrypted = true; info->has_encrypted = true; } if (bdrv_get_info(bs, &bdi) >= 0) { if (bdi.cluster_size != 0) { info->cluster_size = bdi.cluster_size; info->has_cluster_size = true; } info->dirty_flag = bdi.is_dirty; info->has_dirty_flag = true; } bdrv_get_backing_filename(bs, backing_filename, sizeof(backing_filename)); if (backing_filename[0] != '\0') { info->backing_filename = g_strdup(backing_filename); info->has_backing_filename = true; bdrv_get_full_backing_filename(bs, backing_filename2, sizeof(backing_filename2)); if (strcmp(backing_filename, backing_filename2) != 0) { info->full_backing_filename = g_strdup(backing_filename2); info->has_full_backing_filename = true; } if (bs->backing_format[0]) { info->backing_filename_format = g_strdup(bs->backing_format); info->has_backing_filename_format = true; } } } static void dump_human_image_info(ImageInfo *info) { char size_buf[128], dsize_buf[128]; if (!info->has_actual_size) { snprintf(dsize_buf, sizeof(dsize_buf), "unavailable"); } else { get_human_readable_size(dsize_buf, sizeof(dsize_buf), info->actual_size); } get_human_readable_size(size_buf, sizeof(size_buf), info->virtual_size); printf("image: %s\n" "file format: %s\n" "virtual size: %s (%" PRId64 " bytes)\n" "disk size: %s\n", info->filename, info->format, size_buf, info->virtual_size, dsize_buf); if (info->has_encrypted && info->encrypted) { printf("encrypted: yes\n"); } if (info->has_cluster_size) { printf("cluster_size: %" PRId64 "\n", info->cluster_size); } if (info->has_dirty_flag && info->dirty_flag) { printf("cleanly shut down: no\n"); } if (info->has_backing_filename) { printf("backing file: %s", info->backing_filename); if (info->has_full_backing_filename) { printf(" (actual path: %s)", info->full_backing_filename); } putchar('\n'); if (info->has_backing_filename_format) { printf("backing file format: %s\n", info->backing_filename_format); } } if (info->has_snapshots) { SnapshotInfoList *elem; char buf[256]; printf("Snapshot list:\n"); printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL)); /* Ideally bdrv_snapshot_dump() would operate on SnapshotInfoList but * we convert to the block layer's native QEMUSnapshotInfo for now. */ for (elem = info->snapshots; elem; elem = elem->next) { QEMUSnapshotInfo sn = { .vm_state_size = elem->value->vm_state_size, .date_sec = elem->value->date_sec, .date_nsec = elem->value->date_nsec, .vm_clock_nsec = elem->value->vm_clock_sec * 1000000000ULL + elem->value->vm_clock_nsec, }; pstrcpy(sn.id_str, sizeof(sn.id_str), elem->value->id); pstrcpy(sn.name, sizeof(sn.name), elem->value->name); printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), &sn)); } } } static void dump_human_image_info_list(ImageInfoList *list) { ImageInfoList *elem; bool delim = false; for (elem = list; elem; elem = elem->next) { if (delim) { printf("\n"); } delim = true; dump_human_image_info(elem->value); } } static gboolean str_equal_func(gconstpointer a, gconstpointer b) { return strcmp(a, b) == 0; } /** * Open an image file chain and return an ImageInfoList * * @filename: topmost image filename * @fmt: topmost image format (may be NULL to autodetect) * @chain: true - enumerate entire backing file chain * false - only topmost image file * * Returns a list of ImageInfo objects or NULL if there was an error opening an * image file. If there was an error a message will have been printed to * stderr. */ static ImageInfoList *collect_image_info_list(const char *filename, const char *fmt, bool chain) { ImageInfoList *head = NULL; ImageInfoList **last = &head; GHashTable *filenames; filenames = g_hash_table_new_full(g_str_hash, str_equal_func, NULL, NULL); while (filename) { BlockDriverState *bs; ImageInfo *info; ImageInfoList *elem; if (g_hash_table_lookup_extended(filenames, filename, NULL, NULL)) { error_report("Backing file '%s' creates an infinite loop.", filename); goto err; } g_hash_table_insert(filenames, (gpointer)filename, NULL); bs = bdrv_new_open(filename, fmt, BDRV_O_FLAGS | BDRV_O_NO_BACKING, false, false); if (!bs) { goto err; } info = g_new0(ImageInfo, 1); collect_image_info(bs, info, filename, fmt); collect_snapshots(bs, info); elem = g_new0(ImageInfoList, 1); elem->value = info; *last = elem; last = &elem->next; bdrv_delete(bs); filename = fmt = NULL; if (chain) { if (info->has_full_backing_filename) { filename = info->full_backing_filename; } else if (info->has_backing_filename) { filename = info->backing_filename; } if (info->has_backing_filename_format) { fmt = info->backing_filename_format; } } } g_hash_table_destroy(filenames); return head; err: qapi_free_ImageInfoList(head); g_hash_table_destroy(filenames); return NULL; } static int img_info(int argc, char **argv) { int c; OutputFormat output_format = OFORMAT_HUMAN; bool chain = false; const char *filename, *fmt, *output; ImageInfoList *list; fmt = NULL; output = NULL; for(;;) { int option_index = 0; static const struct option long_options[] = { {"help", no_argument, 0, 'h'}, {"format", required_argument, 0, 'f'}, {"output", required_argument, 0, OPTION_OUTPUT}, {"backing-chain", no_argument, 0, OPTION_BACKING_CHAIN}, {0, 0, 0, 0} }; c = getopt_long(argc, argv, "f:h", long_options, &option_index); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case OPTION_OUTPUT: output = optarg; break; case OPTION_BACKING_CHAIN: chain = true; break; } } if (optind >= argc) { help(); } filename = argv[optind++]; if (output && !strcmp(output, "json")) { output_format = OFORMAT_JSON; } else if (output && !strcmp(output, "human")) { output_format = OFORMAT_HUMAN; } else if (output) { error_report("--output must be used with human or json as argument."); return 1; } list = collect_image_info_list(filename, fmt, chain); if (!list) { return 1; } switch (output_format) { case OFORMAT_HUMAN: dump_human_image_info_list(list); break; case OFORMAT_JSON: if (chain) { dump_json_image_info_list(list); } else { dump_json_image_info(list->value); } break; } qapi_free_ImageInfoList(list); return 0; } #define SNAPSHOT_LIST 1 #define SNAPSHOT_CREATE 2 #define SNAPSHOT_APPLY 3 #define SNAPSHOT_DELETE 4 static int img_snapshot(int argc, char **argv) { BlockDriverState *bs; QEMUSnapshotInfo sn; char *filename, *snapshot_name = NULL; int c, ret = 0, bdrv_oflags; int action = 0; qemu_timeval tv; bool quiet = false; bdrv_oflags = BDRV_O_FLAGS | BDRV_O_RDWR; /* Parse commandline parameters */ for(;;) { c = getopt(argc, argv, "la:c:d:hq"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); return 0; case 'l': if (action) { help(); return 0; } action = SNAPSHOT_LIST; bdrv_oflags &= ~BDRV_O_RDWR; /* no need for RW */ break; case 'a': if (action) { help(); return 0; } action = SNAPSHOT_APPLY; snapshot_name = optarg; break; case 'c': if (action) { help(); return 0; } action = SNAPSHOT_CREATE; snapshot_name = optarg; break; case 'd': if (action) { help(); return 0; } action = SNAPSHOT_DELETE; snapshot_name = optarg; break; case 'q': quiet = true; break; } } if (optind >= argc) { help(); } filename = argv[optind++]; /* Open the image */ bs = bdrv_new_open(filename, NULL, bdrv_oflags, true, quiet); if (!bs) { return 1; } /* Perform the requested action */ switch(action) { case SNAPSHOT_LIST: dump_snapshots(bs); break; case SNAPSHOT_CREATE: memset(&sn, 0, sizeof(sn)); pstrcpy(sn.name, sizeof(sn.name), snapshot_name); qemu_gettimeofday(&tv); sn.date_sec = tv.tv_sec; sn.date_nsec = tv.tv_usec * 1000; ret = bdrv_snapshot_create(bs, &sn); if (ret) { error_report("Could not create snapshot '%s': %d (%s)", snapshot_name, ret, strerror(-ret)); } break; case SNAPSHOT_APPLY: ret = bdrv_snapshot_goto(bs, snapshot_name); if (ret) { error_report("Could not apply snapshot '%s': %d (%s)", snapshot_name, ret, strerror(-ret)); } break; case SNAPSHOT_DELETE: ret = bdrv_snapshot_delete(bs, snapshot_name); if (ret) { error_report("Could not delete snapshot '%s': %d (%s)", snapshot_name, ret, strerror(-ret)); } break; } /* Cleanup */ bdrv_delete(bs); if (ret) { return 1; } return 0; } static int img_rebase(int argc, char **argv) { BlockDriverState *bs, *bs_old_backing = NULL, *bs_new_backing = NULL; BlockDriver *old_backing_drv, *new_backing_drv; char *filename; const char *fmt, *cache, *out_basefmt, *out_baseimg; int c, flags, ret; int unsafe = 0; int progress = 0; bool quiet = false; /* Parse commandline parameters */ fmt = NULL; cache = BDRV_DEFAULT_CACHE; out_baseimg = NULL; out_basefmt = NULL; for(;;) { c = getopt(argc, argv, "uhf:F:b:pt:q"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); return 0; case 'f': fmt = optarg; break; case 'F': out_basefmt = optarg; break; case 'b': out_baseimg = optarg; break; case 'u': unsafe = 1; break; case 'p': progress = 1; break; case 't': cache = optarg; break; case 'q': quiet = true; break; } } if (quiet) { progress = 0; } if ((optind >= argc) || (!unsafe && !out_baseimg)) { help(); } filename = argv[optind++]; qemu_progress_init(progress, 2.0); qemu_progress_print(0, 100); flags = BDRV_O_RDWR | (unsafe ? BDRV_O_NO_BACKING : 0); ret = bdrv_parse_cache_flags(cache, &flags); if (ret < 0) { error_report("Invalid cache option: %s", cache); return -1; } /* * Open the images. * * Ignore the old backing file for unsafe rebase in case we want to correct * the reference to a renamed or moved backing file. */ bs = bdrv_new_open(filename, fmt, flags, true, quiet); if (!bs) { return 1; } /* Find the right drivers for the backing files */ old_backing_drv = NULL; new_backing_drv = NULL; if (!unsafe && bs->backing_format[0] != '\0') { old_backing_drv = bdrv_find_format(bs->backing_format); if (old_backing_drv == NULL) { error_report("Invalid format name: '%s'", bs->backing_format); ret = -1; goto out; } } if (out_basefmt != NULL) { new_backing_drv = bdrv_find_format(out_basefmt); if (new_backing_drv == NULL) { error_report("Invalid format name: '%s'", out_basefmt); ret = -1; goto out; } } /* For safe rebasing we need to compare old and new backing file */ if (unsafe) { /* Make the compiler happy */ bs_old_backing = NULL; bs_new_backing = NULL; } else { char backing_name[1024]; bs_old_backing = bdrv_new("old_backing"); bdrv_get_backing_filename(bs, backing_name, sizeof(backing_name)); ret = bdrv_open(bs_old_backing, backing_name, NULL, BDRV_O_FLAGS, old_backing_drv); if (ret) { error_report("Could not open old backing file '%s'", backing_name); goto out; } if (out_baseimg[0]) { bs_new_backing = bdrv_new("new_backing"); ret = bdrv_open(bs_new_backing, out_baseimg, NULL, BDRV_O_FLAGS, new_backing_drv); if (ret) { error_report("Could not open new backing file '%s'", out_baseimg); goto out; } } } /* * Check each unallocated cluster in the COW file. If it is unallocated, * accesses go to the backing file. We must therefore compare this cluster * in the old and new backing file, and if they differ we need to copy it * from the old backing file into the COW file. * * If qemu-img crashes during this step, no harm is done. The content of * the image is the same as the original one at any time. */ if (!unsafe) { uint64_t num_sectors; uint64_t old_backing_num_sectors; uint64_t new_backing_num_sectors = 0; uint64_t sector; int n; uint8_t * buf_old; uint8_t * buf_new; float local_progress = 0; buf_old = qemu_blockalign(bs, IO_BUF_SIZE); buf_new = qemu_blockalign(bs, IO_BUF_SIZE); bdrv_get_geometry(bs, &num_sectors); bdrv_get_geometry(bs_old_backing, &old_backing_num_sectors); if (bs_new_backing) { bdrv_get_geometry(bs_new_backing, &new_backing_num_sectors); } if (num_sectors != 0) { local_progress = (float)100 / (num_sectors / MIN(num_sectors, IO_BUF_SIZE / 512)); } for (sector = 0; sector < num_sectors; sector += n) { /* How many sectors can we handle with the next read? */ if (sector + (IO_BUF_SIZE / 512) <= num_sectors) { n = (IO_BUF_SIZE / 512); } else { n = num_sectors - sector; } /* If the cluster is allocated, we don't need to take action */ ret = bdrv_is_allocated(bs, sector, n, &n); if (ret) { continue; } /* * Read old and new backing file and take into consideration that * backing files may be smaller than the COW image. */ if (sector >= old_backing_num_sectors) { memset(buf_old, 0, n * BDRV_SECTOR_SIZE); } else { if (sector + n > old_backing_num_sectors) { n = old_backing_num_sectors - sector; } ret = bdrv_read(bs_old_backing, sector, buf_old, n); if (ret < 0) { error_report("error while reading from old backing file"); goto out; } } if (sector >= new_backing_num_sectors || !bs_new_backing) { memset(buf_new, 0, n * BDRV_SECTOR_SIZE); } else { if (sector + n > new_backing_num_sectors) { n = new_backing_num_sectors - sector; } ret = bdrv_read(bs_new_backing, sector, buf_new, n); if (ret < 0) { error_report("error while reading from new backing file"); goto out; } } /* If they differ, we need to write to the COW file */ uint64_t written = 0; while (written < n) { int pnum; if (compare_sectors(buf_old + written * 512, buf_new + written * 512, n - written, &pnum)) { ret = bdrv_write(bs, sector + written, buf_old + written * 512, pnum); if (ret < 0) { error_report("Error while writing to COW image: %s", strerror(-ret)); goto out; } } written += pnum; } qemu_progress_print(local_progress, 100); } qemu_vfree(buf_old); qemu_vfree(buf_new); } /* * Change the backing file. All clusters that are different from the old * backing file are overwritten in the COW file now, so the visible content * doesn't change when we switch the backing file. */ if (out_baseimg && *out_baseimg) { ret = bdrv_change_backing_file(bs, out_baseimg, out_basefmt); } else { ret = bdrv_change_backing_file(bs, NULL, NULL); } if (ret == -ENOSPC) { error_report("Could not change the backing file to '%s': No " "space left in the file header", out_baseimg); } else if (ret < 0) { error_report("Could not change the backing file to '%s': %s", out_baseimg, strerror(-ret)); } qemu_progress_print(100, 0); /* * TODO At this point it is possible to check if any clusters that are * allocated in the COW file are the same in the backing file. If so, they * could be dropped from the COW file. Don't do this before switching the * backing file, in case of a crash this would lead to corruption. */ out: qemu_progress_end(); /* Cleanup */ if (!unsafe) { if (bs_old_backing != NULL) { bdrv_delete(bs_old_backing); } if (bs_new_backing != NULL) { bdrv_delete(bs_new_backing); } } bdrv_delete(bs); if (ret) { return 1; } return 0; } static int img_resize(int argc, char **argv) { int c, ret, relative; const char *filename, *fmt, *size; int64_t n, total_size; bool quiet = false; BlockDriverState *bs = NULL; QemuOpts *param; static QemuOptsList resize_options = { .name = "resize_options", .head = QTAILQ_HEAD_INITIALIZER(resize_options.head), .desc = { { .name = BLOCK_OPT_SIZE, .type = QEMU_OPT_SIZE, .help = "Virtual disk size" }, { /* end of list */ } }, }; /* Remove size from argv manually so that negative numbers are not treated * as options by getopt. */ if (argc < 3) { help(); return 1; } size = argv[--argc]; /* Parse getopt arguments */ fmt = NULL; for(;;) { c = getopt(argc, argv, "f:hq"); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case 'q': quiet = true; break; } } if (optind >= argc) { help(); } filename = argv[optind++]; /* Choose grow, shrink, or absolute resize mode */ switch (size[0]) { case '+': relative = 1; size++; break; case '-': relative = -1; size++; break; default: relative = 0; break; } /* Parse size */ param = qemu_opts_create_nofail(&resize_options); if (qemu_opt_set(param, BLOCK_OPT_SIZE, size)) { /* Error message already printed when size parsing fails */ ret = -1; qemu_opts_del(param); goto out; } n = qemu_opt_get_size(param, BLOCK_OPT_SIZE, 0); qemu_opts_del(param); bs = bdrv_new_open(filename, fmt, BDRV_O_FLAGS | BDRV_O_RDWR, true, quiet); if (!bs) { ret = -1; goto out; } if (relative) { total_size = bdrv_getlength(bs) + n * relative; } else { total_size = n; } if (total_size <= 0) { error_report("New image size must be positive"); ret = -1; goto out; } ret = bdrv_truncate(bs, total_size); switch (ret) { case 0: qprintf(quiet, "Image resized.\n"); break; case -ENOTSUP: error_report("This image does not support resize"); break; case -EACCES: error_report("Image is read-only"); break; default: error_report("Error resizing image (%d)", -ret); break; } out: if (bs) { bdrv_delete(bs); } if (ret) { return 1; } return 0; } static const img_cmd_t img_cmds[] = { #define DEF(option, callback, arg_string) \ { option, callback }, #include "qemu-img-cmds.h" #undef DEF #undef GEN_DOCS { NULL, NULL, }, }; int main(int argc, char **argv) { const img_cmd_t *cmd; const char *cmdname; error_set_progname(argv[0]); qemu_init_main_loop(); bdrv_init(); if (argc < 2) help(); cmdname = argv[1]; argc--; argv++; /* find the command */ for(cmd = img_cmds; cmd->name != NULL; cmd++) { if (!strcmp(cmdname, cmd->name)) { return cmd->handler(argc, argv); } } /* not found */ help(); return 0; }