/* * QEMU S390 bootmap interpreter * * Copyright (c) 2009 Alexander Graf * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level * directory. */ #include "s390-ccw.h" // #define DEBUG_FALLBACK #ifdef DEBUG_FALLBACK #define dputs(txt) \ do { sclp_print("zipl: " txt); } while (0) #else #define dputs(fmt, ...) \ do { } while (0) #endif struct scsi_blockptr { uint64_t blockno; uint16_t size; uint16_t blockct; uint8_t reserved[4]; } __attribute__ ((packed)); struct component_entry { struct scsi_blockptr data; uint8_t pad[7]; uint8_t component_type; uint64_t load_address; } __attribute((packed)); struct component_header { uint8_t magic[4]; uint8_t type; uint8_t reserved[27]; } __attribute((packed)); struct mbr { uint8_t magic[4]; uint32_t version_id; uint8_t reserved[8]; struct scsi_blockptr blockptr; } __attribute__ ((packed)); #define ZIPL_MAGIC "zIPL" #define ZIPL_COMP_HEADER_IPL 0x00 #define ZIPL_COMP_HEADER_DUMP 0x01 #define ZIPL_COMP_ENTRY_LOAD 0x02 #define ZIPL_COMP_ENTRY_EXEC 0x01 /* Scratch space */ static uint8_t sec[SECTOR_SIZE] __attribute__((__aligned__(SECTOR_SIZE))); typedef struct ResetInfo { uint32_t ipl_mask; uint32_t ipl_addr; uint32_t ipl_continue; } ResetInfo; ResetInfo save; static void jump_to_IPL_2(void) { ResetInfo *current = 0; void (*ipl)(void) = (void *) (uint64_t) current->ipl_continue; debug_print_addr("set IPL addr to", ipl); /* Ensure the guest output starts fresh */ sclp_print("\n"); *current = save; ipl(); /* should not return */ } static void jump_to_IPL_code(uint64_t address) { /* * The IPL PSW is at address 0. We also must not overwrite the * content of non-BIOS memory after we loaded the guest, so we * save the original content and restore it in jump_to_IPL_2. */ ResetInfo *current = 0; save = *current; current->ipl_addr = (uint32_t) (uint64_t) &jump_to_IPL_2; current->ipl_continue = address & 0x7fffffff; /* * HACK ALERT. * We use the load normal reset to keep r15 unchanged. jump_to_IPL_2 * can then use r15 as its stack pointer. */ asm volatile("lghi 1,1\n\t" "diag 1,1,0x308\n\t" : : : "1", "memory"); virtio_panic("\n! IPL returns !\n"); } /* Check for ZIPL magic. Returns 0 if not matched. */ static int zipl_magic(uint8_t *ptr) { uint32_t *p = (void*)ptr; uint32_t *z = (void*)ZIPL_MAGIC; if (*p != *z) { debug_print_int("invalid magic", *p); virtio_panic("invalid magic"); } return 1; } #define FREE_SPACE_FILLER '\xAA' static inline bool unused_space(const void *p, unsigned int size) { int i; const unsigned char *m = p; for (i = 0; i < size; i++) { if (m[i] != FREE_SPACE_FILLER) { return false; } } return true; } static int zipl_load_segment(struct component_entry *entry) { const int max_entries = (SECTOR_SIZE / sizeof(struct scsi_blockptr)); struct scsi_blockptr *bprs = (void*)sec; const int bprs_size = sizeof(sec); uint64_t blockno; long address; int i; blockno = entry->data.blockno; address = entry->load_address; debug_print_int("loading segment at block", blockno); debug_print_int("addr", address); do { memset(bprs, FREE_SPACE_FILLER, bprs_size); if (virtio_read(blockno, (uint8_t *)bprs)) { debug_print_int("failed reading bprs at", blockno); goto fail; } for (i = 0;; i++) { u64 *cur_desc = (void*)&bprs[i]; blockno = bprs[i].blockno; if (!blockno) break; /* we need the updated blockno for the next indirect entry in the chain, but don't want to advance address */ if (i == (max_entries - 1)) break; if (bprs[i].blockct == 0 && unused_space(&bprs[i + 1], sizeof(struct scsi_blockptr))) { /* This is a "continue" pointer. * This ptr is the last one in the current script section. * I.e. the next ptr must point to the unused memory area. * The blockno is not zero, so the upper loop must continue * reading next section of BPRS. */ break; } address = virtio_load_direct(cur_desc[0], cur_desc[1], 0, (void*)address); if (address == -1) goto fail; } } while (blockno); return 0; fail: sclp_print("failed loading segment\n"); return -1; } /* Run a zipl program */ static int zipl_run(struct scsi_blockptr *pte) { struct component_header *header; struct component_entry *entry; uint8_t tmp_sec[SECTOR_SIZE]; virtio_read(pte->blockno, tmp_sec); header = (struct component_header *)tmp_sec; if (!zipl_magic(tmp_sec)) { goto fail; } if (header->type != ZIPL_COMP_HEADER_IPL) { goto fail; } dputs("start loading images\n"); /* Load image(s) into RAM */ entry = (struct component_entry *)(&header[1]); while (entry->component_type == ZIPL_COMP_ENTRY_LOAD) { if (zipl_load_segment(entry) < 0) { goto fail; } entry++; if ((uint8_t*)(&entry[1]) > (tmp_sec + SECTOR_SIZE)) { goto fail; } } if (entry->component_type != ZIPL_COMP_ENTRY_EXEC) { goto fail; } /* should not return */ jump_to_IPL_code(entry->load_address); return 0; fail: sclp_print("failed running zipl\n"); return -1; } int zipl_load(void) { struct mbr *mbr = (void*)sec; uint8_t *ns, *ns_end; int program_table_entries = 0; int pte_len = sizeof(struct scsi_blockptr); struct scsi_blockptr *prog_table_entry; const char *error = ""; /* Grab the MBR */ virtio_read(0, (void*)mbr); dputs("checking magic\n"); if (!zipl_magic(mbr->magic)) { error = "zipl_magic 1"; goto fail; } debug_print_int("program table", mbr->blockptr.blockno); /* Parse the program table */ if (virtio_read(mbr->blockptr.blockno, sec)) { error = "virtio_read"; goto fail; } if (!zipl_magic(sec)) { error = "zipl_magic 2"; goto fail; } ns_end = sec + SECTOR_SIZE; for (ns = (sec + pte_len); (ns + pte_len) < ns_end; ns++) { prog_table_entry = (struct scsi_blockptr *)ns; if (!prog_table_entry->blockno) { break; } program_table_entries++; } debug_print_int("program table entries", program_table_entries); if (!program_table_entries) { goto fail; } /* Run the default entry */ prog_table_entry = (struct scsi_blockptr *)(sec + pte_len); return zipl_run(prog_table_entry); fail: sclp_print("failed loading zipl: "); sclp_print(error); sclp_print("\n"); return -1; }