/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include #include #include #include #include /* Needed early for CONFIG_BSD etc. */ #include "config-host.h" #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #ifdef __NetBSD__ #include #endif #ifdef __linux__ #include #endif #include #include #include #include #ifdef CONFIG_BSD #include #if defined(__FreeBSD__) || defined(__DragonFly__) #include #else #include #endif #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__) #include #else #ifdef __linux__ #include #include #include /* For the benefit of older linux systems which don't supply it, we use a local copy of hpet.h. */ /* #include */ #include "hpet.h" #include #include #endif #ifdef __sun__ #include #include #include #include #include #include #include #include // must come after ip.h #include #include #include #include #include #endif #endif #endif #if defined(__OpenBSD__) #include #endif #if defined(CONFIG_VDE) #include #endif #include "qemu-common.h" #include "net.h" #include "monitor.h" #include "sysemu.h" #include "qemu-timer.h" #include "qemu-char.h" #include "audio/audio.h" #include "qemu_socket.h" #include "qemu-log.h" #include "qemu-config.h" #include "slirp/libslirp.h" #include "qemu-queue.h" static VLANState *first_vlan; /***********************************************************/ /* network device redirectors */ #if defined(DEBUG_NET) || defined(DEBUG_SLIRP) static void hex_dump(FILE *f, const uint8_t *buf, int size) { int len, i, j, c; for(i=0;i 16) len = 16; fprintf(f, "%08x ", i); for(j=0;j<16;j++) { if (j < len) fprintf(f, " %02x", buf[i+j]); else fprintf(f, " "); } fprintf(f, " "); for(j=0;j '~') c = '.'; fprintf(f, "%c", c); } fprintf(f, "\n"); } } #endif static int parse_macaddr(uint8_t *macaddr, const char *p) { int i; char *last_char; long int offset; errno = 0; offset = strtol(p, &last_char, 0); if (0 == errno && '\0' == *last_char && offset >= 0 && offset <= 0xFFFFFF) { macaddr[3] = (offset & 0xFF0000) >> 16; macaddr[4] = (offset & 0xFF00) >> 8; macaddr[5] = offset & 0xFF; return 0; } else { for(i = 0; i < 6; i++) { macaddr[i] = strtol(p, (char **)&p, 16); if (i == 5) { if (*p != '\0') return -1; } else { if (*p != ':' && *p != '-') return -1; p++; } } return 0; } return -1; } static int get_str_sep(char *buf, int buf_size, const char **pp, int sep) { const char *p, *p1; int len; p = *pp; p1 = strchr(p, sep); if (!p1) return -1; len = p1 - p; p1++; if (buf_size > 0) { if (len > buf_size - 1) len = buf_size - 1; memcpy(buf, p, len); buf[len] = '\0'; } *pp = p1; return 0; } int parse_host_src_port(struct sockaddr_in *haddr, struct sockaddr_in *saddr, const char *input_str) { char *str = strdup(input_str); char *host_str = str; char *src_str; const char *src_str2; char *ptr; /* * Chop off any extra arguments at the end of the string which * would start with a comma, then fill in the src port information * if it was provided else use the "any address" and "any port". */ if ((ptr = strchr(str,','))) *ptr = '\0'; if ((src_str = strchr(input_str,'@'))) { *src_str = '\0'; src_str++; } if (parse_host_port(haddr, host_str) < 0) goto fail; src_str2 = src_str; if (!src_str || *src_str == '\0') src_str2 = ":0"; if (parse_host_port(saddr, src_str2) < 0) goto fail; free(str); return(0); fail: free(str); return -1; } int parse_host_port(struct sockaddr_in *saddr, const char *str) { char buf[512]; struct hostent *he; const char *p, *r; int port; p = str; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) return -1; saddr->sin_family = AF_INET; if (buf[0] == '\0') { saddr->sin_addr.s_addr = 0; } else { if (qemu_isdigit(buf[0])) { if (!inet_aton(buf, &saddr->sin_addr)) return -1; } else { if ((he = gethostbyname(buf)) == NULL) return - 1; saddr->sin_addr = *(struct in_addr *)he->h_addr; } } port = strtol(p, (char **)&r, 0); if (r == p) return -1; saddr->sin_port = htons(port); return 0; } void qemu_format_nic_info_str(VLANClientState *vc, uint8_t macaddr[6]) { snprintf(vc->info_str, sizeof(vc->info_str), "model=%s,macaddr=%02x:%02x:%02x:%02x:%02x:%02x", vc->model, macaddr[0], macaddr[1], macaddr[2], macaddr[3], macaddr[4], macaddr[5]); } static char *assign_name(VLANClientState *vc1, const char *model) { VLANState *vlan; char buf[256]; int id = 0; for (vlan = first_vlan; vlan; vlan = vlan->next) { VLANClientState *vc; for (vc = vlan->first_client; vc; vc = vc->next) if (vc != vc1 && strcmp(vc->model, model) == 0) id++; } snprintf(buf, sizeof(buf), "%s.%d", model, id); return qemu_strdup(buf); } VLANClientState *qemu_new_vlan_client(VLANState *vlan, const char *model, const char *name, NetCanReceive *can_receive, NetReceive *receive, NetReceiveIOV *receive_iov, NetCleanup *cleanup, void *opaque) { VLANClientState *vc, **pvc; vc = qemu_mallocz(sizeof(VLANClientState)); vc->model = qemu_strdup(model); if (name) vc->name = qemu_strdup(name); else vc->name = assign_name(vc, model); vc->can_receive = can_receive; vc->receive = receive; vc->receive_iov = receive_iov; vc->cleanup = cleanup; vc->opaque = opaque; vc->vlan = vlan; vc->next = NULL; pvc = &vlan->first_client; while (*pvc != NULL) pvc = &(*pvc)->next; *pvc = vc; return vc; } void qemu_del_vlan_client(VLANClientState *vc) { VLANClientState **pvc = &vc->vlan->first_client; while (*pvc != NULL) if (*pvc == vc) { *pvc = vc->next; if (vc->cleanup) { vc->cleanup(vc); } qemu_free(vc->name); qemu_free(vc->model); qemu_free(vc); break; } else pvc = &(*pvc)->next; } VLANClientState *qemu_find_vlan_client(VLANState *vlan, void *opaque) { VLANClientState **pvc = &vlan->first_client; while (*pvc != NULL) if ((*pvc)->opaque == opaque) return *pvc; else pvc = &(*pvc)->next; return NULL; } static VLANClientState * qemu_find_vlan_client_by_name(Monitor *mon, int vlan_id, const char *client_str) { VLANState *vlan; VLANClientState *vc; vlan = qemu_find_vlan(vlan_id, 0); if (!vlan) { monitor_printf(mon, "unknown VLAN %d\n", vlan_id); return NULL; } for (vc = vlan->first_client; vc != NULL; vc = vc->next) { if (!strcmp(vc->name, client_str)) { break; } } if (!vc) { monitor_printf(mon, "can't find device %s on VLAN %d\n", client_str, vlan_id); } return vc; } int qemu_can_send_packet(VLANClientState *sender) { VLANState *vlan = sender->vlan; VLANClientState *vc; for (vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc == sender) { continue; } /* no can_receive() handler, they can always receive */ if (!vc->can_receive || vc->can_receive(vc)) { return 1; } } return 0; } static int qemu_deliver_packet(VLANClientState *sender, const uint8_t *buf, int size) { VLANClientState *vc; int ret = -1; sender->vlan->delivering = 1; for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) { ssize_t len; if (vc == sender) { continue; } if (vc->link_down) { ret = size; continue; } len = vc->receive(vc, buf, size); ret = (ret >= 0) ? ret : len; } sender->vlan->delivering = 0; return ret; } void qemu_purge_queued_packets(VLANClientState *vc) { VLANPacket *packet, *next; QTAILQ_FOREACH_SAFE(packet, &vc->vlan->send_queue, entry, next) { if (packet->sender == vc) { QTAILQ_REMOVE(&vc->vlan->send_queue, packet, entry); qemu_free(packet); } } } void qemu_flush_queued_packets(VLANClientState *vc) { while (!QTAILQ_EMPTY(&vc->vlan->send_queue)) { VLANPacket *packet; int ret; packet = QTAILQ_FIRST(&vc->vlan->send_queue); QTAILQ_REMOVE(&vc->vlan->send_queue, packet, entry); ret = qemu_deliver_packet(packet->sender, packet->data, packet->size); if (ret == 0 && packet->sent_cb != NULL) { QTAILQ_INSERT_HEAD(&vc->vlan->send_queue, packet, entry); break; } if (packet->sent_cb) packet->sent_cb(packet->sender, ret); qemu_free(packet); } } static void qemu_enqueue_packet(VLANClientState *sender, const uint8_t *buf, int size, NetPacketSent *sent_cb) { VLANPacket *packet; packet = qemu_malloc(sizeof(VLANPacket) + size); packet->sender = sender; packet->size = size; packet->sent_cb = sent_cb; memcpy(packet->data, buf, size); QTAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry); } ssize_t qemu_send_packet_async(VLANClientState *sender, const uint8_t *buf, int size, NetPacketSent *sent_cb) { int ret; if (sender->link_down) { return size; } #ifdef DEBUG_NET printf("vlan %d send:\n", sender->vlan->id); hex_dump(stdout, buf, size); #endif if (sender->vlan->delivering) { qemu_enqueue_packet(sender, buf, size, NULL); return size; } ret = qemu_deliver_packet(sender, buf, size); if (ret == 0 && sent_cb != NULL) { qemu_enqueue_packet(sender, buf, size, sent_cb); return 0; } qemu_flush_queued_packets(sender); return ret; } void qemu_send_packet(VLANClientState *vc, const uint8_t *buf, int size) { qemu_send_packet_async(vc, buf, size, NULL); } static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov, int iovcnt) { uint8_t buffer[4096]; size_t offset = 0; int i; for (i = 0; i < iovcnt; i++) { size_t len; len = MIN(sizeof(buffer) - offset, iov[i].iov_len); memcpy(buffer + offset, iov[i].iov_base, len); offset += len; } return vc->receive(vc, buffer, offset); } static ssize_t calc_iov_length(const struct iovec *iov, int iovcnt) { size_t offset = 0; int i; for (i = 0; i < iovcnt; i++) offset += iov[i].iov_len; return offset; } static int qemu_deliver_packet_iov(VLANClientState *sender, const struct iovec *iov, int iovcnt) { VLANClientState *vc; int ret = -1; sender->vlan->delivering = 1; for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) { ssize_t len; if (vc == sender) { continue; } if (vc->link_down) { ret = calc_iov_length(iov, iovcnt); continue; } if (vc->receive_iov) { len = vc->receive_iov(vc, iov, iovcnt); } else { len = vc_sendv_compat(vc, iov, iovcnt); } ret = (ret >= 0) ? ret : len; } sender->vlan->delivering = 0; return ret; } static ssize_t qemu_enqueue_packet_iov(VLANClientState *sender, const struct iovec *iov, int iovcnt, NetPacketSent *sent_cb) { VLANPacket *packet; size_t max_len = 0; int i; max_len = calc_iov_length(iov, iovcnt); packet = qemu_malloc(sizeof(VLANPacket) + max_len); packet->sender = sender; packet->sent_cb = sent_cb; packet->size = 0; for (i = 0; i < iovcnt; i++) { size_t len = iov[i].iov_len; memcpy(packet->data + packet->size, iov[i].iov_base, len); packet->size += len; } QTAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry); return packet->size; } ssize_t qemu_sendv_packet_async(VLANClientState *sender, const struct iovec *iov, int iovcnt, NetPacketSent *sent_cb) { int ret; if (sender->link_down) { return calc_iov_length(iov, iovcnt); } if (sender->vlan->delivering) { return qemu_enqueue_packet_iov(sender, iov, iovcnt, NULL); } ret = qemu_deliver_packet_iov(sender, iov, iovcnt); if (ret == 0 && sent_cb != NULL) { qemu_enqueue_packet_iov(sender, iov, iovcnt, sent_cb); return 0; } qemu_flush_queued_packets(sender); return ret; } ssize_t qemu_sendv_packet(VLANClientState *vc, const struct iovec *iov, int iovcnt) { return qemu_sendv_packet_async(vc, iov, iovcnt, NULL); } #if defined(CONFIG_SLIRP) /* slirp network adapter */ #define SLIRP_CFG_HOSTFWD 1 #define SLIRP_CFG_LEGACY 2 struct slirp_config_str { struct slirp_config_str *next; int flags; char str[1024]; int legacy_format; }; typedef struct SlirpState { QTAILQ_ENTRY(SlirpState) entry; VLANClientState *vc; Slirp *slirp; #ifndef _WIN32 char smb_dir[128]; #endif } SlirpState; static struct slirp_config_str *slirp_configs; const char *legacy_tftp_prefix; const char *legacy_bootp_filename; static QTAILQ_HEAD(slirp_stacks, SlirpState) slirp_stacks = QTAILQ_HEAD_INITIALIZER(slirp_stacks); static int slirp_hostfwd(SlirpState *s, const char *redir_str, int legacy_format); static int slirp_guestfwd(SlirpState *s, const char *config_str, int legacy_format); #ifndef _WIN32 static const char *legacy_smb_export; static int slirp_smb(SlirpState *s, const char *exported_dir, struct in_addr vserver_addr); static void slirp_smb_cleanup(SlirpState *s); #else static inline void slirp_smb_cleanup(SlirpState *s) { } #endif int slirp_can_output(void *opaque) { SlirpState *s = opaque; return qemu_can_send_packet(s->vc); } void slirp_output(void *opaque, const uint8_t *pkt, int pkt_len) { SlirpState *s = opaque; #ifdef DEBUG_SLIRP printf("slirp output:\n"); hex_dump(stdout, pkt, pkt_len); #endif qemu_send_packet(s->vc, pkt, pkt_len); } static ssize_t slirp_receive(VLANClientState *vc, const uint8_t *buf, size_t size) { SlirpState *s = vc->opaque; #ifdef DEBUG_SLIRP printf("slirp input:\n"); hex_dump(stdout, buf, size); #endif slirp_input(s->slirp, buf, size); return size; } static void net_slirp_cleanup(VLANClientState *vc) { SlirpState *s = vc->opaque; slirp_cleanup(s->slirp); slirp_smb_cleanup(s); QTAILQ_REMOVE(&slirp_stacks, s, entry); qemu_free(s); } static int net_slirp_init(VLANState *vlan, const char *model, const char *name, int restricted, const char *vnetwork, const char *vhost, const char *vhostname, const char *tftp_export, const char *bootfile, const char *vdhcp_start, const char *vnameserver, const char *smb_export, const char *vsmbserver) { /* default settings according to historic slirp */ struct in_addr net = { .s_addr = htonl(0x0a000200) }; /* 10.0.2.0 */ struct in_addr mask = { .s_addr = htonl(0xffffff00) }; /* 255.255.255.0 */ struct in_addr host = { .s_addr = htonl(0x0a000202) }; /* 10.0.2.2 */ struct in_addr dhcp = { .s_addr = htonl(0x0a00020f) }; /* 10.0.2.15 */ struct in_addr dns = { .s_addr = htonl(0x0a000203) }; /* 10.0.2.3 */ #ifndef _WIN32 struct in_addr smbsrv = { .s_addr = 0 }; #endif SlirpState *s; char buf[20]; uint32_t addr; int shift; char *end; struct slirp_config_str *config; if (!tftp_export) { tftp_export = legacy_tftp_prefix; } if (!bootfile) { bootfile = legacy_bootp_filename; } if (vnetwork) { if (get_str_sep(buf, sizeof(buf), &vnetwork, '/') < 0) { if (!inet_aton(vnetwork, &net)) { return -1; } addr = ntohl(net.s_addr); if (!(addr & 0x80000000)) { mask.s_addr = htonl(0xff000000); /* class A */ } else if ((addr & 0xfff00000) == 0xac100000) { mask.s_addr = htonl(0xfff00000); /* priv. 172.16.0.0/12 */ } else if ((addr & 0xc0000000) == 0x80000000) { mask.s_addr = htonl(0xffff0000); /* class B */ } else if ((addr & 0xffff0000) == 0xc0a80000) { mask.s_addr = htonl(0xffff0000); /* priv. 192.168.0.0/16 */ } else if ((addr & 0xffff0000) == 0xc6120000) { mask.s_addr = htonl(0xfffe0000); /* tests 198.18.0.0/15 */ } else if ((addr & 0xe0000000) == 0xe0000000) { mask.s_addr = htonl(0xffffff00); /* class C */ } else { mask.s_addr = htonl(0xfffffff0); /* multicast/reserved */ } } else { if (!inet_aton(buf, &net)) { return -1; } shift = strtol(vnetwork, &end, 10); if (*end != '\0') { if (!inet_aton(vnetwork, &mask)) { return -1; } } else if (shift < 4 || shift > 32) { return -1; } else { mask.s_addr = htonl(0xffffffff << (32 - shift)); } } net.s_addr &= mask.s_addr; host.s_addr = net.s_addr | (htonl(0x0202) & ~mask.s_addr); dhcp.s_addr = net.s_addr | (htonl(0x020f) & ~mask.s_addr); dns.s_addr = net.s_addr | (htonl(0x0203) & ~mask.s_addr); } if (vhost && !inet_aton(vhost, &host)) { return -1; } if ((host.s_addr & mask.s_addr) != net.s_addr) { return -1; } if (vdhcp_start && !inet_aton(vdhcp_start, &dhcp)) { return -1; } if ((dhcp.s_addr & mask.s_addr) != net.s_addr || dhcp.s_addr == host.s_addr || dhcp.s_addr == dns.s_addr) { return -1; } if (vnameserver && !inet_aton(vnameserver, &dns)) { return -1; } if ((dns.s_addr & mask.s_addr) != net.s_addr || dns.s_addr == host.s_addr) { return -1; } #ifndef _WIN32 if (vsmbserver && !inet_aton(vsmbserver, &smbsrv)) { return -1; } #endif s = qemu_mallocz(sizeof(SlirpState)); s->slirp = slirp_init(restricted, net, mask, host, vhostname, tftp_export, bootfile, dhcp, dns, s); QTAILQ_INSERT_TAIL(&slirp_stacks, s, entry); for (config = slirp_configs; config; config = config->next) { if (config->flags & SLIRP_CFG_HOSTFWD) { if (slirp_hostfwd(s, config->str, config->flags & SLIRP_CFG_LEGACY) < 0) return -1; } else { if (slirp_guestfwd(s, config->str, config->flags & SLIRP_CFG_LEGACY) < 0) return -1; } } #ifndef _WIN32 if (!smb_export) { smb_export = legacy_smb_export; } if (smb_export) { if (slirp_smb(s, smb_export, smbsrv) < 0) return -1; } #endif s->vc = qemu_new_vlan_client(vlan, model, name, NULL, slirp_receive, NULL, net_slirp_cleanup, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "net=%s, restricted=%c", inet_ntoa(net), restricted ? 'y' : 'n'); return 0; } static SlirpState *slirp_lookup(Monitor *mon, const char *vlan, const char *stack) { VLANClientState *vc; if (vlan) { vc = qemu_find_vlan_client_by_name(mon, strtol(vlan, NULL, 0), stack); if (!vc) { return NULL; } if (strcmp(vc->model, "user")) { monitor_printf(mon, "invalid device specified\n"); return NULL; } return vc->opaque; } else { if (QTAILQ_EMPTY(&slirp_stacks)) { monitor_printf(mon, "user mode network stack not in use\n"); return NULL; } return QTAILQ_FIRST(&slirp_stacks); } } void net_slirp_hostfwd_remove(Monitor *mon, const QDict *qdict) { struct in_addr host_addr = { .s_addr = INADDR_ANY }; int host_port; char buf[256] = ""; const char *src_str, *p; SlirpState *s; int is_udp = 0; int err; const char *arg1 = qdict_get_str(qdict, "arg1"); const char *arg2 = qdict_get_try_str(qdict, "arg2"); const char *arg3 = qdict_get_try_str(qdict, "arg3"); if (arg2) { s = slirp_lookup(mon, arg1, arg2); src_str = arg3; } else { s = slirp_lookup(mon, NULL, NULL); src_str = arg1; } if (!s) { return; } if (!src_str || !src_str[0]) goto fail_syntax; p = src_str; get_str_sep(buf, sizeof(buf), &p, ':'); if (!strcmp(buf, "tcp") || buf[0] == '\0') { is_udp = 0; } else if (!strcmp(buf, "udp")) { is_udp = 1; } else { goto fail_syntax; } if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) { goto fail_syntax; } host_port = atoi(p); err = slirp_remove_hostfwd(QTAILQ_FIRST(&slirp_stacks)->slirp, is_udp, host_addr, host_port); monitor_printf(mon, "host forwarding rule for %s %s\n", src_str, err ? "removed" : "not found"); return; fail_syntax: monitor_printf(mon, "invalid format\n"); } static int slirp_hostfwd(SlirpState *s, const char *redir_str, int legacy_format) { struct in_addr host_addr = { .s_addr = INADDR_ANY }; struct in_addr guest_addr = { .s_addr = 0 }; int host_port, guest_port; const char *p; char buf[256]; int is_udp; char *end; p = redir_str; if (!p || get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (!strcmp(buf, "tcp") || buf[0] == '\0') { is_udp = 0; } else if (!strcmp(buf, "udp")) { is_udp = 1; } else { goto fail_syntax; } if (!legacy_format) { if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) { goto fail_syntax; } } if (get_str_sep(buf, sizeof(buf), &p, legacy_format ? ':' : '-') < 0) { goto fail_syntax; } host_port = strtol(buf, &end, 0); if (*end != '\0' || host_port < 1 || host_port > 65535) { goto fail_syntax; } if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (buf[0] != '\0' && !inet_aton(buf, &guest_addr)) { goto fail_syntax; } guest_port = strtol(p, &end, 0); if (*end != '\0' || guest_port < 1 || guest_port > 65535) { goto fail_syntax; } if (slirp_add_hostfwd(s->slirp, is_udp, host_addr, host_port, guest_addr, guest_port) < 0) { qemu_error("could not set up host forwarding rule '%s'\n", redir_str); return -1; } return 0; fail_syntax: qemu_error("invalid host forwarding rule '%s'\n", redir_str); return -1; } void net_slirp_hostfwd_add(Monitor *mon, const QDict *qdict) { const char *redir_str; SlirpState *s; const char *arg1 = qdict_get_str(qdict, "arg1"); const char *arg2 = qdict_get_try_str(qdict, "arg2"); const char *arg3 = qdict_get_try_str(qdict, "arg3"); if (arg2) { s = slirp_lookup(mon, arg1, arg2); redir_str = arg3; } else { s = slirp_lookup(mon, NULL, NULL); redir_str = arg1; } if (s) { slirp_hostfwd(s, redir_str, 0); } } int net_slirp_redir(const char *redir_str) { struct slirp_config_str *config; if (QTAILQ_EMPTY(&slirp_stacks)) { config = qemu_malloc(sizeof(*config)); pstrcpy(config->str, sizeof(config->str), redir_str); config->flags = SLIRP_CFG_HOSTFWD | SLIRP_CFG_LEGACY; config->next = slirp_configs; slirp_configs = config; return 0; } return slirp_hostfwd(QTAILQ_FIRST(&slirp_stacks), redir_str, 1); } #ifndef _WIN32 /* automatic user mode samba server configuration */ static void slirp_smb_cleanup(SlirpState *s) { char cmd[128]; if (s->smb_dir[0] != '\0') { snprintf(cmd, sizeof(cmd), "rm -rf %s", s->smb_dir); system(cmd); s->smb_dir[0] = '\0'; } } static int slirp_smb(SlirpState* s, const char *exported_dir, struct in_addr vserver_addr) { static int instance; char smb_conf[128]; char smb_cmdline[128]; FILE *f; snprintf(s->smb_dir, sizeof(s->smb_dir), "/tmp/qemu-smb.%ld-%d", (long)getpid(), instance++); if (mkdir(s->smb_dir, 0700) < 0) { qemu_error("could not create samba server dir '%s'\n", s->smb_dir); return -1; } snprintf(smb_conf, sizeof(smb_conf), "%s/%s", s->smb_dir, "smb.conf"); f = fopen(smb_conf, "w"); if (!f) { slirp_smb_cleanup(s); qemu_error("could not create samba server configuration file '%s'\n", smb_conf); return -1; } fprintf(f, "[global]\n" "private dir=%s\n" "smb ports=0\n" "socket address=127.0.0.1\n" "pid directory=%s\n" "lock directory=%s\n" "log file=%s/log.smbd\n" "smb passwd file=%s/smbpasswd\n" "security = share\n" "[qemu]\n" "path=%s\n" "read only=no\n" "guest ok=yes\n", s->smb_dir, s->smb_dir, s->smb_dir, s->smb_dir, s->smb_dir, exported_dir ); fclose(f); snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s", SMBD_COMMAND, smb_conf); if (slirp_add_exec(s->slirp, 0, smb_cmdline, &vserver_addr, 139) < 0) { slirp_smb_cleanup(s); qemu_error("conflicting/invalid smbserver address\n"); return -1; } return 0; } /* automatic user mode samba server configuration (legacy interface) */ int net_slirp_smb(const char *exported_dir) { struct in_addr vserver_addr = { .s_addr = 0 }; if (legacy_smb_export) { fprintf(stderr, "-smb given twice\n"); return -1; } legacy_smb_export = exported_dir; if (!QTAILQ_EMPTY(&slirp_stacks)) { return slirp_smb(QTAILQ_FIRST(&slirp_stacks), exported_dir, vserver_addr); } return 0; } #endif /* !defined(_WIN32) */ struct GuestFwd { CharDriverState *hd; struct in_addr server; int port; Slirp *slirp; }; static int guestfwd_can_read(void *opaque) { struct GuestFwd *fwd = opaque; return slirp_socket_can_recv(fwd->slirp, fwd->server, fwd->port); } static void guestfwd_read(void *opaque, const uint8_t *buf, int size) { struct GuestFwd *fwd = opaque; slirp_socket_recv(fwd->slirp, fwd->server, fwd->port, buf, size); } static int slirp_guestfwd(SlirpState *s, const char *config_str, int legacy_format) { struct in_addr server = { .s_addr = 0 }; struct GuestFwd *fwd; const char *p; char buf[128]; char *end; int port; p = config_str; if (legacy_format) { if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } } else { if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (strcmp(buf, "tcp") && buf[0] != '\0') { goto fail_syntax; } if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) { goto fail_syntax; } if (buf[0] != '\0' && !inet_aton(buf, &server)) { goto fail_syntax; } if (get_str_sep(buf, sizeof(buf), &p, '-') < 0) { goto fail_syntax; } } port = strtol(buf, &end, 10); if (*end != '\0' || port < 1 || port > 65535) { goto fail_syntax; } fwd = qemu_malloc(sizeof(struct GuestFwd)); snprintf(buf, sizeof(buf), "guestfwd.tcp:%d", port); fwd->hd = qemu_chr_open(buf, p, NULL); if (!fwd->hd) { qemu_error("could not open guest forwarding device '%s'\n", buf); qemu_free(fwd); return -1; } if (slirp_add_exec(s->slirp, 3, fwd->hd, &server, port) < 0) { qemu_error("conflicting/invalid host:port in guest forwarding " "rule '%s'\n", config_str); qemu_free(fwd); return -1; } fwd->server = server; fwd->port = port; fwd->slirp = s->slirp; qemu_chr_add_handlers(fwd->hd, guestfwd_can_read, guestfwd_read, NULL, fwd); return 0; fail_syntax: qemu_error("invalid guest forwarding rule '%s'\n", config_str); return -1; } void do_info_usernet(Monitor *mon) { SlirpState *s; QTAILQ_FOREACH(s, &slirp_stacks, entry) { monitor_printf(mon, "VLAN %d (%s):\n", s->vc->vlan->id, s->vc->name); slirp_connection_info(s->slirp, mon); } } #endif /* CONFIG_SLIRP */ #if !defined(_WIN32) typedef struct TAPState { VLANClientState *vc; int fd; char down_script[1024]; char down_script_arg[128]; uint8_t buf[4096]; unsigned int read_poll : 1; unsigned int write_poll : 1; } TAPState; static int launch_script(const char *setup_script, const char *ifname, int fd); static int tap_can_send(void *opaque); static void tap_send(void *opaque); static void tap_writable(void *opaque); static void tap_update_fd_handler(TAPState *s) { qemu_set_fd_handler2(s->fd, s->read_poll ? tap_can_send : NULL, s->read_poll ? tap_send : NULL, s->write_poll ? tap_writable : NULL, s); } static void tap_read_poll(TAPState *s, int enable) { s->read_poll = !!enable; tap_update_fd_handler(s); } static void tap_write_poll(TAPState *s, int enable) { s->write_poll = !!enable; tap_update_fd_handler(s); } static void tap_writable(void *opaque) { TAPState *s = opaque; tap_write_poll(s, 0); qemu_flush_queued_packets(s->vc); } static ssize_t tap_receive_iov(VLANClientState *vc, const struct iovec *iov, int iovcnt) { TAPState *s = vc->opaque; ssize_t len; do { len = writev(s->fd, iov, iovcnt); } while (len == -1 && errno == EINTR); if (len == -1 && errno == EAGAIN) { tap_write_poll(s, 1); return 0; } return len; } static ssize_t tap_receive(VLANClientState *vc, const uint8_t *buf, size_t size) { TAPState *s = vc->opaque; ssize_t len; do { len = write(s->fd, buf, size); } while (len == -1 && (errno == EINTR || errno == EAGAIN)); return len; } static int tap_can_send(void *opaque) { TAPState *s = opaque; return qemu_can_send_packet(s->vc); } #ifdef __sun__ static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen) { struct strbuf sbuf; int f = 0; sbuf.maxlen = maxlen; sbuf.buf = (char *)buf; return getmsg(tapfd, NULL, &sbuf, &f) >= 0 ? sbuf.len : -1; } #else static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen) { return read(tapfd, buf, maxlen); } #endif static void tap_send_completed(VLANClientState *vc, ssize_t len) { TAPState *s = vc->opaque; tap_read_poll(s, 1); } static void tap_send(void *opaque) { TAPState *s = opaque; int size; do { size = tap_read_packet(s->fd, s->buf, sizeof(s->buf)); if (size <= 0) { break; } size = qemu_send_packet_async(s->vc, s->buf, size, tap_send_completed); if (size == 0) { tap_read_poll(s, 0); } } while (size > 0); } #ifdef TUNSETSNDBUF /* sndbuf should be set to a value lower than the tx queue * capacity of any destination network interface. * Ethernet NICs generally have txqueuelen=1000, so 1Mb is * a good default, given a 1500 byte MTU. */ #define TAP_DEFAULT_SNDBUF 1024*1024 static int tap_set_sndbuf(TAPState *s, QemuOpts *opts) { int sndbuf; sndbuf = qemu_opt_get_size(opts, "sndbuf", TAP_DEFAULT_SNDBUF); if (!sndbuf) { sndbuf = INT_MAX; } if (ioctl(s->fd, TUNSETSNDBUF, &sndbuf) == -1 && qemu_opt_get(opts, "sndbuf")) { qemu_error("TUNSETSNDBUF ioctl failed: %s\n", strerror(errno)); return -1; } return 0; } #else static int tap_set_sndbuf(TAPState *s, QemuOpts *opts) { return 0; } #endif /* TUNSETSNDBUF */ static void tap_cleanup(VLANClientState *vc) { TAPState *s = vc->opaque; qemu_purge_queued_packets(vc); if (s->down_script[0]) launch_script(s->down_script, s->down_script_arg, s->fd); tap_read_poll(s, 0); tap_write_poll(s, 0); close(s->fd); qemu_free(s); } /* fd support */ static TAPState *net_tap_fd_init(VLANState *vlan, const char *model, const char *name, int fd) { TAPState *s; s = qemu_mallocz(sizeof(TAPState)); s->fd = fd; s->vc = qemu_new_vlan_client(vlan, model, name, NULL, tap_receive, tap_receive_iov, tap_cleanup, s); tap_read_poll(s, 1); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "fd=%d", fd); return s; } #if defined (CONFIG_BSD) || defined (__FreeBSD_kernel__) static int tap_open(char *ifname, int ifname_size) { int fd; char *dev; struct stat s; TFR(fd = open("/dev/tap", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n"); return -1; } fstat(fd, &s); dev = devname(s.st_rdev, S_IFCHR); pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #elif defined(__sun__) #define TUNNEWPPA (('T'<<16) | 0x0001) /* * Allocate TAP device, returns opened fd. * Stores dev name in the first arg(must be large enough). */ static int tap_alloc(char *dev, size_t dev_size) { int tap_fd, if_fd, ppa = -1; static int ip_fd = 0; char *ptr; static int arp_fd = 0; int ip_muxid, arp_muxid; struct strioctl strioc_if, strioc_ppa; int link_type = I_PLINK;; struct lifreq ifr; char actual_name[32] = ""; memset(&ifr, 0x0, sizeof(ifr)); if( *dev ){ ptr = dev; while( *ptr && !qemu_isdigit((int)*ptr) ) ptr++; ppa = atoi(ptr); } /* Check if IP device was opened */ if( ip_fd ) close(ip_fd); TFR(ip_fd = open("/dev/udp", O_RDWR, 0)); if (ip_fd < 0) { syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)"); return -1; } TFR(tap_fd = open("/dev/tap", O_RDWR, 0)); if (tap_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap"); return -1; } /* Assign a new PPA and get its unit number. */ strioc_ppa.ic_cmd = TUNNEWPPA; strioc_ppa.ic_timout = 0; strioc_ppa.ic_len = sizeof(ppa); strioc_ppa.ic_dp = (char *)&ppa; if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0) syslog (LOG_ERR, "Can't assign new interface"); TFR(if_fd = open("/dev/tap", O_RDWR, 0)); if (if_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap (2)"); return -1; } if(ioctl(if_fd, I_PUSH, "ip") < 0){ syslog(LOG_ERR, "Can't push IP module"); return -1; } if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0) syslog(LOG_ERR, "Can't get flags\n"); snprintf (actual_name, 32, "tap%d", ppa); pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name); ifr.lifr_ppa = ppa; /* Assign ppa according to the unit number returned by tun device */ if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0) syslog (LOG_ERR, "Can't set PPA %d", ppa); if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0) syslog (LOG_ERR, "Can't get flags\n"); /* Push arp module to if_fd */ if (ioctl (if_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (2)"); /* Push arp module to ip_fd */ if (ioctl (ip_fd, I_POP, NULL) < 0) syslog (LOG_ERR, "I_POP failed\n"); if (ioctl (ip_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (3)\n"); /* Open arp_fd */ TFR(arp_fd = open ("/dev/tap", O_RDWR, 0)); if (arp_fd < 0) syslog (LOG_ERR, "Can't open %s\n", "/dev/tap"); /* Set ifname to arp */ strioc_if.ic_cmd = SIOCSLIFNAME; strioc_if.ic_timout = 0; strioc_if.ic_len = sizeof(ifr); strioc_if.ic_dp = (char *)𝔦 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){ syslog (LOG_ERR, "Can't set ifname to arp\n"); } if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){ syslog(LOG_ERR, "Can't link TAP device to IP"); return -1; } if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0) syslog (LOG_ERR, "Can't link TAP device to ARP"); close (if_fd); memset(&ifr, 0x0, sizeof(ifr)); pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name); ifr.lifr_ip_muxid = ip_muxid; ifr.lifr_arp_muxid = arp_muxid; if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0) { ioctl (ip_fd, I_PUNLINK , arp_muxid); ioctl (ip_fd, I_PUNLINK, ip_muxid); syslog (LOG_ERR, "Can't set multiplexor id"); } snprintf(dev, dev_size, "tap%d", ppa); return tap_fd; } static int tap_open(char *ifname, int ifname_size) { char dev[10]=""; int fd; if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){ fprintf(stderr, "Cannot allocate TAP device\n"); return -1; } pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #elif defined (_AIX) static int tap_open(char *ifname, int ifname_size) { fprintf (stderr, "no tap on AIX\n"); return -1; } #else static int tap_open(char *ifname, int ifname_size) { struct ifreq ifr; int fd, ret; TFR(fd = open("/dev/net/tun", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n"); return -1; } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ifname[0] != '\0') pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname); else pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d"); ret = ioctl(fd, TUNSETIFF, (void *) &ifr); if (ret != 0) { fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n"); close(fd); return -1; } pstrcpy(ifname, ifname_size, ifr.ifr_name); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #endif static int launch_script(const char *setup_script, const char *ifname, int fd) { sigset_t oldmask, mask; int pid, status; char *args[3]; char **parg; sigemptyset(&mask); sigaddset(&mask, SIGCHLD); sigprocmask(SIG_BLOCK, &mask, &oldmask); /* try to launch network script */ pid = fork(); if (pid == 0) { int open_max = sysconf(_SC_OPEN_MAX), i; for (i = 0; i < open_max; i++) { if (i != STDIN_FILENO && i != STDOUT_FILENO && i != STDERR_FILENO && i != fd) { close(i); } } parg = args; *parg++ = (char *)setup_script; *parg++ = (char *)ifname; *parg++ = NULL; execv(setup_script, args); _exit(1); } else if (pid > 0) { while (waitpid(pid, &status, 0) != pid) { /* loop */ } sigprocmask(SIG_SETMASK, &oldmask, NULL); if (WIFEXITED(status) && WEXITSTATUS(status) == 0) { return 0; } } fprintf(stderr, "%s: could not launch network script\n", setup_script); return -1; } static TAPState *net_tap_init(VLANState *vlan, const char *model, const char *name, const char *ifname1, const char *setup_script, const char *down_script) { TAPState *s; int fd; char ifname[128]; if (ifname1 != NULL) pstrcpy(ifname, sizeof(ifname), ifname1); else ifname[0] = '\0'; TFR(fd = tap_open(ifname, sizeof(ifname))); if (fd < 0) return NULL; if (!setup_script || !strcmp(setup_script, "no")) setup_script = ""; if (setup_script[0] != '\0' && launch_script(setup_script, ifname, fd)) { return NULL; } s = net_tap_fd_init(vlan, model, name, fd); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "ifname=%s,script=%s,downscript=%s", ifname, setup_script, down_script); if (down_script && strcmp(down_script, "no")) { snprintf(s->down_script, sizeof(s->down_script), "%s", down_script); snprintf(s->down_script_arg, sizeof(s->down_script_arg), "%s", ifname); } return s; } #endif /* !_WIN32 */ #if defined(CONFIG_VDE) typedef struct VDEState { VLANClientState *vc; VDECONN *vde; } VDEState; static void vde_to_qemu(void *opaque) { VDEState *s = opaque; uint8_t buf[4096]; int size; size = vde_recv(s->vde, (char *)buf, sizeof(buf), 0); if (size > 0) { qemu_send_packet(s->vc, buf, size); } } static ssize_t vde_receive(VLANClientState *vc, const uint8_t *buf, size_t size) { VDEState *s = vc->opaque; ssize_t ret; do { ret = vde_send(s->vde, (const char *)buf, size, 0); } while (ret < 0 && errno == EINTR); return ret; } static void vde_cleanup(VLANClientState *vc) { VDEState *s = vc->opaque; qemu_set_fd_handler(vde_datafd(s->vde), NULL, NULL, NULL); vde_close(s->vde); qemu_free(s); } static int net_vde_init(VLANState *vlan, const char *model, const char *name, const char *sock, int port, const char *group, int mode) { VDEState *s; char *init_group = (char *)group; char *init_sock = (char *)sock; struct vde_open_args args = { .port = port, .group = init_group, .mode = mode, }; s = qemu_mallocz(sizeof(VDEState)); s->vde = vde_open(init_sock, (char *)"QEMU", &args); if (!s->vde){ free(s); return -1; } s->vc = qemu_new_vlan_client(vlan, model, name, NULL, vde_receive, NULL, vde_cleanup, s); qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "sock=%s,fd=%d", sock, vde_datafd(s->vde)); return 0; } #endif /* network connection */ typedef struct NetSocketState { VLANClientState *vc; int fd; int state; /* 0 = getting length, 1 = getting data */ unsigned int index; unsigned int packet_len; uint8_t buf[4096]; struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */ } NetSocketState; typedef struct NetSocketListenState { VLANState *vlan; char *model; char *name; int fd; } NetSocketListenState; /* XXX: we consider we can send the whole packet without blocking */ static ssize_t net_socket_receive(VLANClientState *vc, const uint8_t *buf, size_t size) { NetSocketState *s = vc->opaque; uint32_t len; len = htonl(size); send_all(s->fd, (const uint8_t *)&len, sizeof(len)); return send_all(s->fd, buf, size); } static ssize_t net_socket_receive_dgram(VLANClientState *vc, const uint8_t *buf, size_t size) { NetSocketState *s = vc->opaque; return sendto(s->fd, (const void *)buf, size, 0, (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst)); } static void net_socket_send(void *opaque) { NetSocketState *s = opaque; int size, err; unsigned l; uint8_t buf1[4096]; const uint8_t *buf; size = recv(s->fd, (void *)buf1, sizeof(buf1), 0); if (size < 0) { err = socket_error(); if (err != EWOULDBLOCK) goto eoc; } else if (size == 0) { /* end of connection */ eoc: qemu_set_fd_handler(s->fd, NULL, NULL, NULL); closesocket(s->fd); return; } buf = buf1; while (size > 0) { /* reassemble a packet from the network */ switch(s->state) { case 0: l = 4 - s->index; if (l > size) l = size; memcpy(s->buf + s->index, buf, l); buf += l; size -= l; s->index += l; if (s->index == 4) { /* got length */ s->packet_len = ntohl(*(uint32_t *)s->buf); s->index = 0; s->state = 1; } break; case 1: l = s->packet_len - s->index; if (l > size) l = size; if (s->index + l <= sizeof(s->buf)) { memcpy(s->buf + s->index, buf, l); } else { fprintf(stderr, "serious error: oversized packet received," "connection terminated.\n"); s->state = 0; goto eoc; } s->index += l; buf += l; size -= l; if (s->index >= s->packet_len) { qemu_send_packet(s->vc, s->buf, s->packet_len); s->index = 0; s->state = 0; } break; } } } static void net_socket_send_dgram(void *opaque) { NetSocketState *s = opaque; int size; size = recv(s->fd, (void *)s->buf, sizeof(s->buf), 0); if (size < 0) return; if (size == 0) { /* end of connection */ qemu_set_fd_handler(s->fd, NULL, NULL, NULL); return; } qemu_send_packet(s->vc, s->buf, size); } static int net_socket_mcast_create(struct sockaddr_in *mcastaddr) { struct ip_mreq imr; int fd; int val, ret; if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) { fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n", inet_ntoa(mcastaddr->sin_addr), (int)ntohl(mcastaddr->sin_addr.s_addr)); return -1; } fd = socket(PF_INET, SOCK_DGRAM, 0); if (fd < 0) { perror("socket(PF_INET, SOCK_DGRAM)"); return -1; } val = 1; ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)"); goto fail; } ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr)); if (ret < 0) { perror("bind"); goto fail; } /* Add host to multicast group */ imr.imr_multiaddr = mcastaddr->sin_addr; imr.imr_interface.s_addr = htonl(INADDR_ANY); ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const char *)&imr, sizeof(struct ip_mreq)); if (ret < 0) { perror("setsockopt(IP_ADD_MEMBERSHIP)"); goto fail; } /* Force mcast msgs to loopback (eg. several QEMUs in same host */ val = 1; ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)"); goto fail; } socket_set_nonblock(fd); return fd; fail: if (fd >= 0) closesocket(fd); return -1; } static void net_socket_cleanup(VLANClientState *vc) { NetSocketState *s = vc->opaque; qemu_set_fd_handler(s->fd, NULL, NULL, NULL); close(s->fd); qemu_free(s); } static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, const char *model, const char *name, int fd, int is_connected) { struct sockaddr_in saddr; int newfd; socklen_t saddr_len; NetSocketState *s; /* fd passed: multicast: "learn" dgram_dst address from bound address and save it * Because this may be "shared" socket from a "master" process, datagrams would be recv() * by ONLY ONE process: we must "clone" this dgram socket --jjo */ if (is_connected) { if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) { /* must be bound */ if (saddr.sin_addr.s_addr==0) { fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n", fd); return NULL; } /* clone dgram socket */ newfd = net_socket_mcast_create(&saddr); if (newfd < 0) { /* error already reported by net_socket_mcast_create() */ close(fd); return NULL; } /* clone newfd to fd, close newfd */ dup2(newfd, fd); close(newfd); } else { fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n", fd, strerror(errno)); return NULL; } } s = qemu_mallocz(sizeof(NetSocketState)); s->fd = fd; s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive_dgram, NULL, net_socket_cleanup, s); qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s); /* mcast: save bound address as dst */ if (is_connected) s->dgram_dst=saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d (%s mcast=%s:%d)", fd, is_connected? "cloned" : "", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return s; } static void net_socket_connect(void *opaque) { NetSocketState *s = opaque; qemu_set_fd_handler(s->fd, net_socket_send, NULL, s); } static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, const char *model, const char *name, int fd, int is_connected) { NetSocketState *s; s = qemu_mallocz(sizeof(NetSocketState)); s->fd = fd; s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive, NULL, net_socket_cleanup, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d", fd); if (is_connected) { net_socket_connect(s); } else { qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s); } return s; } static NetSocketState *net_socket_fd_init(VLANState *vlan, const char *model, const char *name, int fd, int is_connected) { int so_type = -1, optlen=sizeof(so_type); if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, (socklen_t *)&optlen)< 0) { fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd); return NULL; } switch(so_type) { case SOCK_DGRAM: return net_socket_fd_init_dgram(vlan, model, name, fd, is_connected); case SOCK_STREAM: return net_socket_fd_init_stream(vlan, model, name, fd, is_connected); default: /* who knows ... this could be a eg. a pty, do warn and continue as stream */ fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd); return net_socket_fd_init_stream(vlan, model, name, fd, is_connected); } return NULL; } static void net_socket_accept(void *opaque) { NetSocketListenState *s = opaque; NetSocketState *s1; struct sockaddr_in saddr; socklen_t len; int fd; for(;;) { len = sizeof(saddr); fd = accept(s->fd, (struct sockaddr *)&saddr, &len); if (fd < 0 && errno != EINTR) { return; } else if (fd >= 0) { break; } } s1 = net_socket_fd_init(s->vlan, s->model, s->name, fd, 1); if (!s1) { closesocket(fd); } else { snprintf(s1->vc->info_str, sizeof(s1->vc->info_str), "socket: connection from %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); } } static int net_socket_listen_init(VLANState *vlan, const char *model, const char *name, const char *host_str) { NetSocketListenState *s; int fd, val, ret; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; s = qemu_mallocz(sizeof(NetSocketListenState)); fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); /* allow fast reuse */ val = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { perror("bind"); return -1; } ret = listen(fd, 0); if (ret < 0) { perror("listen"); return -1; } s->vlan = vlan; s->model = qemu_strdup(model); s->name = name ? qemu_strdup(name) : NULL; s->fd = fd; qemu_set_fd_handler(fd, net_socket_accept, NULL, s); return 0; } static int net_socket_connect_init(VLANState *vlan, const char *model, const char *name, const char *host_str) { NetSocketState *s; int fd, connected, ret, err; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); connected = 0; for(;;) { ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { err = socket_error(); if (err == EINTR || err == EWOULDBLOCK) { } else if (err == EINPROGRESS) { break; #ifdef _WIN32 } else if (err == WSAEALREADY) { break; #endif } else { perror("connect"); closesocket(fd); return -1; } } else { connected = 1; break; } } s = net_socket_fd_init(vlan, model, name, fd, connected); if (!s) return -1; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: connect to %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } static int net_socket_mcast_init(VLANState *vlan, const char *model, const char *name, const char *host_str) { NetSocketState *s; int fd; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = net_socket_mcast_create(&saddr); if (fd < 0) return -1; s = net_socket_fd_init(vlan, model, name, fd, 0); if (!s) return -1; s->dgram_dst = saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: mcast=%s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } typedef struct DumpState { VLANClientState *pcap_vc; int fd; int pcap_caplen; } DumpState; #define PCAP_MAGIC 0xa1b2c3d4 struct pcap_file_hdr { uint32_t magic; uint16_t version_major; uint16_t version_minor; int32_t thiszone; uint32_t sigfigs; uint32_t snaplen; uint32_t linktype; }; struct pcap_sf_pkthdr { struct { int32_t tv_sec; int32_t tv_usec; } ts; uint32_t caplen; uint32_t len; }; static ssize_t dump_receive(VLANClientState *vc, const uint8_t *buf, size_t size) { DumpState *s = vc->opaque; struct pcap_sf_pkthdr hdr; int64_t ts; int caplen; /* Early return in case of previous error. */ if (s->fd < 0) { return size; } ts = muldiv64(qemu_get_clock(vm_clock), 1000000, get_ticks_per_sec()); caplen = size > s->pcap_caplen ? s->pcap_caplen : size; hdr.ts.tv_sec = ts / 1000000; hdr.ts.tv_usec = ts % 1000000; hdr.caplen = caplen; hdr.len = size; if (write(s->fd, &hdr, sizeof(hdr)) != sizeof(hdr) || write(s->fd, buf, caplen) != caplen) { qemu_log("-net dump write error - stop dump\n"); close(s->fd); s->fd = -1; } return size; } static void net_dump_cleanup(VLANClientState *vc) { DumpState *s = vc->opaque; close(s->fd); qemu_free(s); } static int net_dump_init(VLANState *vlan, const char *device, const char *name, const char *filename, int len) { struct pcap_file_hdr hdr; DumpState *s; s = qemu_malloc(sizeof(DumpState)); s->fd = open(filename, O_CREAT | O_WRONLY | O_BINARY, 0644); if (s->fd < 0) { qemu_error("-net dump: can't open %s\n", filename); return -1; } s->pcap_caplen = len; hdr.magic = PCAP_MAGIC; hdr.version_major = 2; hdr.version_minor = 4; hdr.thiszone = 0; hdr.sigfigs = 0; hdr.snaplen = s->pcap_caplen; hdr.linktype = 1; if (write(s->fd, &hdr, sizeof(hdr)) < sizeof(hdr)) { qemu_error("-net dump write error: %s\n", strerror(errno)); close(s->fd); qemu_free(s); return -1; } s->pcap_vc = qemu_new_vlan_client(vlan, device, name, NULL, dump_receive, NULL, net_dump_cleanup, s); snprintf(s->pcap_vc->info_str, sizeof(s->pcap_vc->info_str), "dump to %s (len=%d)", filename, len); return 0; } /* find or alloc a new VLAN */ VLANState *qemu_find_vlan(int id, int allocate) { VLANState **pvlan, *vlan; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->id == id) return vlan; } if (!allocate) { return NULL; } vlan = qemu_mallocz(sizeof(VLANState)); vlan->id = id; QTAILQ_INIT(&vlan->send_queue); vlan->next = NULL; pvlan = &first_vlan; while (*pvlan != NULL) pvlan = &(*pvlan)->next; *pvlan = vlan; return vlan; } static int nic_get_free_idx(void) { int index; for (index = 0; index < MAX_NICS; index++) if (!nd_table[index].used) return index; return -1; } int qemu_show_nic_models(const char *arg, const char *const *models) { int i; if (!arg || strcmp(arg, "?")) return 0; fprintf(stderr, "qemu: Supported NIC models: "); for (i = 0 ; models[i]; i++) fprintf(stderr, "%s%c", models[i], models[i+1] ? ',' : '\n'); return 1; } void qemu_check_nic_model(NICInfo *nd, const char *model) { const char *models[2]; models[0] = model; models[1] = NULL; if (qemu_show_nic_models(nd->model, models)) exit(0); if (qemu_find_nic_model(nd, models, model) < 0) exit(1); } int qemu_find_nic_model(NICInfo *nd, const char * const *models, const char *default_model) { int i; if (!nd->model) nd->model = qemu_strdup(default_model); for (i = 0 ; models[i]; i++) { if (strcmp(nd->model, models[i]) == 0) return i; } qemu_error("qemu: Unsupported NIC model: %s\n", nd->model); return -1; } static int net_handle_fd_param(Monitor *mon, const char *param) { if (!qemu_isdigit(param[0])) { int fd; fd = monitor_get_fd(mon, param); if (fd == -1) { qemu_error("No file descriptor named %s found", param); return -1; } return fd; } else { return strtol(param, NULL, 0); } } static int net_init_nic(QemuOpts *opts, Monitor *mon, const char *name) { int idx; NICInfo *nd; idx = nic_get_free_idx(); if (idx == -1 || nb_nics >= MAX_NICS) { qemu_error("Too Many NICs\n"); return -1; } nd = &nd_table[idx]; memset(nd, 0, sizeof(*nd)); nd->vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); if (name) { nd->name = qemu_strdup(name); } if (qemu_opt_get(opts, "model")) { nd->model = qemu_strdup(qemu_opt_get(opts, "model")); } if (qemu_opt_get(opts, "addr")) { nd->devaddr = qemu_strdup(qemu_opt_get(opts, "addr")); } nd->macaddr[0] = 0x52; nd->macaddr[1] = 0x54; nd->macaddr[2] = 0x00; nd->macaddr[3] = 0x12; nd->macaddr[4] = 0x34; nd->macaddr[5] = 0x56 + idx; if (qemu_opt_get(opts, "macaddr") && parse_macaddr(nd->macaddr, qemu_opt_get(opts, "macaddr")) < 0) { qemu_error("invalid syntax for ethernet address\n"); return -1; } nd->nvectors = qemu_opt_get_number(opts, "vectors", NIC_NVECTORS_UNSPECIFIED); if (nd->nvectors != NIC_NVECTORS_UNSPECIFIED && (nd->nvectors < 0 || nd->nvectors > 0x7ffffff)) { qemu_error("invalid # of vectors: %d\n", nd->nvectors); return -1; } nd->used = 1; nd->vlan->nb_guest_devs++; nb_nics++; return idx; } #if defined(CONFIG_SLIRP) static int net_init_slirp_configs(const char *name, const char *value, void *opaque) { struct slirp_config_str *config; if (strcmp(name, "hostfwd") != 0 && strcmp(name, "guestfwd") != 0) { return 0; } config = qemu_mallocz(sizeof(*config)); pstrcpy(config->str, sizeof(config->str), value); if (!strcmp(name, "hostfwd")) { config->flags = SLIRP_CFG_HOSTFWD; } config->next = slirp_configs; slirp_configs = config; return 0; } static int net_init_slirp(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; struct slirp_config_str *config; const char *vhost; const char *vhostname; const char *vdhcp_start; const char *vnamesrv; const char *tftp_export; const char *bootfile; const char *smb_export; const char *vsmbsrv; char *vnet = NULL; int restricted = 0; int ret; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); vhost = qemu_opt_get(opts, "host"); vhostname = qemu_opt_get(opts, "hostname"); vdhcp_start = qemu_opt_get(opts, "dhcpstart"); vnamesrv = qemu_opt_get(opts, "dns"); tftp_export = qemu_opt_get(opts, "tftp"); bootfile = qemu_opt_get(opts, "bootfile"); smb_export = qemu_opt_get(opts, "smb"); vsmbsrv = qemu_opt_get(opts, "smbserver"); if (qemu_opt_get(opts, "ip")) { const char *ip = qemu_opt_get(opts, "ip"); int l = strlen(ip) + strlen("/24") + 1; vnet = qemu_malloc(l); /* emulate legacy ip= parameter */ pstrcpy(vnet, l, ip); pstrcat(vnet, l, "/24"); } if (qemu_opt_get(opts, "net")) { if (vnet) { qemu_free(vnet); } vnet = qemu_strdup(qemu_opt_get(opts, "net")); } if (qemu_opt_get(opts, "restrict") && qemu_opt_get(opts, "restrict")[0] == 'y') { restricted = 1; } qemu_opt_foreach(opts, net_init_slirp_configs, NULL, 0); ret = net_slirp_init(vlan, "user", name, restricted, vnet, vhost, vhostname, tftp_export, bootfile, vdhcp_start, vnamesrv, smb_export, vsmbsrv); while (slirp_configs) { config = slirp_configs; slirp_configs = config->next; qemu_free(config); } if (ret != -1) { vlan->nb_host_devs++; } qemu_free(vnet); return ret; } #endif /* CONFIG_SLIRP */ #ifdef _WIN32 static int net_init_tap_win32(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; const char *ifname; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); ifname = qemu_opt_get(opts, "ifname"); if (!ifname) { qemu_error("tap: no interface name\n"); return -1; } if (tap_win32_init(vlan, "tap", name, ifname) == -1) { return -1; } vlan->nb_host_devs++; return 0; } #elif !defined(_AIX) static int net_init_tap(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; TAPState *s; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); if (qemu_opt_get(opts, "fd")) { int fd; if (qemu_opt_get(opts, "ifname") || qemu_opt_get(opts, "script") || qemu_opt_get(opts, "downscript")) { qemu_error("ifname=, script= and downscript= is invalid with fd=\n"); return -1; } fd = net_handle_fd_param(mon, qemu_opt_get(opts, "fd")); if (fd == -1) { return -1; } fcntl(fd, F_SETFL, O_NONBLOCK); s = net_tap_fd_init(vlan, "tap", name, fd); if (!s) { close(fd); } } else { const char *ifname, *script, *downscript; ifname = qemu_opt_get(opts, "ifname"); script = qemu_opt_get(opts, "script"); downscript = qemu_opt_get(opts, "downscript"); if (!script) { script = DEFAULT_NETWORK_SCRIPT; } if (!downscript) { downscript = DEFAULT_NETWORK_DOWN_SCRIPT; } s = net_tap_init(vlan, "tap", name, ifname, script, downscript); } if (!s) { return -1; } if (tap_set_sndbuf(s, opts) < 0) { return -1; } vlan->nb_host_devs++; return 0; } #endif static int net_init_socket(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); if (qemu_opt_get(opts, "fd")) { int fd; if (qemu_opt_get(opts, "listen") || qemu_opt_get(opts, "connect") || qemu_opt_get(opts, "mcast")) { qemu_error("listen=, connect= and mcast= is invalid with fd=\n"); return -1; } fd = net_handle_fd_param(mon, qemu_opt_get(opts, "fd")); if (fd == -1) { return -1; } if (!net_socket_fd_init(vlan, "socket", name, fd, 1)) { close(fd); return -1; } } else if (qemu_opt_get(opts, "listen")) { const char *listen; if (qemu_opt_get(opts, "fd") || qemu_opt_get(opts, "connect") || qemu_opt_get(opts, "mcast")) { qemu_error("fd=, connect= and mcast= is invalid with listen=\n"); return -1; } listen = qemu_opt_get(opts, "listen"); if (net_socket_listen_init(vlan, "socket", name, listen) == -1) { return -1; } } else if (qemu_opt_get(opts, "connect")) { const char *connect; if (qemu_opt_get(opts, "fd") || qemu_opt_get(opts, "listen") || qemu_opt_get(opts, "mcast")) { qemu_error("fd=, listen= and mcast= is invalid with connect=\n"); return -1; } connect = qemu_opt_get(opts, "connect"); if (net_socket_connect_init(vlan, "socket", name, connect) == -1) { return -1; } } else if (qemu_opt_get(opts, "mcast")) { const char *mcast; if (qemu_opt_get(opts, "fd") || qemu_opt_get(opts, "connect") || qemu_opt_get(opts, "listen")) { qemu_error("fd=, connect= and listen= is invalid with mcast=\n"); return -1; } mcast = qemu_opt_get(opts, "mcast"); if (net_socket_mcast_init(vlan, "socket", name, mcast) == -1) { return -1; } } else { qemu_error("-socket requires fd=, listen=, connect= or mcast=\n"); return -1; } vlan->nb_host_devs++; return 0; } #ifdef CONFIG_VDE static int net_init_vde(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; const char *sock; const char *group; int port, mode; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); sock = qemu_opt_get(opts, "sock"); group = qemu_opt_get(opts, "group"); port = qemu_opt_get_number(opts, "port", 0); mode = qemu_opt_get_number(opts, "mode", 0700); if (net_vde_init(vlan, "vde", name, sock, port, group, mode) == -1) { return -1; } vlan->nb_host_devs++; return 0; } #endif static int net_init_dump(QemuOpts *opts, Monitor *mon, const char *name) { VLANState *vlan; int len; const char *file; char def_file[128]; vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1); file = qemu_opt_get(opts, "file"); if (!file) { snprintf(def_file, sizeof(def_file), "qemu-vlan%d.pcap", vlan->id); file = def_file; } len = qemu_opt_get_size(opts, "len", 65536); return net_dump_init(vlan, "dump", name, file, len); } #define NET_COMMON_PARAMS_DESC \ { \ .name = "type", \ .type = QEMU_OPT_STRING, \ .help = "net client type (nic, tap etc.)", \ }, { \ .name = "vlan", \ .type = QEMU_OPT_NUMBER, \ .help = "vlan number", \ }, { \ .name = "name", \ .type = QEMU_OPT_STRING, \ .help = "identifier for monitor commands", \ } typedef int (*net_client_init_func)(QemuOpts *opts, Monitor *mon, const char *name); /* magic number, but compiler will warn if too small */ #define NET_MAX_DESC 20 static struct { const char *type; net_client_init_func init; QemuOptDesc desc[NET_MAX_DESC]; } net_client_types[] = { { .type = "none", .desc = { NET_COMMON_PARAMS_DESC, { /* end of list */ } }, }, { .type = "nic", .init = net_init_nic, .desc = { NET_COMMON_PARAMS_DESC, { .name = "macaddr", .type = QEMU_OPT_STRING, .help = "MAC address", }, { .name = "model", .type = QEMU_OPT_STRING, .help = "device model (e1000, rtl8139, virtio etc.)", }, { .name = "addr", .type = QEMU_OPT_STRING, .help = "PCI device address", }, { .name = "vectors", .type = QEMU_OPT_NUMBER, .help = "number of MSI-x vectors, 0 to disable MSI-X", }, { /* end of list */ } }, #ifdef CONFIG_SLIRP }, { .type = "user", .init = net_init_slirp, .desc = { NET_COMMON_PARAMS_DESC, { .name = "hostname", .type = QEMU_OPT_STRING, .help = "client hostname reported by the builtin DHCP server", }, { .name = "restrict", .type = QEMU_OPT_STRING, .help = "isolate the guest from the host (y|yes|n|no)", }, { .name = "ip", .type = QEMU_OPT_STRING, .help = "legacy parameter, use net= instead", }, { .name = "net", .type = QEMU_OPT_STRING, .help = "IP address and optional netmask", }, { .name = "host", .type = QEMU_OPT_STRING, .help = "guest-visible address of the host", }, { .name = "tftp", .type = QEMU_OPT_STRING, .help = "root directory of the built-in TFTP server", }, { .name = "bootfile", .type = QEMU_OPT_STRING, .help = "BOOTP filename, for use with tftp=", }, { .name = "dhcpstart", .type = QEMU_OPT_STRING, .help = "the first of the 16 IPs the built-in DHCP server can assign", }, { .name = "dns", .type = QEMU_OPT_STRING, .help = "guest-visible address of the virtual nameserver", }, { .name = "smb", .type = QEMU_OPT_STRING, .help = "root directory of the built-in SMB server", }, { .name = "smbserver", .type = QEMU_OPT_STRING, .help = "IP address of the built-in SMB server", }, { .name = "hostfwd", .type = QEMU_OPT_STRING, .help = "guest port number to forward incoming TCP or UDP connections", }, { .name = "guestfwd", .type = QEMU_OPT_STRING, .help = "IP address and port to forward guest TCP connections", }, { /* end of list */ } }, #endif #ifdef _WIN32 }, { .type = "tap", .init = net_init_tap_win32, .desc = { NET_COMMON_PARAMS_DESC, { .name = "ifname", .type = QEMU_OPT_STRING, .help = "interface name", }, { /* end of list */ } }, #elif !defined(_AIX) }, { .type = "tap", .init = net_init_tap, .desc = { NET_COMMON_PARAMS_DESC, { .name = "fd", .type = QEMU_OPT_STRING, .help = "file descriptor of an already opened tap", }, { .name = "ifname", .type = QEMU_OPT_STRING, .help = "interface name", }, { .name = "script", .type = QEMU_OPT_STRING, .help = "script to initialize the interface", }, { .name = "downscript", .type = QEMU_OPT_STRING, .help = "script to shut down the interface", #ifdef TUNSETSNDBUF }, { .name = "sndbuf", .type = QEMU_OPT_SIZE, .help = "send buffer limit" #endif }, { /* end of list */ } }, #endif }, { .type = "socket", .init = net_init_socket, .desc = { NET_COMMON_PARAMS_DESC, { .name = "fd", .type = QEMU_OPT_STRING, .help = "file descriptor of an already opened socket", }, { .name = "listen", .type = QEMU_OPT_STRING, .help = "port number, and optional hostname, to listen on", }, { .name = "connect", .type = QEMU_OPT_STRING, .help = "port number, and optional hostname, to connect to", }, { .name = "mcast", .type = QEMU_OPT_STRING, .help = "UDP multicast address and port number", }, { /* end of list */ } }, #ifdef CONFIG_VDE }, { .type = "vde", .init = net_init_vde, .desc = { NET_COMMON_PARAMS_DESC, { .name = "sock", .type = QEMU_OPT_STRING, .help = "socket path", }, { .name = "port", .type = QEMU_OPT_NUMBER, .help = "port number", }, { .name = "group", .type = QEMU_OPT_STRING, .help = "group owner of socket", }, { .name = "mode", .type = QEMU_OPT_NUMBER, .help = "permissions for socket", }, { /* end of list */ } }, #endif }, { .type = "dump", .init = net_init_dump, .desc = { NET_COMMON_PARAMS_DESC, { .name = "len", .type = QEMU_OPT_SIZE, .help = "per-packet size limit (64k default)", }, { .name = "file", .type = QEMU_OPT_STRING, .help = "dump file path (default is qemu-vlan0.pcap)", }, { /* end of list */ } }, }, { /* end of list */ } }; int net_client_init(Monitor *mon, QemuOpts *opts) { const char *name; const char *type; int i; type = qemu_opt_get(opts, "type"); if (!type) { qemu_error("No type specified for -net\n"); return -1; } name = qemu_opts_id(opts); if (!name) { name = qemu_opt_get(opts, "name"); } for (i = 0; net_client_types[i].type != NULL; i++) { if (!strcmp(net_client_types[i].type, type)) { if (qemu_opts_validate(opts, &net_client_types[i].desc[0]) == -1) { return -1; } if (net_client_types[i].init) { return net_client_types[i].init(opts, mon, name); } else { return 0; } } } qemu_error("Invalid -net type '%s'\n", type); return -1; } void net_client_uninit(NICInfo *nd) { nd->vlan->nb_guest_devs--; nb_nics--; qemu_free(nd->model); qemu_free(nd->name); qemu_free(nd->devaddr); nd->used = 0; } static int net_host_check_device(const char *device) { int i; const char *valid_param_list[] = { "tap", "socket", "dump" #ifdef CONFIG_SLIRP ,"user" #endif #ifdef CONFIG_VDE ,"vde" #endif }; for (i = 0; i < sizeof(valid_param_list) / sizeof(char *); i++) { if (!strncmp(valid_param_list[i], device, strlen(valid_param_list[i]))) return 1; } return 0; } void net_host_device_add(Monitor *mon, const QDict *qdict) { const char *device = qdict_get_str(qdict, "device"); const char *opts_str = qdict_get_try_str(qdict, "opts"); QemuOpts *opts; if (!net_host_check_device(device)) { monitor_printf(mon, "invalid host network device %s\n", device); return; } opts = qemu_opts_parse(&qemu_net_opts, opts_str ? opts_str : "", NULL); if (!opts) { monitor_printf(mon, "parsing network options '%s' failed\n", opts_str ? opts_str : ""); return; } qemu_opt_set(opts, "type", device); if (net_client_init(mon, opts) < 0) { monitor_printf(mon, "adding host network device %s failed\n", device); } } void net_host_device_remove(Monitor *mon, const QDict *qdict) { VLANClientState *vc; int vlan_id = qdict_get_int(qdict, "vlan_id"); const char *device = qdict_get_str(qdict, "device"); vc = qemu_find_vlan_client_by_name(mon, vlan_id, device); if (!vc) { return; } if (!net_host_check_device(vc->model)) { monitor_printf(mon, "invalid host network device %s\n", device); return; } qemu_del_vlan_client(vc); } void net_set_boot_mask(int net_boot_mask) { int i; /* Only the first four NICs may be bootable */ net_boot_mask = net_boot_mask & 0xF; for (i = 0; i < nb_nics; i++) { if (net_boot_mask & (1 << i)) { nd_table[i].bootable = 1; net_boot_mask &= ~(1 << i); } } if (net_boot_mask) { fprintf(stderr, "Cannot boot from non-existent NIC\n"); exit(1); } } void do_info_network(Monitor *mon) { VLANState *vlan; VLANClientState *vc; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { monitor_printf(mon, "VLAN %d devices:\n", vlan->id); for(vc = vlan->first_client; vc != NULL; vc = vc->next) monitor_printf(mon, " %s: %s\n", vc->name, vc->info_str); } } void do_set_link(Monitor *mon, const QDict *qdict) { VLANState *vlan; VLANClientState *vc = NULL; const char *name = qdict_get_str(qdict, "name"); const char *up_or_down = qdict_get_str(qdict, "up_or_down"); for (vlan = first_vlan; vlan != NULL; vlan = vlan->next) for (vc = vlan->first_client; vc != NULL; vc = vc->next) if (strcmp(vc->name, name) == 0) goto done; done: if (!vc) { monitor_printf(mon, "could not find network device '%s'\n", name); return; } if (strcmp(up_or_down, "up") == 0) vc->link_down = 0; else if (strcmp(up_or_down, "down") == 0) vc->link_down = 1; else monitor_printf(mon, "invalid link status '%s'; only 'up' or 'down' " "valid\n", up_or_down); if (vc->link_status_changed) vc->link_status_changed(vc); } void net_cleanup(void) { VLANState *vlan; /* close network clients */ for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { VLANClientState *vc = vlan->first_client; while (vc) { VLANClientState *next = vc->next; qemu_del_vlan_client(vc); vc = next; } } } static void net_check_clients(void) { VLANState *vlan; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0) continue; if (vlan->nb_guest_devs == 0) fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id); if (vlan->nb_host_devs == 0) fprintf(stderr, "Warning: vlan %d is not connected to host network\n", vlan->id); } } static int net_init_client(QemuOpts *opts, void *dummy) { return net_client_init(NULL, opts); } int net_init_clients(void) { if (QTAILQ_EMPTY(&qemu_net_opts.head)) { /* if no clients, we use a default config */ qemu_opts_set(&qemu_net_opts, NULL, "type", "nic"); #ifdef CONFIG_SLIRP qemu_opts_set(&qemu_net_opts, NULL, "type", "user"); #endif } if (qemu_opts_foreach(&qemu_net_opts, net_init_client, NULL, 1) == -1) { return -1; } net_check_clients(); return 0; } int net_client_parse(const char *optarg) { #if defined(CONFIG_SLIRP) /* handle legacy -net channel,port:chr */ if (!strncmp(optarg, "channel,", strlen("channel,"))) { int ret; optarg += strlen("channel,"); if (QTAILQ_EMPTY(&slirp_stacks)) { struct slirp_config_str *config; config = qemu_malloc(sizeof(*config)); pstrcpy(config->str, sizeof(config->str), optarg); config->flags = SLIRP_CFG_LEGACY; config->next = slirp_configs; slirp_configs = config; ret = 0; } else { ret = slirp_guestfwd(QTAILQ_FIRST(&slirp_stacks), optarg, 1); } return ret; } #endif if (!qemu_opts_parse(&qemu_net_opts, optarg, "type")) { return -1; } return 0; }