/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "net.h" #include "console.h" #include "sysemu.h" #include "qemu-timer.h" #include "qemu-char.h" #include "audio/audio.h" #include #include #include #include #include #include #include #ifndef _WIN32 #include #include #include #include #include #include #include #include #include #ifdef __NetBSD__ #include #endif #ifdef __linux__ #include #endif #include #include #include #include #ifdef _BSD #include #ifdef __FreeBSD__ #include #else #include #endif #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__) #include #else #ifdef __linux__ #include #include #include /* For the benefit of older linux systems which don't supply it, we use a local copy of hpet.h. */ /* #include */ #include "hpet.h" #include #include #endif #ifdef __sun__ #include #include #include #include #include #include #include #include // must come after ip.h #include #include #include #include #include #endif #endif #endif #include "qemu_socket.h" #if defined(CONFIG_SLIRP) #include "libslirp.h" #endif #if defined(__OpenBSD__) #include #endif #if defined(CONFIG_VDE) #include #endif #ifdef _WIN32 #include #include #include #define getopt_long_only getopt_long #define memalign(align, size) malloc(size) #endif #define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup" #define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown" #ifdef __sun__ #define SMBD_COMMAND "/usr/sfw/sbin/smbd" #else #define SMBD_COMMAND "/usr/sbin/smbd" #endif static VLANState *first_vlan; /***********************************************************/ /* network device redirectors */ #if defined(DEBUG_NET) || defined(DEBUG_SLIRP) static void hex_dump(FILE *f, const uint8_t *buf, int size) { int len, i, j, c; for(i=0;i 16) len = 16; fprintf(f, "%08x ", i); for(j=0;j<16;j++) { if (j < len) fprintf(f, " %02x", buf[i+j]); else fprintf(f, " "); } fprintf(f, " "); for(j=0;j '~') c = '.'; fprintf(f, "%c", c); } fprintf(f, "\n"); } } #endif static int parse_macaddr(uint8_t *macaddr, const char *p) { int i; char *last_char; long int offset; errno = 0; offset = strtol(p, &last_char, 0); if (0 == errno && '\0' == *last_char && offset >= 0 && offset <= 0xFFFFFF) { macaddr[3] = (offset & 0xFF0000) >> 16; macaddr[4] = (offset & 0xFF00) >> 8; macaddr[5] = offset & 0xFF; return 0; } else { for(i = 0; i < 6; i++) { macaddr[i] = strtol(p, (char **)&p, 16); if (i == 5) { if (*p != '\0') return -1; } else { if (*p != ':' && *p != '-') return -1; p++; } } return 0; } return -1; } static int get_str_sep(char *buf, int buf_size, const char **pp, int sep) { const char *p, *p1; int len; p = *pp; p1 = strchr(p, sep); if (!p1) return -1; len = p1 - p; p1++; if (buf_size > 0) { if (len > buf_size - 1) len = buf_size - 1; memcpy(buf, p, len); buf[len] = '\0'; } *pp = p1; return 0; } int parse_host_src_port(struct sockaddr_in *haddr, struct sockaddr_in *saddr, const char *input_str) { char *str = strdup(input_str); char *host_str = str; char *src_str; const char *src_str2; char *ptr; /* * Chop off any extra arguments at the end of the string which * would start with a comma, then fill in the src port information * if it was provided else use the "any address" and "any port". */ if ((ptr = strchr(str,','))) *ptr = '\0'; if ((src_str = strchr(input_str,'@'))) { *src_str = '\0'; src_str++; } if (parse_host_port(haddr, host_str) < 0) goto fail; src_str2 = src_str; if (!src_str || *src_str == '\0') src_str2 = ":0"; if (parse_host_port(saddr, src_str2) < 0) goto fail; free(str); return(0); fail: free(str); return -1; } int parse_host_port(struct sockaddr_in *saddr, const char *str) { char buf[512]; struct hostent *he; const char *p, *r; int port; p = str; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) return -1; saddr->sin_family = AF_INET; if (buf[0] == '\0') { saddr->sin_addr.s_addr = 0; } else { if (qemu_isdigit(buf[0])) { if (!inet_aton(buf, &saddr->sin_addr)) return -1; } else { if ((he = gethostbyname(buf)) == NULL) return - 1; saddr->sin_addr = *(struct in_addr *)he->h_addr; } } port = strtol(p, (char **)&r, 0); if (r == p) return -1; saddr->sin_port = htons(port); return 0; } #if !defined(_WIN32) && 0 static int parse_unix_path(struct sockaddr_un *uaddr, const char *str) { const char *p; int len; len = MIN(108, strlen(str)); p = strchr(str, ','); if (p) len = MIN(len, p - str); memset(uaddr, 0, sizeof(*uaddr)); uaddr->sun_family = AF_UNIX; memcpy(uaddr->sun_path, str, len); return 0; } #endif VLANClientState *qemu_new_vlan_client(VLANState *vlan, IOReadHandler *fd_read, IOCanRWHandler *fd_can_read, void *opaque) { VLANClientState *vc, **pvc; vc = qemu_mallocz(sizeof(VLANClientState)); if (!vc) return NULL; vc->fd_read = fd_read; vc->fd_can_read = fd_can_read; vc->opaque = opaque; vc->vlan = vlan; vc->next = NULL; pvc = &vlan->first_client; while (*pvc != NULL) pvc = &(*pvc)->next; *pvc = vc; return vc; } void qemu_del_vlan_client(VLANClientState *vc) { VLANClientState **pvc = &vc->vlan->first_client; while (*pvc != NULL) if (*pvc == vc) { *pvc = vc->next; free(vc); break; } else pvc = &(*pvc)->next; } int qemu_can_send_packet(VLANClientState *vc1) { VLANState *vlan = vc1->vlan; VLANClientState *vc; for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc != vc1) { if (vc->fd_can_read && vc->fd_can_read(vc->opaque)) return 1; } } return 0; } void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size) { VLANState *vlan = vc1->vlan; VLANClientState *vc; #ifdef DEBUG_NET printf("vlan %d send:\n", vlan->id); hex_dump(stdout, buf, size); #endif for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc != vc1) { vc->fd_read(vc->opaque, buf, size); } } } static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov, int iovcnt) { uint8_t buffer[4096]; size_t offset = 0; int i; for (i = 0; i < iovcnt; i++) { size_t len; len = MIN(sizeof(buffer) - offset, iov[i].iov_len); memcpy(buffer + offset, iov[i].iov_base, len); offset += len; } vc->fd_read(vc->opaque, buffer, offset); return offset; } ssize_t qemu_sendv_packet(VLANClientState *vc1, const struct iovec *iov, int iovcnt) { VLANState *vlan = vc1->vlan; VLANClientState *vc; ssize_t max_len = 0; for (vc = vlan->first_client; vc != NULL; vc = vc->next) { ssize_t len = 0; if (vc == vc1) continue; if (vc->fd_readv) len = vc->fd_readv(vc->opaque, iov, iovcnt); else if (vc->fd_read) len = vc_sendv_compat(vc, iov, iovcnt); max_len = MAX(max_len, len); } return max_len; } #if defined(CONFIG_SLIRP) /* slirp network adapter */ static int slirp_inited; static VLANClientState *slirp_vc; int slirp_can_output(void) { return !slirp_vc || qemu_can_send_packet(slirp_vc); } void slirp_output(const uint8_t *pkt, int pkt_len) { #ifdef DEBUG_SLIRP printf("slirp output:\n"); hex_dump(stdout, pkt, pkt_len); #endif if (!slirp_vc) return; qemu_send_packet(slirp_vc, pkt, pkt_len); } int slirp_is_inited(void) { return slirp_inited; } static void slirp_receive(void *opaque, const uint8_t *buf, int size) { #ifdef DEBUG_SLIRP printf("slirp input:\n"); hex_dump(stdout, buf, size); #endif slirp_input(buf, size); } static int net_slirp_init(VLANState *vlan) { if (!slirp_inited) { slirp_inited = 1; slirp_init(); } slirp_vc = qemu_new_vlan_client(vlan, slirp_receive, NULL, NULL); snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector"); return 0; } void net_slirp_redir(const char *redir_str) { int is_udp; char buf[256], *r; const char *p; struct in_addr guest_addr; int host_port, guest_port; if (!slirp_inited) { slirp_inited = 1; slirp_init(); } p = redir_str; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; if (!strcmp(buf, "tcp")) { is_udp = 0; } else if (!strcmp(buf, "udp")) { is_udp = 1; } else { goto fail; } if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; host_port = strtol(buf, &r, 0); if (r == buf) goto fail; if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) goto fail; if (buf[0] == '\0') { pstrcpy(buf, sizeof(buf), "10.0.2.15"); } if (!inet_aton(buf, &guest_addr)) goto fail; guest_port = strtol(p, &r, 0); if (r == p) goto fail; if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) { fprintf(stderr, "qemu: could not set up redirection\n"); exit(1); } return; fail: fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n"); exit(1); } #ifndef _WIN32 static char smb_dir[1024]; static void erase_dir(char *dir_name) { DIR *d; struct dirent *de; char filename[1024]; /* erase all the files in the directory */ if ((d = opendir(dir_name)) != 0) { for(;;) { de = readdir(d); if (!de) break; if (strcmp(de->d_name, ".") != 0 && strcmp(de->d_name, "..") != 0) { snprintf(filename, sizeof(filename), "%s/%s", smb_dir, de->d_name); if (unlink(filename) != 0) /* is it a directory? */ erase_dir(filename); } } closedir(d); rmdir(dir_name); } } /* automatic user mode samba server configuration */ static void smb_exit(void) { erase_dir(smb_dir); } /* automatic user mode samba server configuration */ void net_slirp_smb(const char *exported_dir) { char smb_conf[1024]; char smb_cmdline[1024]; FILE *f; if (!slirp_inited) { slirp_inited = 1; slirp_init(); } /* XXX: better tmp dir construction */ snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid()); if (mkdir(smb_dir, 0700) < 0) { fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir); exit(1); } snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf"); f = fopen(smb_conf, "w"); if (!f) { fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf); exit(1); } fprintf(f, "[global]\n" "private dir=%s\n" "smb ports=0\n" "socket address=127.0.0.1\n" "pid directory=%s\n" "lock directory=%s\n" "log file=%s/log.smbd\n" "smb passwd file=%s/smbpasswd\n" "security = share\n" "[qemu]\n" "path=%s\n" "read only=no\n" "guest ok=yes\n", smb_dir, smb_dir, smb_dir, smb_dir, smb_dir, exported_dir ); fclose(f); atexit(smb_exit); snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s", SMBD_COMMAND, smb_conf); slirp_add_exec(0, smb_cmdline, 4, 139); } #endif /* !defined(_WIN32) */ void do_info_slirp(void) { slirp_stats(); } #endif /* CONFIG_SLIRP */ #if !defined(_WIN32) typedef struct TAPState { VLANClientState *vc; int fd; char down_script[1024]; } TAPState; #ifdef HAVE_IOVEC static ssize_t tap_receive_iov(void *opaque, const struct iovec *iov, int iovcnt) { TAPState *s = opaque; ssize_t len; do { len = writev(s->fd, iov, iovcnt); } while (len == -1 && (errno == EINTR || errno == EAGAIN)); return len; } #endif static void tap_receive(void *opaque, const uint8_t *buf, int size) { TAPState *s = opaque; int ret; for(;;) { ret = write(s->fd, buf, size); if (ret < 0 && (errno == EINTR || errno == EAGAIN)) { } else { break; } } } static void tap_send(void *opaque) { TAPState *s = opaque; uint8_t buf[4096]; int size; #ifdef __sun__ struct strbuf sbuf; int f = 0; sbuf.maxlen = sizeof(buf); sbuf.buf = buf; size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1; #else size = read(s->fd, buf, sizeof(buf)); #endif if (size > 0) { qemu_send_packet(s->vc, buf, size); } } /* fd support */ static TAPState *net_tap_fd_init(VLANState *vlan, int fd) { TAPState *s; s = qemu_mallocz(sizeof(TAPState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s); #ifdef HAVE_IOVEC s->vc->fd_readv = tap_receive_iov; #endif qemu_set_fd_handler(s->fd, tap_send, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd); return s; } #if defined (_BSD) || defined (__FreeBSD_kernel__) static int tap_open(char *ifname, int ifname_size) { int fd; char *dev; struct stat s; TFR(fd = open("/dev/tap", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n"); return -1; } fstat(fd, &s); dev = devname(s.st_rdev, S_IFCHR); pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #elif defined(__sun__) #define TUNNEWPPA (('T'<<16) | 0x0001) /* * Allocate TAP device, returns opened fd. * Stores dev name in the first arg(must be large enough). */ int tap_alloc(char *dev, size_t dev_size) { int tap_fd, if_fd, ppa = -1; static int ip_fd = 0; char *ptr; static int arp_fd = 0; int ip_muxid, arp_muxid; struct strioctl strioc_if, strioc_ppa; int link_type = I_PLINK;; struct lifreq ifr; char actual_name[32] = ""; memset(&ifr, 0x0, sizeof(ifr)); if( *dev ){ ptr = dev; while( *ptr && !qemu_isdigit((int)*ptr) ) ptr++; ppa = atoi(ptr); } /* Check if IP device was opened */ if( ip_fd ) close(ip_fd); TFR(ip_fd = open("/dev/udp", O_RDWR, 0)); if (ip_fd < 0) { syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)"); return -1; } TFR(tap_fd = open("/dev/tap", O_RDWR, 0)); if (tap_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap"); return -1; } /* Assign a new PPA and get its unit number. */ strioc_ppa.ic_cmd = TUNNEWPPA; strioc_ppa.ic_timout = 0; strioc_ppa.ic_len = sizeof(ppa); strioc_ppa.ic_dp = (char *)&ppa; if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0) syslog (LOG_ERR, "Can't assign new interface"); TFR(if_fd = open("/dev/tap", O_RDWR, 0)); if (if_fd < 0) { syslog(LOG_ERR, "Can't open /dev/tap (2)"); return -1; } if(ioctl(if_fd, I_PUSH, "ip") < 0){ syslog(LOG_ERR, "Can't push IP module"); return -1; } if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0) syslog(LOG_ERR, "Can't get flags\n"); snprintf (actual_name, 32, "tap%d", ppa); pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name); ifr.lifr_ppa = ppa; /* Assign ppa according to the unit number returned by tun device */ if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0) syslog (LOG_ERR, "Can't set PPA %d", ppa); if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0) syslog (LOG_ERR, "Can't get flags\n"); /* Push arp module to if_fd */ if (ioctl (if_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (2)"); /* Push arp module to ip_fd */ if (ioctl (ip_fd, I_POP, NULL) < 0) syslog (LOG_ERR, "I_POP failed\n"); if (ioctl (ip_fd, I_PUSH, "arp") < 0) syslog (LOG_ERR, "Can't push ARP module (3)\n"); /* Open arp_fd */ TFR(arp_fd = open ("/dev/tap", O_RDWR, 0)); if (arp_fd < 0) syslog (LOG_ERR, "Can't open %s\n", "/dev/tap"); /* Set ifname to arp */ strioc_if.ic_cmd = SIOCSLIFNAME; strioc_if.ic_timout = 0; strioc_if.ic_len = sizeof(ifr); strioc_if.ic_dp = (char *)𝔦 if (ioctl(arp_fd, I_STR, &strioc_if) < 0){ syslog (LOG_ERR, "Can't set ifname to arp\n"); } if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){ syslog(LOG_ERR, "Can't link TAP device to IP"); return -1; } if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0) syslog (LOG_ERR, "Can't link TAP device to ARP"); close (if_fd); memset(&ifr, 0x0, sizeof(ifr)); pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name); ifr.lifr_ip_muxid = ip_muxid; ifr.lifr_arp_muxid = arp_muxid; if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0) { ioctl (ip_fd, I_PUNLINK , arp_muxid); ioctl (ip_fd, I_PUNLINK, ip_muxid); syslog (LOG_ERR, "Can't set multiplexor id"); } snprintf(dev, dev_size, "tap%d", ppa); return tap_fd; } static int tap_open(char *ifname, int ifname_size) { char dev[10]=""; int fd; if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){ fprintf(stderr, "Cannot allocate TAP device\n"); return -1; } pstrcpy(ifname, ifname_size, dev); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #elif defined (_AIX) static int tap_open(char *ifname, int ifname_size) { fprintf (stderr, "no tap on AIX\n"); return -1; } #else static int tap_open(char *ifname, int ifname_size) { struct ifreq ifr; int fd, ret; TFR(fd = open("/dev/net/tun", O_RDWR)); if (fd < 0) { fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n"); return -1; } memset(&ifr, 0, sizeof(ifr)); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ifname[0] != '\0') pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname); else pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d"); ret = ioctl(fd, TUNSETIFF, (void *) &ifr); if (ret != 0) { fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n"); close(fd); return -1; } pstrcpy(ifname, ifname_size, ifr.ifr_name); fcntl(fd, F_SETFL, O_NONBLOCK); return fd; } #endif static int launch_script(const char *setup_script, const char *ifname, int fd) { int pid, status; char *args[3]; char **parg; /* try to launch network script */ pid = fork(); if (pid >= 0) { if (pid == 0) { int open_max = sysconf (_SC_OPEN_MAX), i; for (i = 0; i < open_max; i++) if (i != STDIN_FILENO && i != STDOUT_FILENO && i != STDERR_FILENO && i != fd) close(i); parg = args; *parg++ = (char *)setup_script; *parg++ = (char *)ifname; *parg++ = NULL; execv(setup_script, args); _exit(1); } while (waitpid(pid, &status, 0) != pid); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { fprintf(stderr, "%s: could not launch network script\n", setup_script); return -1; } } return 0; } static int net_tap_init(VLANState *vlan, const char *ifname1, const char *setup_script, const char *down_script) { TAPState *s; int fd; char ifname[128]; if (ifname1 != NULL) pstrcpy(ifname, sizeof(ifname), ifname1); else ifname[0] = '\0'; TFR(fd = tap_open(ifname, sizeof(ifname))); if (fd < 0) return -1; if (!setup_script || !strcmp(setup_script, "no")) setup_script = ""; if (setup_script[0] != '\0') { if (launch_script(setup_script, ifname, fd)) return -1; } s = net_tap_fd_init(vlan, fd); if (!s) return -1; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: ifname=%s setup_script=%s", ifname, setup_script); if (down_script && strcmp(down_script, "no")) snprintf(s->down_script, sizeof(s->down_script), "%s", down_script); return 0; } #endif /* !_WIN32 */ #if defined(CONFIG_VDE) typedef struct VDEState { VLANClientState *vc; VDECONN *vde; } VDEState; static void vde_to_qemu(void *opaque) { VDEState *s = opaque; uint8_t buf[4096]; int size; size = vde_recv(s->vde, buf, sizeof(buf), 0); if (size > 0) { qemu_send_packet(s->vc, buf, size); } } static void vde_from_qemu(void *opaque, const uint8_t *buf, int size) { VDEState *s = opaque; int ret; for(;;) { ret = vde_send(s->vde, buf, size, 0); if (ret < 0 && errno == EINTR) { } else { break; } } } static int net_vde_init(VLANState *vlan, const char *sock, int port, const char *group, int mode) { VDEState *s; char *init_group = strlen(group) ? (char *)group : NULL; char *init_sock = strlen(sock) ? (char *)sock : NULL; struct vde_open_args args = { .port = port, .group = init_group, .mode = mode, }; s = qemu_mallocz(sizeof(VDEState)); if (!s) return -1; s->vde = vde_open(init_sock, "QEMU", &args); if (!s->vde){ free(s); return -1; } s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s); qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d", sock, vde_datafd(s->vde)); return 0; } #endif /* network connection */ typedef struct NetSocketState { VLANClientState *vc; int fd; int state; /* 0 = getting length, 1 = getting data */ int index; int packet_len; uint8_t buf[4096]; struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */ } NetSocketState; typedef struct NetSocketListenState { VLANState *vlan; int fd; } NetSocketListenState; /* XXX: we consider we can send the whole packet without blocking */ static void net_socket_receive(void *opaque, const uint8_t *buf, int size) { NetSocketState *s = opaque; uint32_t len; len = htonl(size); send_all(s->fd, (const uint8_t *)&len, sizeof(len)); send_all(s->fd, buf, size); } static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size) { NetSocketState *s = opaque; sendto(s->fd, buf, size, 0, (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst)); } static void net_socket_send(void *opaque) { NetSocketState *s = opaque; int l, size, err; uint8_t buf1[4096]; const uint8_t *buf; size = recv(s->fd, buf1, sizeof(buf1), 0); if (size < 0) { err = socket_error(); if (err != EWOULDBLOCK) goto eoc; } else if (size == 0) { /* end of connection */ eoc: qemu_set_fd_handler(s->fd, NULL, NULL, NULL); closesocket(s->fd); return; } buf = buf1; while (size > 0) { /* reassemble a packet from the network */ switch(s->state) { case 0: l = 4 - s->index; if (l > size) l = size; memcpy(s->buf + s->index, buf, l); buf += l; size -= l; s->index += l; if (s->index == 4) { /* got length */ s->packet_len = ntohl(*(uint32_t *)s->buf); s->index = 0; s->state = 1; } break; case 1: l = s->packet_len - s->index; if (l > size) l = size; memcpy(s->buf + s->index, buf, l); s->index += l; buf += l; size -= l; if (s->index >= s->packet_len) { qemu_send_packet(s->vc, s->buf, s->packet_len); s->index = 0; s->state = 0; } break; } } } static void net_socket_send_dgram(void *opaque) { NetSocketState *s = opaque; int size; size = recv(s->fd, s->buf, sizeof(s->buf), 0); if (size < 0) return; if (size == 0) { /* end of connection */ qemu_set_fd_handler(s->fd, NULL, NULL, NULL); return; } qemu_send_packet(s->vc, s->buf, size); } static int net_socket_mcast_create(struct sockaddr_in *mcastaddr) { struct ip_mreq imr; int fd; int val, ret; if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) { fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n", inet_ntoa(mcastaddr->sin_addr), (int)ntohl(mcastaddr->sin_addr.s_addr)); return -1; } fd = socket(PF_INET, SOCK_DGRAM, 0); if (fd < 0) { perror("socket(PF_INET, SOCK_DGRAM)"); return -1; } val = 1; ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)"); goto fail; } ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr)); if (ret < 0) { perror("bind"); goto fail; } /* Add host to multicast group */ imr.imr_multiaddr = mcastaddr->sin_addr; imr.imr_interface.s_addr = htonl(INADDR_ANY); ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, (const char *)&imr, sizeof(struct ip_mreq)); if (ret < 0) { perror("setsockopt(IP_ADD_MEMBERSHIP)"); goto fail; } /* Force mcast msgs to loopback (eg. several QEMUs in same host */ val = 1; ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP, (const char *)&val, sizeof(val)); if (ret < 0) { perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)"); goto fail; } socket_set_nonblock(fd); return fd; fail: if (fd >= 0) closesocket(fd); return -1; } static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd, int is_connected) { struct sockaddr_in saddr; int newfd; socklen_t saddr_len; NetSocketState *s; /* fd passed: multicast: "learn" dgram_dst address from bound address and save it * Because this may be "shared" socket from a "master" process, datagrams would be recv() * by ONLY ONE process: we must "clone" this dgram socket --jjo */ if (is_connected) { if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) { /* must be bound */ if (saddr.sin_addr.s_addr==0) { fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n", fd); return NULL; } /* clone dgram socket */ newfd = net_socket_mcast_create(&saddr); if (newfd < 0) { /* error already reported by net_socket_mcast_create() */ close(fd); return NULL; } /* clone newfd to fd, close newfd */ dup2(newfd, fd); close(newfd); } else { fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n", fd, strerror(errno)); return NULL; } } s = qemu_mallocz(sizeof(NetSocketState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s); qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s); /* mcast: save bound address as dst */ if (is_connected) s->dgram_dst=saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d (%s mcast=%s:%d)", fd, is_connected? "cloned" : "", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return s; } static void net_socket_connect(void *opaque) { NetSocketState *s = opaque; qemu_set_fd_handler(s->fd, net_socket_send, NULL, s); } static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd, int is_connected) { NetSocketState *s; s = qemu_mallocz(sizeof(NetSocketState)); if (!s) return NULL; s->fd = fd; s->vc = qemu_new_vlan_client(vlan, net_socket_receive, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: fd=%d", fd); if (is_connected) { net_socket_connect(s); } else { qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s); } return s; } static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd, int is_connected) { int so_type=-1, optlen=sizeof(so_type); if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, (socklen_t *)&optlen)< 0) { fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd); return NULL; } switch(so_type) { case SOCK_DGRAM: return net_socket_fd_init_dgram(vlan, fd, is_connected); case SOCK_STREAM: return net_socket_fd_init_stream(vlan, fd, is_connected); default: /* who knows ... this could be a eg. a pty, do warn and continue as stream */ fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd); return net_socket_fd_init_stream(vlan, fd, is_connected); } return NULL; } static void net_socket_accept(void *opaque) { NetSocketListenState *s = opaque; NetSocketState *s1; struct sockaddr_in saddr; socklen_t len; int fd; for(;;) { len = sizeof(saddr); fd = accept(s->fd, (struct sockaddr *)&saddr, &len); if (fd < 0 && errno != EINTR) { return; } else if (fd >= 0) { break; } } s1 = net_socket_fd_init(s->vlan, fd, 1); if (!s1) { closesocket(fd); } else { snprintf(s1->vc->info_str, sizeof(s1->vc->info_str), "socket: connection from %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); } } static int net_socket_listen_init(VLANState *vlan, const char *host_str) { NetSocketListenState *s; int fd, val, ret; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; s = qemu_mallocz(sizeof(NetSocketListenState)); if (!s) return -1; fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); /* allow fast reuse */ val = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { perror("bind"); return -1; } ret = listen(fd, 0); if (ret < 0) { perror("listen"); return -1; } s->vlan = vlan; s->fd = fd; qemu_set_fd_handler(fd, net_socket_accept, NULL, s); return 0; } static int net_socket_connect_init(VLANState *vlan, const char *host_str) { NetSocketState *s; int fd, connected, ret, err; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); return -1; } socket_set_nonblock(fd); connected = 0; for(;;) { ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { err = socket_error(); if (err == EINTR || err == EWOULDBLOCK) { } else if (err == EINPROGRESS) { break; #ifdef _WIN32 } else if (err == WSAEALREADY) { break; #endif } else { perror("connect"); closesocket(fd); return -1; } } else { connected = 1; break; } } s = net_socket_fd_init(vlan, fd, connected); if (!s) return -1; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: connect to %s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } static int net_socket_mcast_init(VLANState *vlan, const char *host_str) { NetSocketState *s; int fd; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; fd = net_socket_mcast_create(&saddr); if (fd < 0) return -1; s = net_socket_fd_init(vlan, fd, 0); if (!s) return -1; s->dgram_dst = saddr; snprintf(s->vc->info_str, sizeof(s->vc->info_str), "socket: mcast=%s:%d", inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port)); return 0; } /* find or alloc a new VLAN */ VLANState *qemu_find_vlan(int id) { VLANState **pvlan, *vlan; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->id == id) return vlan; } vlan = qemu_mallocz(sizeof(VLANState)); if (!vlan) return NULL; vlan->id = id; vlan->next = NULL; pvlan = &first_vlan; while (*pvlan != NULL) pvlan = &(*pvlan)->next; *pvlan = vlan; return vlan; } int net_client_init(const char *device, const char *p) { char buf[1024]; int vlan_id, ret; VLANState *vlan; vlan_id = 0; if (get_param_value(buf, sizeof(buf), "vlan", p)) { vlan_id = strtol(buf, NULL, 0); } vlan = qemu_find_vlan(vlan_id); if (!vlan) { fprintf(stderr, "Could not create vlan %d\n", vlan_id); return -1; } if (!strcmp(device, "nic")) { NICInfo *nd; uint8_t *macaddr; if (nb_nics >= MAX_NICS) { fprintf(stderr, "Too Many NICs\n"); return -1; } nd = &nd_table[nb_nics]; macaddr = nd->macaddr; macaddr[0] = 0x52; macaddr[1] = 0x54; macaddr[2] = 0x00; macaddr[3] = 0x12; macaddr[4] = 0x34; macaddr[5] = 0x56 + nb_nics; if (get_param_value(buf, sizeof(buf), "macaddr", p)) { if (parse_macaddr(macaddr, buf) < 0) { fprintf(stderr, "invalid syntax for ethernet address\n"); return -1; } } if (get_param_value(buf, sizeof(buf), "model", p)) { nd->model = strdup(buf); } nd->vlan = vlan; nb_nics++; vlan->nb_guest_devs++; ret = 0; } else if (!strcmp(device, "none")) { /* does nothing. It is needed to signal that no network cards are wanted */ ret = 0; } else #ifdef CONFIG_SLIRP if (!strcmp(device, "user")) { if (get_param_value(buf, sizeof(buf), "hostname", p)) { pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf); } vlan->nb_host_devs++; ret = net_slirp_init(vlan); } else #endif #ifdef _WIN32 if (!strcmp(device, "tap")) { char ifname[64]; if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) { fprintf(stderr, "tap: no interface name\n"); return -1; } vlan->nb_host_devs++; ret = tap_win32_init(vlan, ifname); } else #elif defined (_AIX) #else if (!strcmp(device, "tap")) { char ifname[64]; char setup_script[1024], down_script[1024]; int fd; vlan->nb_host_devs++; if (get_param_value(buf, sizeof(buf), "fd", p) > 0) { fd = strtol(buf, NULL, 0); fcntl(fd, F_SETFL, O_NONBLOCK); ret = -1; if (net_tap_fd_init(vlan, fd)) ret = 0; } else { if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) { ifname[0] = '\0'; } if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) { pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT); } if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) { pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT); } ret = net_tap_init(vlan, ifname, setup_script, down_script); } } else #endif if (!strcmp(device, "socket")) { if (get_param_value(buf, sizeof(buf), "fd", p) > 0) { int fd; fd = strtol(buf, NULL, 0); ret = -1; if (net_socket_fd_init(vlan, fd, 1)) ret = 0; } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) { ret = net_socket_listen_init(vlan, buf); } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) { ret = net_socket_connect_init(vlan, buf); } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) { ret = net_socket_mcast_init(vlan, buf); } else { fprintf(stderr, "Unknown socket options: %s\n", p); return -1; } vlan->nb_host_devs++; } else #ifdef CONFIG_VDE if (!strcmp(device, "vde")) { char vde_sock[1024], vde_group[512]; int vde_port, vde_mode; vlan->nb_host_devs++; if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) { vde_sock[0] = '\0'; } if (get_param_value(buf, sizeof(buf), "port", p) > 0) { vde_port = strtol(buf, NULL, 10); } else { vde_port = 0; } if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) { vde_group[0] = '\0'; } if (get_param_value(buf, sizeof(buf), "mode", p) > 0) { vde_mode = strtol(buf, NULL, 8); } else { vde_mode = 0700; } ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode); } else #endif { fprintf(stderr, "Unknown network device: %s\n", device); return -1; } if (ret < 0) { fprintf(stderr, "Could not initialize device '%s'\n", device); } return ret; } int net_client_parse(const char *str) { const char *p; char *q; char device[64]; p = str; q = device; while (*p != '\0' && *p != ',') { if ((q - device) < sizeof(device) - 1) *q++ = *p; p++; } *q = '\0'; if (*p == ',') p++; return net_client_init(device, p); } void do_info_network(void) { VLANState *vlan; VLANClientState *vc; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { term_printf("VLAN %d devices:\n", vlan->id); for(vc = vlan->first_client; vc != NULL; vc = vc->next) term_printf(" %s\n", vc->info_str); } } void net_cleanup(void) { VLANState *vlan; #if !defined(_WIN32) /* close network clients */ for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { VLANClientState *vc; for(vc = vlan->first_client; vc != NULL; vc = vc->next) { if (vc->fd_read == tap_receive) { char ifname[64]; TAPState *s = vc->opaque; if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 && s->down_script[0]) launch_script(s->down_script, ifname, s->fd); } #if defined(CONFIG_VDE) if (vc->fd_read == vde_from_qemu) { VDEState *s = vc->opaque; vde_close(s->vde); } #endif } } #endif } void net_client_check(void) { VLANState *vlan; for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) { if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0) continue; if (vlan->nb_guest_devs == 0) fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id); if (vlan->nb_host_devs == 0) fprintf(stderr, "Warning: vlan %d is not connected to host network\n", vlan->id); } }