/* * QEMU Plugin API * * This provides the API that is available to the plugins to interact * with QEMU. We have to be careful not to expose internal details of * how QEMU works so we abstract out things like translation and * instructions to anonymous data types: * * qemu_plugin_tb * qemu_plugin_insn * * Which can then be passed back into the API to do additional things. * As such all the public functions in here are exported in * qemu-plugin.h. * * The general life-cycle of a plugin is: * * - plugin is loaded, public qemu_plugin_install called * - the install func registers callbacks for events * - usually an atexit_cb is registered to dump info at the end * - when a registered event occurs the plugin is called * - some events pass additional info * - during translation the plugin can decide to instrument any * instruction * - when QEMU exits all the registered atexit callbacks are called * * Copyright (C) 2017, Emilio G. Cota <cota@braap.org> * Copyright (C) 2019, Linaro * * License: GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * SPDX-License-Identifier: GPL-2.0-or-later * */ #include "qemu/osdep.h" #include "qemu/plugin.h" #include "qemu/log.h" #include "tcg/tcg.h" #include "exec/exec-all.h" #include "exec/ram_addr.h" #include "disas/disas.h" #include "plugin.h" #ifndef CONFIG_USER_ONLY #include "qemu/plugin-memory.h" #include "hw/boards.h" #else #include "qemu.h" #ifdef CONFIG_LINUX #include "loader.h" #endif #endif /* Uninstall and Reset handlers */ void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) { plugin_reset_uninstall(id, cb, false); } void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb) { plugin_reset_uninstall(id, cb, true); } /* * Plugin Register Functions * * This allows the plugin to register callbacks for various events * during the translation. */ void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_simple_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb); } void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_simple_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb); } void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, void *udata) { if (!tb->mem_only) { plugin_register_dyn_cb__udata(&tb->cbs[PLUGIN_CB_REGULAR], cb, flags, udata); } } void qemu_plugin_register_vcpu_tb_exec_inline(struct qemu_plugin_tb *tb, enum qemu_plugin_op op, void *ptr, uint64_t imm) { if (!tb->mem_only) { plugin_register_inline_op(&tb->cbs[PLUGIN_CB_INLINE], 0, op, ptr, imm); } } void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn, qemu_plugin_vcpu_udata_cb_t cb, enum qemu_plugin_cb_flags flags, void *udata) { if (!insn->mem_only) { plugin_register_dyn_cb__udata(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_REGULAR], cb, flags, udata); } } void qemu_plugin_register_vcpu_insn_exec_inline(struct qemu_plugin_insn *insn, enum qemu_plugin_op op, void *ptr, uint64_t imm) { if (!insn->mem_only) { plugin_register_inline_op(&insn->cbs[PLUGIN_CB_INSN][PLUGIN_CB_INLINE], 0, op, ptr, imm); } } /* * We always plant memory instrumentation because they don't finalise until * after the operation has complete. */ void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn, qemu_plugin_vcpu_mem_cb_t cb, enum qemu_plugin_cb_flags flags, enum qemu_plugin_mem_rw rw, void *udata) { plugin_register_vcpu_mem_cb(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_REGULAR], cb, flags, rw, udata); } void qemu_plugin_register_vcpu_mem_inline(struct qemu_plugin_insn *insn, enum qemu_plugin_mem_rw rw, enum qemu_plugin_op op, void *ptr, uint64_t imm) { plugin_register_inline_op(&insn->cbs[PLUGIN_CB_MEM][PLUGIN_CB_INLINE], rw, op, ptr, imm); } void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_tb_trans_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb); } void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_syscall_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb); } void qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id, qemu_plugin_vcpu_syscall_ret_cb_t cb) { plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb); } /* * Plugin Queries * * These are queries that the plugin can make to gauge information * from our opaque data types. We do not want to leak internal details * here just information useful to the plugin. */ /* * Translation block information: * * A plugin can query the virtual address of the start of the block * and the number of instructions in it. It can also get access to * each translated instruction. */ size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb) { return tb->n; } uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb) { return tb->vaddr; } struct qemu_plugin_insn * qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx) { struct qemu_plugin_insn *insn; if (unlikely(idx >= tb->n)) { return NULL; } insn = g_ptr_array_index(tb->insns, idx); insn->mem_only = tb->mem_only; return insn; } /* * Instruction information * * These queries allow the plugin to retrieve information about each * instruction being translated. */ const void *qemu_plugin_insn_data(const struct qemu_plugin_insn *insn) { return insn->data->data; } size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn) { return insn->data->len; } uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn) { return insn->vaddr; } void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn) { return insn->haddr; } char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn) { CPUState *cpu = current_cpu; return plugin_disas(cpu, insn->vaddr, insn->data->len); } const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn) { const char *sym = lookup_symbol(insn->vaddr); return sym[0] != 0 ? sym : NULL; } /* * The memory queries allow the plugin to query information about a * memory access. */ unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return op & MO_SIZE; } bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return op & MO_SIGN; } bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info) { MemOp op = get_memop(info); return (op & MO_BSWAP) == MO_BE; } bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info) { return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W; } /* * Virtual Memory queries */ #ifdef CONFIG_SOFTMMU static __thread struct qemu_plugin_hwaddr hwaddr_info; #endif struct qemu_plugin_hwaddr *qemu_plugin_get_hwaddr(qemu_plugin_meminfo_t info, uint64_t vaddr) { #ifdef CONFIG_SOFTMMU CPUState *cpu = current_cpu; unsigned int mmu_idx = get_mmuidx(info); enum qemu_plugin_mem_rw rw = get_plugin_meminfo_rw(info); hwaddr_info.is_store = (rw & QEMU_PLUGIN_MEM_W) != 0; assert(mmu_idx < NB_MMU_MODES); if (!tlb_plugin_lookup(cpu, vaddr, mmu_idx, hwaddr_info.is_store, &hwaddr_info)) { error_report("invalid use of qemu_plugin_get_hwaddr"); return NULL; } return &hwaddr_info; #else return NULL; #endif } bool qemu_plugin_hwaddr_is_io(const struct qemu_plugin_hwaddr *haddr) { #ifdef CONFIG_SOFTMMU return haddr->is_io; #else return false; #endif } uint64_t qemu_plugin_hwaddr_phys_addr(const struct qemu_plugin_hwaddr *haddr) { #ifdef CONFIG_SOFTMMU if (haddr) { if (!haddr->is_io) { RAMBlock *block; ram_addr_t offset; void *hostaddr = haddr->v.ram.hostaddr; block = qemu_ram_block_from_host(hostaddr, false, &offset); if (!block) { error_report("Bad host ram pointer %p", haddr->v.ram.hostaddr); abort(); } return block->offset + offset + block->mr->addr; } else { MemoryRegionSection *mrs = haddr->v.io.section; return mrs->offset_within_address_space + haddr->v.io.offset; } } #endif return 0; } const char *qemu_plugin_hwaddr_device_name(const struct qemu_plugin_hwaddr *h) { #ifdef CONFIG_SOFTMMU if (h && h->is_io) { MemoryRegionSection *mrs = h->v.io.section; if (!mrs->mr->name) { unsigned long maddr = 0xffffffff & (uintptr_t) mrs->mr; g_autofree char *temp = g_strdup_printf("anon%08lx", maddr); return g_intern_string(temp); } else { return g_intern_string(mrs->mr->name); } } else { return g_intern_static_string("RAM"); } #else return g_intern_static_string("Invalid"); #endif } /* * Queries to the number and potential maximum number of vCPUs there * will be. This helps the plugin dimension per-vcpu arrays. */ #ifndef CONFIG_USER_ONLY static MachineState * get_ms(void) { return MACHINE(qdev_get_machine()); } #endif int qemu_plugin_n_vcpus(void) { #ifdef CONFIG_USER_ONLY return -1; #else return get_ms()->smp.cpus; #endif } int qemu_plugin_n_max_vcpus(void) { #ifdef CONFIG_USER_ONLY return -1; #else return get_ms()->smp.max_cpus; #endif } /* * Plugin output */ void qemu_plugin_outs(const char *string) { qemu_log_mask(CPU_LOG_PLUGIN, "%s", string); } bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret) { return name && value && qapi_bool_parse(name, value, ret, NULL); } /* * Binary path, start and end locations */ const char *qemu_plugin_path_to_binary(void) { char *path = NULL; #ifdef CONFIG_USER_ONLY TaskState *ts = (TaskState *) current_cpu->opaque; path = g_strdup(ts->bprm->filename); #endif return path; } uint64_t qemu_plugin_start_code(void) { uint64_t start = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = (TaskState *) current_cpu->opaque; start = ts->info->start_code; #endif return start; } uint64_t qemu_plugin_end_code(void) { uint64_t end = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = (TaskState *) current_cpu->opaque; end = ts->info->end_code; #endif return end; } uint64_t qemu_plugin_entry_code(void) { uint64_t entry = 0; #ifdef CONFIG_USER_ONLY TaskState *ts = (TaskState *) current_cpu->opaque; entry = ts->info->entry; #endif return entry; }