/* * i386 micro operations (included several times to generate * different operand sizes) * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #define DATA_BITS (1 << (3 + SHIFT)) #define SHIFT_MASK (DATA_BITS - 1) #define SIGN_MASK (1 << (DATA_BITS - 1)) #if DATA_BITS == 8 #define SUFFIX b #define DATA_TYPE uint8_t #define DATA_STYPE int8_t #define DATA_MASK 0xff #elif DATA_BITS == 16 #define SUFFIX w #define DATA_TYPE uint16_t #define DATA_STYPE int16_t #define DATA_MASK 0xffff #elif DATA_BITS == 32 #define SUFFIX l #define DATA_TYPE uint32_t #define DATA_STYPE int32_t #define DATA_MASK 0xffffffff #else #error unhandled operand size #endif /* dynamic flags computation */ static int glue(compute_all_add, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_SRC; src2 = CC_DST - CC_SRC; cf = (DATA_TYPE)CC_DST < (DATA_TYPE)src1; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2 ^ -1) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_add, SUFFIX)(void) { int src1, cf; src1 = CC_SRC; cf = (DATA_TYPE)CC_DST < (DATA_TYPE)src1; return cf; } static int glue(compute_all_adc, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_SRC; src2 = CC_DST - CC_SRC - 1; cf = (DATA_TYPE)CC_DST <= (DATA_TYPE)src1; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2 ^ -1) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_adc, SUFFIX)(void) { int src1, cf; src1 = CC_SRC; cf = (DATA_TYPE)CC_DST <= (DATA_TYPE)src1; return cf; } static int glue(compute_all_sub, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; cf = (DATA_TYPE)src1 < (DATA_TYPE)src2; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_sub, SUFFIX)(void) { int src1, src2, cf; src1 = CC_DST + CC_SRC; src2 = CC_SRC; cf = (DATA_TYPE)src1 < (DATA_TYPE)src2; return cf; } static int glue(compute_all_sbb, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_DST + CC_SRC + 1; src2 = CC_SRC; cf = (DATA_TYPE)src1 <= (DATA_TYPE)src2; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = lshift((src1 ^ src2) & (src1 ^ CC_DST), 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_sbb, SUFFIX)(void) { int src1, src2, cf; src1 = CC_DST + CC_SRC + 1; src2 = CC_SRC; cf = (DATA_TYPE)src1 <= (DATA_TYPE)src2; return cf; } static int glue(compute_all_logic, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = 0; pf = parity_table[(uint8_t)CC_DST]; af = 0; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = 0; return cf | pf | af | zf | sf | of; } static int glue(compute_c_logic, SUFFIX)(void) { return 0; } static int glue(compute_all_inc, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_DST - 1; src2 = 1; cf = CC_SRC; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = ((CC_DST & DATA_MASK) == SIGN_MASK) << 11; return cf | pf | af | zf | sf | of; } #if DATA_BITS == 32 static int glue(compute_c_inc, SUFFIX)(void) { return CC_SRC; } #endif static int glue(compute_all_dec, SUFFIX)(void) { int cf, pf, af, zf, sf, of; int src1, src2; src1 = CC_DST + 1; src2 = 1; cf = CC_SRC; pf = parity_table[(uint8_t)CC_DST]; af = (CC_DST ^ src1 ^ src2) & 0x10; zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; of = ((CC_DST & DATA_MASK) == ((uint32_t)SIGN_MASK - 1)) << 11; return cf | pf | af | zf | sf | of; } static int glue(compute_all_shl, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = (CC_SRC >> (DATA_BITS - 1)) & CC_C; pf = parity_table[(uint8_t)CC_DST]; af = 0; /* undefined */ zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; /* of is defined if shift count == 1 */ of = lshift(CC_SRC ^ CC_DST, 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } static int glue(compute_c_shl, SUFFIX)(void) { return (CC_SRC >> (DATA_BITS - 1)) & CC_C; } #if DATA_BITS == 32 static int glue(compute_c_sar, SUFFIX)(void) { return CC_SRC & 1; } #endif static int glue(compute_all_sar, SUFFIX)(void) { int cf, pf, af, zf, sf, of; cf = CC_SRC & 1; pf = parity_table[(uint8_t)CC_DST]; af = 0; /* undefined */ zf = ((DATA_TYPE)CC_DST == 0) << 6; sf = lshift(CC_DST, 8 - DATA_BITS) & 0x80; /* of is defined if shift count == 1 */ of = lshift(CC_SRC ^ CC_DST, 12 - DATA_BITS) & CC_O; return cf | pf | af | zf | sf | of; } /* various optimized jumps cases */ void OPPROTO glue(op_jb_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_TYPE)src1 < (DATA_TYPE)src2) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } void OPPROTO glue(op_jz_sub, SUFFIX)(void) { if ((DATA_TYPE)CC_DST == 0) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } void OPPROTO glue(op_jbe_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_TYPE)src1 <= (DATA_TYPE)src2) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } void OPPROTO glue(op_js_sub, SUFFIX)(void) { if (CC_DST & SIGN_MASK) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } void OPPROTO glue(op_jl_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_STYPE)src1 < (DATA_STYPE)src2) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } void OPPROTO glue(op_jle_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; if ((DATA_STYPE)src1 <= (DATA_STYPE)src2) JUMP_TB(PARAM1, 0, PARAM2); else JUMP_TB(PARAM1, 1, PARAM3); FORCE_RET(); } /* oldies */ #if DATA_BITS >= 16 void OPPROTO glue(op_loopnz, SUFFIX)(void) { unsigned int tmp; int eflags; eflags = cc_table[CC_OP].compute_all(); tmp = (ECX - 1) & DATA_MASK; ECX = (ECX & ~DATA_MASK) | tmp; if (tmp != 0 && !(eflags & CC_Z)) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO glue(op_loopz, SUFFIX)(void) { unsigned int tmp; int eflags; eflags = cc_table[CC_OP].compute_all(); tmp = (ECX - 1) & DATA_MASK; ECX = (ECX & ~DATA_MASK) | tmp; if (tmp != 0 && (eflags & CC_Z)) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO glue(op_loop, SUFFIX)(void) { unsigned int tmp; tmp = (ECX - 1) & DATA_MASK; ECX = (ECX & ~DATA_MASK) | tmp; if (tmp != 0) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } void OPPROTO glue(op_jecxz, SUFFIX)(void) { if ((DATA_TYPE)ECX == 0) EIP = PARAM1; else EIP = PARAM2; FORCE_RET(); } #endif /* various optimized set cases */ void OPPROTO glue(op_setb_T0_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_TYPE)src1 < (DATA_TYPE)src2); } void OPPROTO glue(op_setz_T0_sub, SUFFIX)(void) { T0 = ((DATA_TYPE)CC_DST == 0); } void OPPROTO glue(op_setbe_T0_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_TYPE)src1 <= (DATA_TYPE)src2); } void OPPROTO glue(op_sets_T0_sub, SUFFIX)(void) { T0 = lshift(CC_DST, -(DATA_BITS - 1)) & 1; } void OPPROTO glue(op_setl_T0_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_STYPE)src1 < (DATA_STYPE)src2); } void OPPROTO glue(op_setle_T0_sub, SUFFIX)(void) { int src1, src2; src1 = CC_DST + CC_SRC; src2 = CC_SRC; T0 = ((DATA_STYPE)src1 <= (DATA_STYPE)src2); } /* shifts */ void OPPROTO glue(glue(op_rol, SUFFIX), _T0_T1_cc)(void) { int count, src; count = T1 & SHIFT_MASK; if (count) { CC_SRC = cc_table[CC_OP].compute_all() & ~(CC_O | CC_C); src = T0; T0 &= DATA_MASK; T0 = (T0 << count) | (T0 >> (DATA_BITS - count)); CC_SRC |= (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | (T0 & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_rol, SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT_MASK; if (count) { T0 &= DATA_MASK; T0 = (T0 << count) | (T0 >> (DATA_BITS - count)); } FORCE_RET(); } void OPPROTO glue(glue(op_ror, SUFFIX), _T0_T1_cc)(void) { int count, src; count = T1 & SHIFT_MASK; if (count) { CC_SRC = cc_table[CC_OP].compute_all() & ~(CC_O | CC_C); src = T0; T0 &= DATA_MASK; T0 = (T0 >> count) | (T0 << (DATA_BITS - count)); CC_SRC |= (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((T0 >> (DATA_BITS - 1)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_ror, SUFFIX), _T0_T1)(void) { int count; count = T1 & SHIFT_MASK; if (count) { T0 &= DATA_MASK; T0 = (T0 >> count) | (T0 << (DATA_BITS - count)); } FORCE_RET(); } void OPPROTO glue(glue(op_rcl, SUFFIX), _T0_T1_cc)(void) { int count, res, eflags; unsigned int src; count = T1 & 0x1f; #if DATA_BITS == 16 count = rclw_table[count]; #elif DATA_BITS == 8 count = rclb_table[count]; #endif if (count) { eflags = cc_table[CC_OP].compute_all(); T0 &= DATA_MASK; src = T0; res = (T0 << count) | ((eflags & CC_C) << (count - 1)); if (count > 1) res |= T0 >> (DATA_BITS + 1 - count); T0 = res; CC_SRC = (eflags & ~(CC_C | CC_O)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((src >> (DATA_BITS - count)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_rcr, SUFFIX), _T0_T1_cc)(void) { int count, res, eflags; unsigned int src; count = T1 & 0x1f; #if DATA_BITS == 16 count = rclw_table[count]; #elif DATA_BITS == 8 count = rclb_table[count]; #endif if (count) { eflags = cc_table[CC_OP].compute_all(); T0 &= DATA_MASK; src = T0; res = (T0 >> count) | ((eflags & CC_C) << (DATA_BITS - count)); if (count > 1) res |= T0 << (DATA_BITS + 1 - count); T0 = res; CC_SRC = (eflags & ~(CC_C | CC_O)) | (lshift(src ^ T0, 11 - (DATA_BITS - 1)) & CC_O) | ((src >> (count - 1)) & CC_C); CC_OP = CC_OP_EFLAGS; } FORCE_RET(); } void OPPROTO glue(glue(op_shl, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & 0x1f; if (count) { CC_SRC = (DATA_TYPE)T0 << (count - 1); T0 = T0 << count; CC_DST = T0; CC_OP = CC_OP_SHLB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shl, SUFFIX), _T0_T1)(void) { int count; count = T1 & 0x1f; T0 = T0 << count; FORCE_RET(); } void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & 0x1f; if (count) { T0 &= DATA_MASK; CC_SRC = T0 >> (count - 1); T0 = T0 >> count; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shr, SUFFIX), _T0_T1)(void) { int count; count = T1 & 0x1f; T0 &= DATA_MASK; T0 = T0 >> count; FORCE_RET(); } void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1_cc)(void) { int count, src; count = T1 & 0x1f; if (count) { src = (DATA_STYPE)T0; CC_SRC = src >> (count - 1); T0 = src >> count; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_sar, SUFFIX), _T0_T1)(void) { int count, src; count = T1 & 0x1f; src = (DATA_STYPE)T0; T0 = src >> count; FORCE_RET(); } #if DATA_BITS == 16 /* XXX: overflow flag might be incorrect in some cases in shldw */ void OPPROTO glue(glue(op_shld, SUFFIX), _T0_T1_im_cc)(void) { int count; unsigned int res; count = PARAM1; T1 &= 0xffff; res = T1 | (T0 << 16); CC_SRC = res >> (32 - count); res <<= count; if (count > 16) res |= T1 << (count - 16); T0 = res >> 16; CC_DST = T0; } void OPPROTO glue(glue(op_shld, SUFFIX), _T0_T1_ECX_cc)(void) { int count; unsigned int res; count = ECX & 0x1f; if (count) { T1 &= 0xffff; res = T1 | (T0 << 16); CC_SRC = res >> (32 - count); res <<= count; if (count > 16) res |= T1 << (count - 16); T0 = res >> 16; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shrd, SUFFIX), _T0_T1_im_cc)(void) { int count; unsigned int res; count = PARAM1; res = (T0 & 0xffff) | (T1 << 16); CC_SRC = res >> (count - 1); res >>= count; if (count > 16) res |= T1 << (32 - count); T0 = res; CC_DST = T0; } void OPPROTO glue(glue(op_shrd, SUFFIX), _T0_T1_ECX_cc)(void) { int count; unsigned int res; count = ECX & 0x1f; if (count) { res = (T0 & 0xffff) | (T1 << 16); CC_SRC = res >> (count - 1); res >>= count; if (count > 16) res |= T1 << (32 - count); T0 = res; CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } #endif #if DATA_BITS == 32 void OPPROTO glue(glue(op_shld, SUFFIX), _T0_T1_im_cc)(void) { int count; count = PARAM1; T0 &= DATA_MASK; T1 &= DATA_MASK; CC_SRC = T0 << (count - 1); T0 = (T0 << count) | (T1 >> (DATA_BITS - count)); CC_DST = T0; } void OPPROTO glue(glue(op_shld, SUFFIX), _T0_T1_ECX_cc)(void) { int count; count = ECX & 0x1f; if (count) { T0 &= DATA_MASK; T1 &= DATA_MASK; CC_SRC = T0 << (count - 1); T0 = (T0 << count) | (T1 >> (DATA_BITS - count)); CC_DST = T0; CC_OP = CC_OP_SHLB + SHIFT; } FORCE_RET(); } void OPPROTO glue(glue(op_shrd, SUFFIX), _T0_T1_im_cc)(void) { int count; count = PARAM1; T0 &= DATA_MASK; T1 &= DATA_MASK; CC_SRC = T0 >> (count - 1); T0 = (T0 >> count) | (T1 << (DATA_BITS - count)); CC_DST = T0; } void OPPROTO glue(glue(op_shrd, SUFFIX), _T0_T1_ECX_cc)(void) { int count; count = ECX & 0x1f; if (count) { T0 &= DATA_MASK; T1 &= DATA_MASK; CC_SRC = T0 >> (count - 1); T0 = (T0 >> count) | (T1 << (DATA_BITS - count)); CC_DST = T0; CC_OP = CC_OP_SARB + SHIFT; } FORCE_RET(); } #endif /* carry add/sub (we only need to set CC_OP differently) */ void OPPROTO glue(glue(op_adc, SUFFIX), _T0_T1_cc)(void) { int cf; cf = cc_table[CC_OP].compute_c(); T0 = T0 + T1 + cf; CC_OP = CC_OP_ADDB + SHIFT + cf * 3; } void OPPROTO glue(glue(op_sbb, SUFFIX), _T0_T1_cc)(void) { int cf; cf = cc_table[CC_OP].compute_c(); T0 = T0 - T1 - cf; CC_OP = CC_OP_SUBB + SHIFT + cf * 3; } void OPPROTO glue(glue(op_cmpxchg, SUFFIX), _T0_T1_EAX_cc)(void) { CC_SRC = T0; CC_DST = EAX - T0; if ((DATA_TYPE)CC_DST == 0) { T0 = T1; } else { EAX = (EAX & ~DATA_MASK) | (T0 & DATA_MASK); } FORCE_RET(); } /* bit operations */ #if DATA_BITS >= 16 void OPPROTO glue(glue(op_bt, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; CC_SRC = T0 >> count; } void OPPROTO glue(glue(op_bts, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; CC_SRC = T0 >> count; T0 |= (1 << count); } void OPPROTO glue(glue(op_btr, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; CC_SRC = T0 >> count; T0 &= ~(1 << count); } void OPPROTO glue(glue(op_btc, SUFFIX), _T0_T1_cc)(void) { int count; count = T1 & SHIFT_MASK; CC_SRC = T0 >> count; T0 ^= (1 << count); } void OPPROTO glue(glue(op_bsf, SUFFIX), _T0_cc)(void) { int res, count; res = T0 & DATA_MASK; if (res != 0) { count = 0; while ((res & 1) == 0) { count++; res >>= 1; } T0 = count; CC_DST = 1; /* ZF = 1 */ } else { CC_DST = 0; /* ZF = 1 */ } FORCE_RET(); } void OPPROTO glue(glue(op_bsr, SUFFIX), _T0_cc)(void) { int res, count; res = T0 & DATA_MASK; if (res != 0) { count = DATA_BITS - 1; while ((res & SIGN_MASK) == 0) { count--; res <<= 1; } T0 = count; CC_DST = 1; /* ZF = 1 */ } else { CC_DST = 0; /* ZF = 1 */ } FORCE_RET(); } #endif /* string operations */ /* XXX: maybe use lower level instructions to ease 16 bit / segment handling */ #define STRING_SUFFIX _fast #define SI_ADDR (void *)ESI #define DI_ADDR (void *)EDI #define INC_SI() ESI += inc #define INC_DI() EDI += inc #define CX ECX #define DEC_CX() ECX-- #include "op_string.h" #define STRING_SUFFIX _a32 #define SI_ADDR (uint8_t *)A0 + ESI #define DI_ADDR env->segs[R_ES].base + EDI #define INC_SI() ESI += inc #define INC_DI() EDI += inc #define CX ECX #define DEC_CX() ECX-- #include "op_string.h" #define STRING_SUFFIX _a16 #define SI_ADDR (uint8_t *)A0 + (ESI & 0xffff) #define DI_ADDR env->segs[R_ES].base + (EDI & 0xffff) #define INC_SI() ESI = (ESI & ~0xffff) | ((ESI + inc) & 0xffff) #define INC_DI() EDI = (EDI & ~0xffff) | ((EDI + inc) & 0xffff) #define CX (ECX & 0xffff) #define DEC_CX() ECX = (ECX & ~0xffff) | ((ECX - 1) & 0xffff) #include "op_string.h" /* port I/O */ void OPPROTO glue(glue(op_out, SUFFIX), _T0_T1)(void) { glue(cpu_x86_out, SUFFIX)(env, T0 & 0xffff, T1 & DATA_MASK); } void OPPROTO glue(glue(op_in, SUFFIX), _T0_T1)(void) { T1 = glue(cpu_x86_in, SUFFIX)(env, T0 & 0xffff); } #undef DATA_BITS #undef SHIFT_MASK #undef SIGN_MASK #undef DATA_TYPE #undef DATA_STYPE #undef DATA_MASK #undef SUFFIX