/* * NUMA parameter parsing routines * * Copyright (c) 2014 Fujitsu Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "sysemu/numa.h" #include "exec/cpu-common.h" #include "exec/ramlist.h" #include "qemu/bitmap.h" #include "qom/cpu.h" #include "qemu/error-report.h" #include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */ #include "qapi-visit.h" #include "qapi/opts-visitor.h" #include "hw/boards.h" #include "sysemu/hostmem.h" #include "qmp-commands.h" #include "hw/mem/pc-dimm.h" #include "qemu/option.h" #include "qemu/config-file.h" QemuOptsList qemu_numa_opts = { .name = "numa", .implied_opt_name = "type", .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), .desc = { { 0 } } /* validated with OptsVisitor */ }; static int have_memdevs = -1; static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. * For all nodes, nodeid < max_numa_nodeid */ int nb_numa_nodes; bool have_numa_distance; NodeInfo numa_info[MAX_NODES]; void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) { struct numa_addr_range *range; /* * Memory-less nodes can come here with 0 size in which case, * there is nothing to do. */ if (!size) { return; } range = g_malloc0(sizeof(*range)); range->mem_start = addr; range->mem_end = addr + size - 1; QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry); } void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node) { struct numa_addr_range *range, *next; QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) { if (addr == range->mem_start && (addr + size - 1) == range->mem_end) { QLIST_REMOVE(range, entry); g_free(range); return; } } } static void numa_set_mem_ranges(void) { int i; ram_addr_t mem_start = 0; /* * Deduce start address of each node and use it to store * the address range info in numa_info address range list */ for (i = 0; i < nb_numa_nodes; i++) { numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i); mem_start += numa_info[i].node_mem; } } /* * Check if @addr falls under NUMA @node. */ static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node) { struct numa_addr_range *range; QLIST_FOREACH(range, &numa_info[node].addr, entry) { if (addr >= range->mem_start && addr <= range->mem_end) { return true; } } return false; } /* * Given an address, return the index of the NUMA node to which the * address belongs to. */ uint32_t numa_get_node(ram_addr_t addr, Error **errp) { uint32_t i; /* For non NUMA configurations, check if the addr falls under node 0 */ if (!nb_numa_nodes) { if (numa_addr_belongs_to_node(addr, 0)) { return 0; } } for (i = 0; i < nb_numa_nodes; i++) { if (numa_addr_belongs_to_node(addr, i)) { return i; } } error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any " "NUMA node", addr); return -1; } static void parse_numa_node(MachineState *ms, NumaNodeOptions *node, QemuOpts *opts, Error **errp) { uint16_t nodenr; uint16List *cpus = NULL; MachineClass *mc = MACHINE_GET_CLASS(ms); if (node->has_nodeid) { nodenr = node->nodeid; } else { nodenr = nb_numa_nodes; } if (nodenr >= MAX_NODES) { error_setg(errp, "Max number of NUMA nodes reached: %" PRIu16 "", nodenr); return; } if (numa_info[nodenr].present) { error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); return; } if (!mc->cpu_index_to_instance_props) { error_report("NUMA is not supported by this machine-type"); exit(1); } for (cpus = node->cpus; cpus; cpus = cpus->next) { CpuInstanceProperties props; if (cpus->value >= max_cpus) { error_setg(errp, "CPU index (%" PRIu16 ")" " should be smaller than maxcpus (%d)", cpus->value, max_cpus); return; } bitmap_set(numa_info[nodenr].node_cpu, cpus->value, 1); props = mc->cpu_index_to_instance_props(ms, cpus->value); props.node_id = nodenr; props.has_node_id = true; machine_set_cpu_numa_node(ms, &props, &error_fatal); } if (node->has_mem && node->has_memdev) { error_setg(errp, "qemu: cannot specify both mem= and memdev="); return; } if (have_memdevs == -1) { have_memdevs = node->has_memdev; } if (node->has_memdev != have_memdevs) { error_setg(errp, "qemu: memdev option must be specified for either " "all or no nodes"); return; } if (node->has_mem) { uint64_t mem_size = node->mem; const char *mem_str = qemu_opt_get(opts, "mem"); /* Fix up legacy suffix-less format */ if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) { mem_size <<= 20; } numa_info[nodenr].node_mem = mem_size; } if (node->has_memdev) { Object *o; o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); if (!o) { error_setg(errp, "memdev=%s is ambiguous", node->memdev); return; } object_ref(o); numa_info[nodenr].node_mem = object_property_get_int(o, "size", NULL); numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); } numa_info[nodenr].present = true; max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); } static void parse_numa_distance(NumaDistOptions *dist, Error **errp) { uint16_t src = dist->src; uint16_t dst = dist->dst; uint8_t val = dist->val; if (src >= MAX_NODES || dst >= MAX_NODES) { error_setg(errp, "Invalid node %" PRIu16 ", max possible could be %" PRIu16, MAX(src, dst), MAX_NODES); return; } if (!numa_info[src].present || !numa_info[dst].present) { error_setg(errp, "Source/Destination NUMA node is missing. " "Please use '-numa node' option to declare it first."); return; } if (val < NUMA_DISTANCE_MIN) { error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, " "it shouldn't be less than %d.", val, NUMA_DISTANCE_MIN); return; } if (src == dst && val != NUMA_DISTANCE_MIN) { error_setg(errp, "Local distance of node %d should be %d.", src, NUMA_DISTANCE_MIN); return; } numa_info[src].distance[dst] = val; have_numa_distance = true; } static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) { NumaOptions *object = NULL; MachineState *ms = opaque; Error *err = NULL; { Visitor *v = opts_visitor_new(opts); visit_type_NumaOptions(v, NULL, &object, &err); visit_free(v); } if (err) { goto end; } switch (object->type) { case NUMA_OPTIONS_TYPE_NODE: parse_numa_node(ms, &object->u.node, opts, &err); if (err) { goto end; } nb_numa_nodes++; break; case NUMA_OPTIONS_TYPE_DIST: parse_numa_distance(&object->u.dist, &err); if (err) { goto end; } break; default: abort(); } end: qapi_free_NumaOptions(object); if (err) { error_report_err(err); return -1; } return 0; } static char *enumerate_cpus(unsigned long *cpus, int max_cpus) { int cpu; bool first = true; GString *s = g_string_new(NULL); for (cpu = find_first_bit(cpus, max_cpus); cpu < max_cpus; cpu = find_next_bit(cpus, max_cpus, cpu + 1)) { g_string_append_printf(s, "%s%d", first ? "" : " ", cpu); first = false; } return g_string_free(s, FALSE); } static void validate_numa_cpus(void) { int i; unsigned long *seen_cpus = bitmap_new(max_cpus); for (i = 0; i < nb_numa_nodes; i++) { if (bitmap_intersects(seen_cpus, numa_info[i].node_cpu, max_cpus)) { bitmap_and(seen_cpus, seen_cpus, numa_info[i].node_cpu, max_cpus); error_report("CPU(s) present in multiple NUMA nodes: %s", enumerate_cpus(seen_cpus, max_cpus)); g_free(seen_cpus); exit(EXIT_FAILURE); } bitmap_or(seen_cpus, seen_cpus, numa_info[i].node_cpu, max_cpus); } if (!bitmap_full(seen_cpus, max_cpus)) { char *msg; bitmap_complement(seen_cpus, seen_cpus, max_cpus); msg = enumerate_cpus(seen_cpus, max_cpus); error_report("warning: CPU(s) not present in any NUMA nodes: %s", msg); error_report("warning: All CPU(s) up to maxcpus should be described " "in NUMA config"); g_free(msg); } g_free(seen_cpus); } /* If all node pair distances are symmetric, then only distances * in one direction are enough. If there is even one asymmetric * pair, though, then all distances must be provided. The * distance from a node to itself is always NUMA_DISTANCE_MIN, * so providing it is never necessary. */ static void validate_numa_distance(void) { int src, dst; bool is_asymmetrical = false; for (src = 0; src < nb_numa_nodes; src++) { for (dst = src; dst < nb_numa_nodes; dst++) { if (numa_info[src].distance[dst] == 0 && numa_info[dst].distance[src] == 0) { if (src != dst) { error_report("The distance between node %d and %d is " "missing, at least one distance value " "between each nodes should be provided.", src, dst); exit(EXIT_FAILURE); } } if (numa_info[src].distance[dst] != 0 && numa_info[dst].distance[src] != 0 && numa_info[src].distance[dst] != numa_info[dst].distance[src]) { is_asymmetrical = true; } } } if (is_asymmetrical) { for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { if (src != dst && numa_info[src].distance[dst] == 0) { error_report("At least one asymmetrical pair of " "distances is given, please provide distances " "for both directions of all node pairs."); exit(EXIT_FAILURE); } } } } } static void complete_init_numa_distance(void) { int src, dst; /* Fixup NUMA distance by symmetric policy because if it is an * asymmetric distance table, it should be a complete table and * there would not be any missing distance except local node, which * is verified by validate_numa_distance above. */ for (src = 0; src < nb_numa_nodes; src++) { for (dst = 0; dst < nb_numa_nodes; dst++) { if (numa_info[src].distance[dst] == 0) { if (src == dst) { numa_info[src].distance[dst] = NUMA_DISTANCE_MIN; } else { numa_info[src].distance[dst] = numa_info[dst].distance[src]; } } } } } void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0; /* Align each node according to the alignment * requirements of the machine class */ for (i = 0; i < nb_nodes - 1; i++) { nodes[i].node_mem = (size / nb_nodes) & ~((1 << mc->numa_mem_align_shift) - 1); usedmem += nodes[i].node_mem; } nodes[i].node_mem = size - usedmem; } void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, int nb_nodes, ram_addr_t size) { int i; uint64_t usedmem = 0, node_mem; uint64_t granularity = size / nb_nodes; uint64_t propagate = 0; for (i = 0; i < nb_nodes - 1; i++) { node_mem = (granularity + propagate) & ~((1 << mc->numa_mem_align_shift) - 1); propagate = granularity + propagate - node_mem; nodes[i].node_mem = node_mem; usedmem += node_mem; } nodes[i].node_mem = size - usedmem; } void parse_numa_opts(MachineState *ms) { int i; const CPUArchIdList *possible_cpus; MachineClass *mc = MACHINE_GET_CLASS(ms); for (i = 0; i < MAX_NODES; i++) { numa_info[i].node_cpu = bitmap_new(max_cpus); } if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, NULL)) { exit(1); } assert(max_numa_nodeid <= MAX_NODES); /* No support for sparse NUMA node IDs yet: */ for (i = max_numa_nodeid - 1; i >= 0; i--) { /* Report large node IDs first, to make mistakes easier to spot */ if (!numa_info[i].present) { error_report("numa: Node ID missing: %d", i); exit(1); } } /* This must be always true if all nodes are present: */ assert(nb_numa_nodes == max_numa_nodeid); if (nb_numa_nodes > 0) { uint64_t numa_total; if (nb_numa_nodes > MAX_NODES) { nb_numa_nodes = MAX_NODES; } /* If no memory size is given for any node, assume the default case * and distribute the available memory equally across all nodes */ for (i = 0; i < nb_numa_nodes; i++) { if (numa_info[i].node_mem != 0) { break; } } if (i == nb_numa_nodes) { assert(mc->numa_auto_assign_ram); mc->numa_auto_assign_ram(mc, numa_info, nb_numa_nodes, ram_size); } numa_total = 0; for (i = 0; i < nb_numa_nodes; i++) { numa_total += numa_info[i].node_mem; } if (numa_total != ram_size) { error_report("total memory for NUMA nodes (0x%" PRIx64 ")" " should equal RAM size (0x" RAM_ADDR_FMT ")", numa_total, ram_size); exit(1); } for (i = 0; i < nb_numa_nodes; i++) { QLIST_INIT(&numa_info[i].addr); } numa_set_mem_ranges(); /* assign CPUs to nodes using board provided default mapping */ if (!mc->cpu_index_to_instance_props || !mc->possible_cpu_arch_ids) { error_report("default CPUs to NUMA node mapping isn't supported"); exit(1); } possible_cpus = mc->possible_cpu_arch_ids(ms); for (i = 0; i < possible_cpus->len; i++) { if (possible_cpus->cpus[i].props.has_node_id) { break; } } /* no CPUs are assigned to NUMA nodes */ if (i == possible_cpus->len) { for (i = 0; i < max_cpus; i++) { CpuInstanceProperties props; /* fetch default mapping from board and enable it */ props = mc->cpu_index_to_instance_props(ms, i); props.has_node_id = true; set_bit(i, numa_info[props.node_id].node_cpu); machine_set_cpu_numa_node(ms, &props, &error_fatal); } } validate_numa_cpus(); /* QEMU needs at least all unique node pair distances to build * the whole NUMA distance table. QEMU treats the distance table * as symmetric by default, i.e. distance A->B == distance B->A. * Thus, QEMU is able to complete the distance table * initialization even though only distance A->B is provided and * distance B->A is not. QEMU knows the distance of a node to * itself is always 10, so A->A distances may be omitted. When * the distances of two nodes of a pair differ, i.e. distance * A->B != distance B->A, then that means the distance table is * asymmetric. In this case, the distances for both directions * of all node pairs are required. */ if (have_numa_distance) { /* Validate enough NUMA distance information was provided. */ validate_numa_distance(); /* Validation succeeded, now fill in any missing distances. */ complete_init_numa_distance(); } } else { numa_set_mem_node_id(0, ram_size, 0); } } static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner, const char *name, uint64_t ram_size) { if (mem_path) { #ifdef __linux__ Error *err = NULL; memory_region_init_ram_from_file(mr, owner, name, ram_size, false, mem_path, &err); if (err) { error_report_err(err); if (mem_prealloc) { exit(1); } /* Legacy behavior: if allocation failed, fall back to * regular RAM allocation. */ memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); } #else fprintf(stderr, "-mem-path not supported on this host\n"); exit(1); #endif } else { memory_region_init_ram(mr, owner, name, ram_size, &error_fatal); } vmstate_register_ram_global(mr); } void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner, const char *name, uint64_t ram_size) { uint64_t addr = 0; int i; if (nb_numa_nodes == 0 || !have_memdevs) { allocate_system_memory_nonnuma(mr, owner, name, ram_size); return; } memory_region_init(mr, owner, name, ram_size); for (i = 0; i < MAX_NODES; i++) { uint64_t size = numa_info[i].node_mem; HostMemoryBackend *backend = numa_info[i].node_memdev; if (!backend) { continue; } MemoryRegion *seg = host_memory_backend_get_memory(backend, &error_fatal); if (memory_region_is_mapped(seg)) { char *path = object_get_canonical_path_component(OBJECT(backend)); error_report("memory backend %s is used multiple times. Each " "-numa option must use a different memdev value.", path); exit(1); } host_memory_backend_set_mapped(backend, true); memory_region_add_subregion(mr, addr, seg); vmstate_register_ram_global(seg); addr += size; } } static void numa_stat_memory_devices(uint64_t node_mem[]) { MemoryDeviceInfoList *info_list = NULL; MemoryDeviceInfoList **prev = &info_list; MemoryDeviceInfoList *info; qmp_pc_dimm_device_list(qdev_get_machine(), &prev); for (info = info_list; info; info = info->next) { MemoryDeviceInfo *value = info->value; if (value) { switch (value->type) { case MEMORY_DEVICE_INFO_KIND_DIMM: node_mem[value->u.dimm.data->node] += value->u.dimm.data->size; break; default: break; } } } qapi_free_MemoryDeviceInfoList(info_list); } void query_numa_node_mem(uint64_t node_mem[]) { int i; if (nb_numa_nodes <= 0) { return; } numa_stat_memory_devices(node_mem); for (i = 0; i < nb_numa_nodes; i++) { node_mem[i] += numa_info[i].node_mem; } } static int query_memdev(Object *obj, void *opaque) { MemdevList **list = opaque; MemdevList *m = NULL; if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { m = g_malloc0(sizeof(*m)); m->value = g_malloc0(sizeof(*m->value)); m->value->id = object_property_get_str(obj, "id", NULL); m->value->has_id = !!m->value->id; m->value->size = object_property_get_int(obj, "size", &error_abort); m->value->merge = object_property_get_bool(obj, "merge", &error_abort); m->value->dump = object_property_get_bool(obj, "dump", &error_abort); m->value->prealloc = object_property_get_bool(obj, "prealloc", &error_abort); m->value->policy = object_property_get_enum(obj, "policy", "HostMemPolicy", &error_abort); object_property_get_uint16List(obj, "host-nodes", &m->value->host_nodes, &error_abort); m->next = *list; *list = m; } return 0; } MemdevList *qmp_query_memdev(Error **errp) { Object *obj = object_get_objects_root(); MemdevList *list = NULL; object_child_foreach(obj, query_memdev, &list); return list; } void ram_block_notifier_add(RAMBlockNotifier *n) { QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next); } void ram_block_notifier_remove(RAMBlockNotifier *n) { QLIST_REMOVE(n, next); } void ram_block_notify_add(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_added(notifier, host, size); } } void ram_block_notify_remove(void *host, size_t size) { RAMBlockNotifier *notifier; QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { notifier->ram_block_removed(notifier, host, size); } }