/* * QEMU monitor * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/units.h" #include #include "cpu.h" #include "hw/hw.h" #include "monitor/qdev.h" #include "hw/usb.h" #include "hw/pci/pci.h" #include "sysemu/watchdog.h" #include "hw/loader.h" #include "exec/gdbstub.h" #include "net/net.h" #include "net/slirp.h" #include "chardev/char-fe.h" #include "chardev/char-io.h" #include "chardev/char-mux.h" #include "ui/qemu-spice.h" #include "sysemu/numa.h" #include "monitor/monitor.h" #include "qemu/config-file.h" #include "qemu/readline.h" #include "ui/console.h" #include "ui/input.h" #include "sysemu/block-backend.h" #include "audio/audio.h" #include "disas/disas.h" #include "sysemu/balloon.h" #include "qemu/timer.h" #include "sysemu/hw_accel.h" #include "qemu/acl.h" #include "sysemu/tpm.h" #include "qapi/qmp/qdict.h" #include "qapi/qmp/qerror.h" #include "qapi/qmp/qnum.h" #include "qapi/qmp/qstring.h" #include "qapi/qmp/qjson.h" #include "qapi/qmp/json-parser.h" #include "qapi/qmp/qlist.h" #include "qom/object_interfaces.h" #include "trace-root.h" #include "trace/control.h" #include "monitor/hmp-target.h" #ifdef CONFIG_TRACE_SIMPLE #include "trace/simple.h" #endif #include "exec/memory.h" #include "exec/exec-all.h" #include "qemu/log.h" #include "qemu/option.h" #include "hmp.h" #include "qemu/thread.h" #include "block/qapi.h" #include "qapi/qapi-commands.h" #include "qapi/qapi-events.h" #include "qapi/error.h" #include "qapi/qmp-event.h" #include "qapi/qapi-introspect.h" #include "sysemu/qtest.h" #include "sysemu/cpus.h" #include "sysemu/iothread.h" #include "qemu/cutils.h" #include "tcg/tcg.h" #if defined(TARGET_S390X) #include "hw/s390x/storage-keys.h" #include "hw/s390x/storage-attributes.h" #endif /* * Supported types: * * 'F' filename * 'B' block device name * 's' string (accept optional quote) * 'S' it just appends the rest of the string (accept optional quote) * 'O' option string of the form NAME=VALUE,... * parsed according to QemuOptsList given by its name * Example: 'device:O' uses qemu_device_opts. * Restriction: only lists with empty desc are supported * TODO lift the restriction * 'i' 32 bit integer * 'l' target long (32 or 64 bit) * 'M' Non-negative target long (32 or 64 bit), in user mode the * value is multiplied by 2^20 (think Mebibyte) * 'o' octets (aka bytes) * user mode accepts an optional E, e, P, p, T, t, G, g, M, m, * K, k suffix, which multiplies the value by 2^60 for suffixes E * and e, 2^50 for suffixes P and p, 2^40 for suffixes T and t, * 2^30 for suffixes G and g, 2^20 for M and m, 2^10 for K and k * 'T' double * user mode accepts an optional ms, us, ns suffix, * which divides the value by 1e3, 1e6, 1e9, respectively * '/' optional gdb-like print format (like "/10x") * * '?' optional type (for all types, except '/') * '.' other form of optional type (for 'i' and 'l') * 'b' boolean * user mode accepts "on" or "off" * '-' optional parameter (eg. '-f') * */ typedef struct mon_cmd_t { const char *name; const char *args_type; const char *params; const char *help; const char *flags; /* p=preconfig */ void (*cmd)(Monitor *mon, const QDict *qdict); /* @sub_table is a list of 2nd level of commands. If it does not exist, * cmd should be used. If it exists, sub_table[?].cmd should be * used, and cmd of 1st level plays the role of help function. */ struct mon_cmd_t *sub_table; void (*command_completion)(ReadLineState *rs, int nb_args, const char *str); } mon_cmd_t; /* file descriptors passed via SCM_RIGHTS */ typedef struct mon_fd_t mon_fd_t; struct mon_fd_t { char *name; int fd; QLIST_ENTRY(mon_fd_t) next; }; /* file descriptor associated with a file descriptor set */ typedef struct MonFdsetFd MonFdsetFd; struct MonFdsetFd { int fd; bool removed; char *opaque; QLIST_ENTRY(MonFdsetFd) next; }; /* file descriptor set containing fds passed via SCM_RIGHTS */ typedef struct MonFdset MonFdset; struct MonFdset { int64_t id; QLIST_HEAD(, MonFdsetFd) fds; QLIST_HEAD(, MonFdsetFd) dup_fds; QLIST_ENTRY(MonFdset) next; }; typedef struct { JSONMessageParser parser; /* * When a client connects, we're in capabilities negotiation mode. * @commands is &qmp_cap_negotiation_commands then. When command * qmp_capabilities succeeds, we go into command mode, and * @command becomes &qmp_commands. */ QmpCommandList *commands; bool capab_offered[QMP_CAPABILITY__MAX]; /* capabilities offered */ bool capab[QMP_CAPABILITY__MAX]; /* offered and accepted */ /* * Protects qmp request/response queue. * Take monitor_lock first when you need both. */ QemuMutex qmp_queue_lock; /* Input queue that holds all the parsed QMP requests */ GQueue *qmp_requests; } MonitorQMP; /* * To prevent flooding clients, events can be throttled. The * throttling is calculated globally, rather than per-Monitor * instance. */ typedef struct MonitorQAPIEventState { QAPIEvent event; /* Throttling state for this event type and... */ QDict *data; /* ... data, see qapi_event_throttle_equal() */ QEMUTimer *timer; /* Timer for handling delayed events */ QDict *qdict; /* Delayed event (if any) */ } MonitorQAPIEventState; typedef struct { int64_t rate; /* Minimum time (in ns) between two events */ } MonitorQAPIEventConf; struct Monitor { CharBackend chr; int reset_seen; int flags; int suspend_cnt; /* Needs to be accessed atomically */ bool skip_flush; bool use_io_thread; /* * State used only in the thread "owning" the monitor. * If @use_io_thread, this is @mon_iothread. * Else, it's the main thread. * These members can be safely accessed without locks. */ ReadLineState *rs; MonitorQMP qmp; gchar *mon_cpu_path; BlockCompletionFunc *password_completion_cb; void *password_opaque; mon_cmd_t *cmd_table; QTAILQ_ENTRY(Monitor) entry; /* * The per-monitor lock. We can't access guest memory when holding * the lock. */ QemuMutex mon_lock; /* * Members that are protected by the per-monitor lock */ QLIST_HEAD(, mon_fd_t) fds; QString *outbuf; guint out_watch; /* Read under either BQL or mon_lock, written with BQL+mon_lock. */ int mux_out; }; /* Shared monitor I/O thread */ IOThread *mon_iothread; /* Bottom half to dispatch the requests received from I/O thread */ QEMUBH *qmp_dispatcher_bh; struct QMPRequest { /* Owner of the request */ Monitor *mon; /* "id" field of the request */ QObject *id; /* * Request object to be handled or Error to be reported * (exactly one of them is non-null) */ QObject *req; Error *err; }; typedef struct QMPRequest QMPRequest; /* QMP checker flags */ #define QMP_ACCEPT_UNKNOWNS 1 /* Protects mon_list, monitor_qapi_event_state, monitor_destroyed. */ static QemuMutex monitor_lock; static GHashTable *monitor_qapi_event_state; static QTAILQ_HEAD(mon_list, Monitor) mon_list; static bool monitor_destroyed; /* Protects mon_fdsets */ static QemuMutex mon_fdsets_lock; static QLIST_HEAD(mon_fdsets, MonFdset) mon_fdsets; static int mon_refcount; static mon_cmd_t mon_cmds[]; static mon_cmd_t info_cmds[]; QmpCommandList qmp_commands, qmp_cap_negotiation_commands; __thread Monitor *cur_mon; static void monitor_command_cb(void *opaque, const char *cmdline, void *readline_opaque); /** * Is @mon a QMP monitor? */ static inline bool monitor_is_qmp(const Monitor *mon) { return (mon->flags & MONITOR_USE_CONTROL); } /** * Is @mon is using readline? * Note: not all HMP monitors use readline, e.g., gdbserver has a * non-interactive HMP monitor, so readline is not used there. */ static inline bool monitor_uses_readline(const Monitor *mon) { return mon->flags & MONITOR_USE_READLINE; } static inline bool monitor_is_hmp_non_interactive(const Monitor *mon) { return !monitor_is_qmp(mon) && !monitor_uses_readline(mon); } /* * Return the clock to use for recording an event's time. * It's QEMU_CLOCK_REALTIME, except for qtests it's * QEMU_CLOCK_VIRTUAL, to support testing rate limits. * Beware: result is invalid before configure_accelerator(). */ static inline QEMUClockType monitor_get_event_clock(void) { return qtest_enabled() ? QEMU_CLOCK_VIRTUAL : QEMU_CLOCK_REALTIME; } /** * Is the current monitor, if any, a QMP monitor? */ bool monitor_cur_is_qmp(void) { return cur_mon && monitor_is_qmp(cur_mon); } void monitor_read_command(Monitor *mon, int show_prompt) { if (!mon->rs) return; readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL); if (show_prompt) readline_show_prompt(mon->rs); } int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func, void *opaque) { if (mon->rs) { readline_start(mon->rs, "Password: ", 1, readline_func, opaque); /* prompt is printed on return from the command handler */ return 0; } else { monitor_printf(mon, "terminal does not support password prompting\n"); return -ENOTTY; } } static void qmp_request_free(QMPRequest *req) { qobject_unref(req->id); qobject_unref(req->req); error_free(req->err); g_free(req); } /* Caller must hold mon->qmp.qmp_queue_lock */ static void monitor_qmp_cleanup_req_queue_locked(Monitor *mon) { while (!g_queue_is_empty(mon->qmp.qmp_requests)) { qmp_request_free(g_queue_pop_head(mon->qmp.qmp_requests)); } } static void monitor_qmp_cleanup_queues(Monitor *mon) { qemu_mutex_lock(&mon->qmp.qmp_queue_lock); monitor_qmp_cleanup_req_queue_locked(mon); qemu_mutex_unlock(&mon->qmp.qmp_queue_lock); } static void monitor_flush_locked(Monitor *mon); static gboolean monitor_unblocked(GIOChannel *chan, GIOCondition cond, void *opaque) { Monitor *mon = opaque; qemu_mutex_lock(&mon->mon_lock); mon->out_watch = 0; monitor_flush_locked(mon); qemu_mutex_unlock(&mon->mon_lock); return FALSE; } /* Caller must hold mon->mon_lock */ static void monitor_flush_locked(Monitor *mon) { int rc; size_t len; const char *buf; if (mon->skip_flush) { return; } buf = qstring_get_str(mon->outbuf); len = qstring_get_length(mon->outbuf); if (len && !mon->mux_out) { rc = qemu_chr_fe_write(&mon->chr, (const uint8_t *) buf, len); if ((rc < 0 && errno != EAGAIN) || (rc == len)) { /* all flushed or error */ qobject_unref(mon->outbuf); mon->outbuf = qstring_new(); return; } if (rc > 0) { /* partial write */ QString *tmp = qstring_from_str(buf + rc); qobject_unref(mon->outbuf); mon->outbuf = tmp; } if (mon->out_watch == 0) { mon->out_watch = qemu_chr_fe_add_watch(&mon->chr, G_IO_OUT | G_IO_HUP, monitor_unblocked, mon); } } } void monitor_flush(Monitor *mon) { qemu_mutex_lock(&mon->mon_lock); monitor_flush_locked(mon); qemu_mutex_unlock(&mon->mon_lock); } /* flush at every end of line */ static void monitor_puts(Monitor *mon, const char *str) { char c; qemu_mutex_lock(&mon->mon_lock); for(;;) { c = *str++; if (c == '\0') break; if (c == '\n') { qstring_append_chr(mon->outbuf, '\r'); } qstring_append_chr(mon->outbuf, c); if (c == '\n') { monitor_flush_locked(mon); } } qemu_mutex_unlock(&mon->mon_lock); } void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap) { char *buf; if (!mon) return; if (monitor_is_qmp(mon)) { return; } buf = g_strdup_vprintf(fmt, ap); monitor_puts(mon, buf); g_free(buf); } void monitor_printf(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(mon, fmt, ap); va_end(ap); } int monitor_fprintf(FILE *stream, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf((Monitor *)stream, fmt, ap); va_end(ap); return 0; } static void qmp_send_response(Monitor *mon, const QDict *rsp) { const QObject *data = QOBJECT(rsp); QString *json; json = mon->flags & MONITOR_USE_PRETTY ? qobject_to_json_pretty(data) : qobject_to_json(data); assert(json != NULL); qstring_append_chr(json, '\n'); monitor_puts(mon, qstring_get_str(json)); qobject_unref(json); } static MonitorQAPIEventConf monitor_qapi_event_conf[QAPI_EVENT__MAX] = { /* Limit guest-triggerable events to 1 per second */ [QAPI_EVENT_RTC_CHANGE] = { 1000 * SCALE_MS }, [QAPI_EVENT_WATCHDOG] = { 1000 * SCALE_MS }, [QAPI_EVENT_BALLOON_CHANGE] = { 1000 * SCALE_MS }, [QAPI_EVENT_QUORUM_REPORT_BAD] = { 1000 * SCALE_MS }, [QAPI_EVENT_QUORUM_FAILURE] = { 1000 * SCALE_MS }, [QAPI_EVENT_VSERPORT_CHANGE] = { 1000 * SCALE_MS }, }; /* * Broadcast an event to all monitors. * @qdict is the event object. Its member "event" must match @event. * Caller must hold monitor_lock. */ static void monitor_qapi_event_emit(QAPIEvent event, QDict *qdict) { Monitor *mon; trace_monitor_protocol_event_emit(event, qdict); QTAILQ_FOREACH(mon, &mon_list, entry) { if (monitor_is_qmp(mon) && mon->qmp.commands != &qmp_cap_negotiation_commands) { qmp_send_response(mon, qdict); } } } static void monitor_qapi_event_handler(void *opaque); /* * Queue a new event for emission to Monitor instances, * applying any rate limiting if required. */ static void monitor_qapi_event_queue_no_reenter(QAPIEvent event, QDict *qdict) { MonitorQAPIEventConf *evconf; MonitorQAPIEventState *evstate; assert(event < QAPI_EVENT__MAX); evconf = &monitor_qapi_event_conf[event]; trace_monitor_protocol_event_queue(event, qdict, evconf->rate); qemu_mutex_lock(&monitor_lock); if (!evconf->rate) { /* Unthrottled event */ monitor_qapi_event_emit(event, qdict); } else { QDict *data = qobject_to(QDict, qdict_get(qdict, "data")); MonitorQAPIEventState key = { .event = event, .data = data }; evstate = g_hash_table_lookup(monitor_qapi_event_state, &key); assert(!evstate || timer_pending(evstate->timer)); if (evstate) { /* * Timer is pending for (at least) evconf->rate ns after * last send. Store event for sending when timer fires, * replacing a prior stored event if any. */ qobject_unref(evstate->qdict); evstate->qdict = qobject_ref(qdict); } else { /* * Last send was (at least) evconf->rate ns ago. * Send immediately, and arm the timer to call * monitor_qapi_event_handler() in evconf->rate ns. Any * events arriving before then will be delayed until then. */ int64_t now = qemu_clock_get_ns(monitor_get_event_clock()); monitor_qapi_event_emit(event, qdict); evstate = g_new(MonitorQAPIEventState, 1); evstate->event = event; evstate->data = qobject_ref(data); evstate->qdict = NULL; evstate->timer = timer_new_ns(monitor_get_event_clock(), monitor_qapi_event_handler, evstate); g_hash_table_add(monitor_qapi_event_state, evstate); timer_mod_ns(evstate->timer, now + evconf->rate); } } qemu_mutex_unlock(&monitor_lock); } static void monitor_qapi_event_queue(QAPIEvent event, QDict *qdict) { /* * monitor_qapi_event_queue_no_reenter() is not reentrant: it * would deadlock on monitor_lock. Work around by queueing * events in thread-local storage. * TODO: remove this, make it re-enter safe. */ typedef struct MonitorQapiEvent { QAPIEvent event; QDict *qdict; QSIMPLEQ_ENTRY(MonitorQapiEvent) entry; } MonitorQapiEvent; static __thread QSIMPLEQ_HEAD(, MonitorQapiEvent) event_queue; static __thread bool reentered; MonitorQapiEvent *ev; if (!reentered) { QSIMPLEQ_INIT(&event_queue); } ev = g_new(MonitorQapiEvent, 1); ev->qdict = qobject_ref(qdict); ev->event = event; QSIMPLEQ_INSERT_TAIL(&event_queue, ev, entry); if (reentered) { return; } reentered = true; while ((ev = QSIMPLEQ_FIRST(&event_queue)) != NULL) { QSIMPLEQ_REMOVE_HEAD(&event_queue, entry); monitor_qapi_event_queue_no_reenter(ev->event, ev->qdict); qobject_unref(ev->qdict); g_free(ev); } reentered = false; } /* * This function runs evconf->rate ns after sending a throttled * event. * If another event has since been stored, send it. */ static void monitor_qapi_event_handler(void *opaque) { MonitorQAPIEventState *evstate = opaque; MonitorQAPIEventConf *evconf = &monitor_qapi_event_conf[evstate->event]; trace_monitor_protocol_event_handler(evstate->event, evstate->qdict); qemu_mutex_lock(&monitor_lock); if (evstate->qdict) { int64_t now = qemu_clock_get_ns(monitor_get_event_clock()); monitor_qapi_event_emit(evstate->event, evstate->qdict); qobject_unref(evstate->qdict); evstate->qdict = NULL; timer_mod_ns(evstate->timer, now + evconf->rate); } else { g_hash_table_remove(monitor_qapi_event_state, evstate); qobject_unref(evstate->data); timer_free(evstate->timer); g_free(evstate); } qemu_mutex_unlock(&monitor_lock); } static unsigned int qapi_event_throttle_hash(const void *key) { const MonitorQAPIEventState *evstate = key; unsigned int hash = evstate->event * 255; if (evstate->event == QAPI_EVENT_VSERPORT_CHANGE) { hash += g_str_hash(qdict_get_str(evstate->data, "id")); } if (evstate->event == QAPI_EVENT_QUORUM_REPORT_BAD) { hash += g_str_hash(qdict_get_str(evstate->data, "node-name")); } return hash; } static gboolean qapi_event_throttle_equal(const void *a, const void *b) { const MonitorQAPIEventState *eva = a; const MonitorQAPIEventState *evb = b; if (eva->event != evb->event) { return FALSE; } if (eva->event == QAPI_EVENT_VSERPORT_CHANGE) { return !strcmp(qdict_get_str(eva->data, "id"), qdict_get_str(evb->data, "id")); } if (eva->event == QAPI_EVENT_QUORUM_REPORT_BAD) { return !strcmp(qdict_get_str(eva->data, "node-name"), qdict_get_str(evb->data, "node-name")); } return TRUE; } static void monitor_qapi_event_init(void) { monitor_qapi_event_state = g_hash_table_new(qapi_event_throttle_hash, qapi_event_throttle_equal); qmp_event_set_func_emit(monitor_qapi_event_queue); } static void handle_hmp_command(Monitor *mon, const char *cmdline); static void monitor_iothread_init(void); static void monitor_data_init(Monitor *mon, bool skip_flush, bool use_io_thread) { if (use_io_thread && !mon_iothread) { monitor_iothread_init(); } memset(mon, 0, sizeof(Monitor)); qemu_mutex_init(&mon->mon_lock); qemu_mutex_init(&mon->qmp.qmp_queue_lock); mon->outbuf = qstring_new(); /* Use *mon_cmds by default. */ mon->cmd_table = mon_cmds; mon->skip_flush = skip_flush; mon->use_io_thread = use_io_thread; mon->qmp.qmp_requests = g_queue_new(); } static void monitor_data_destroy(Monitor *mon) { g_free(mon->mon_cpu_path); qemu_chr_fe_deinit(&mon->chr, false); if (monitor_is_qmp(mon)) { json_message_parser_destroy(&mon->qmp.parser); } readline_free(mon->rs); qobject_unref(mon->outbuf); qemu_mutex_destroy(&mon->mon_lock); qemu_mutex_destroy(&mon->qmp.qmp_queue_lock); monitor_qmp_cleanup_req_queue_locked(mon); g_queue_free(mon->qmp.qmp_requests); } char *qmp_human_monitor_command(const char *command_line, bool has_cpu_index, int64_t cpu_index, Error **errp) { char *output = NULL; Monitor *old_mon, hmp; monitor_data_init(&hmp, true, false); old_mon = cur_mon; cur_mon = &hmp; if (has_cpu_index) { int ret = monitor_set_cpu(cpu_index); if (ret < 0) { cur_mon = old_mon; error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", "a CPU number"); goto out; } } handle_hmp_command(&hmp, command_line); cur_mon = old_mon; qemu_mutex_lock(&hmp.mon_lock); if (qstring_get_length(hmp.outbuf) > 0) { output = g_strdup(qstring_get_str(hmp.outbuf)); } else { output = g_strdup(""); } qemu_mutex_unlock(&hmp.mon_lock); out: monitor_data_destroy(&hmp); return output; } static int compare_cmd(const char *name, const char *list) { const char *p, *pstart; int len; len = strlen(name); p = list; for(;;) { pstart = p; p = qemu_strchrnul(p, '|'); if ((p - pstart) == len && !memcmp(pstart, name, len)) return 1; if (*p == '\0') break; p++; } return 0; } static int get_str(char *buf, int buf_size, const char **pp) { const char *p; char *q; int c; q = buf; p = *pp; while (qemu_isspace(*p)) { p++; } if (*p == '\0') { fail: *q = '\0'; *pp = p; return -1; } if (*p == '\"') { p++; while (*p != '\0' && *p != '\"') { if (*p == '\\') { p++; c = *p++; switch (c) { case 'n': c = '\n'; break; case 'r': c = '\r'; break; case '\\': case '\'': case '\"': break; default: printf("unsupported escape code: '\\%c'\n", c); goto fail; } if ((q - buf) < buf_size - 1) { *q++ = c; } } else { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } if (*p != '\"') { printf("unterminated string\n"); goto fail; } p++; } else { while (*p != '\0' && !qemu_isspace(*p)) { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } *q = '\0'; *pp = p; return 0; } #define MAX_ARGS 16 static void free_cmdline_args(char **args, int nb_args) { int i; assert(nb_args <= MAX_ARGS); for (i = 0; i < nb_args; i++) { g_free(args[i]); } } /* * Parse the command line to get valid args. * @cmdline: command line to be parsed. * @pnb_args: location to store the number of args, must NOT be NULL. * @args: location to store the args, which should be freed by caller, must * NOT be NULL. * * Returns 0 on success, negative on failure. * * NOTE: this parser is an approximate form of the real command parser. Number * of args have a limit of MAX_ARGS. If cmdline contains more, it will * return with failure. */ static int parse_cmdline(const char *cmdline, int *pnb_args, char **args) { const char *p; int nb_args, ret; char buf[1024]; p = cmdline; nb_args = 0; for (;;) { while (qemu_isspace(*p)) { p++; } if (*p == '\0') { break; } if (nb_args >= MAX_ARGS) { goto fail; } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { goto fail; } args[nb_args] = g_strdup(buf); nb_args++; } *pnb_args = nb_args; return 0; fail: free_cmdline_args(args, nb_args); return -1; } /* * Can command @cmd be executed in preconfig state? */ static bool cmd_can_preconfig(const mon_cmd_t *cmd) { if (!cmd->flags) { return false; } return strchr(cmd->flags, 'p'); } static void help_cmd_dump_one(Monitor *mon, const mon_cmd_t *cmd, char **prefix_args, int prefix_args_nb) { int i; if (runstate_check(RUN_STATE_PRECONFIG) && !cmd_can_preconfig(cmd)) { return; } for (i = 0; i < prefix_args_nb; i++) { monitor_printf(mon, "%s ", prefix_args[i]); } monitor_printf(mon, "%s %s -- %s\n", cmd->name, cmd->params, cmd->help); } /* @args[@arg_index] is the valid command need to find in @cmds */ static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds, char **args, int nb_args, int arg_index) { const mon_cmd_t *cmd; size_t i; /* No valid arg need to compare with, dump all in *cmds */ if (arg_index >= nb_args) { for (cmd = cmds; cmd->name != NULL; cmd++) { help_cmd_dump_one(mon, cmd, args, arg_index); } return; } /* Find one entry to dump */ for (cmd = cmds; cmd->name != NULL; cmd++) { if (compare_cmd(args[arg_index], cmd->name) && ((!runstate_check(RUN_STATE_PRECONFIG) || cmd_can_preconfig(cmd)))) { if (cmd->sub_table) { /* continue with next arg */ help_cmd_dump(mon, cmd->sub_table, args, nb_args, arg_index + 1); } else { help_cmd_dump_one(mon, cmd, args, arg_index); } return; } } /* Command not found */ monitor_printf(mon, "unknown command: '"); for (i = 0; i <= arg_index; i++) { monitor_printf(mon, "%s%s", args[i], i == arg_index ? "'\n" : " "); } } static void help_cmd(Monitor *mon, const char *name) { char *args[MAX_ARGS]; int nb_args = 0; /* 1. parse user input */ if (name) { /* special case for log, directly dump and return */ if (!strcmp(name, "log")) { const QEMULogItem *item; monitor_printf(mon, "Log items (comma separated):\n"); monitor_printf(mon, "%-10s %s\n", "none", "remove all logs"); for (item = qemu_log_items; item->mask != 0; item++) { monitor_printf(mon, "%-10s %s\n", item->name, item->help); } return; } if (parse_cmdline(name, &nb_args, args) < 0) { return; } } /* 2. dump the contents according to parsed args */ help_cmd_dump(mon, mon->cmd_table, args, nb_args, 0); free_cmdline_args(args, nb_args); } static void do_help_cmd(Monitor *mon, const QDict *qdict) { help_cmd(mon, qdict_get_try_str(qdict, "name")); } static void hmp_trace_event(Monitor *mon, const QDict *qdict) { const char *tp_name = qdict_get_str(qdict, "name"); bool new_state = qdict_get_bool(qdict, "option"); bool has_vcpu = qdict_haskey(qdict, "vcpu"); int vcpu = qdict_get_try_int(qdict, "vcpu", 0); Error *local_err = NULL; if (vcpu < 0) { monitor_printf(mon, "argument vcpu must be positive"); return; } qmp_trace_event_set_state(tp_name, new_state, true, true, has_vcpu, vcpu, &local_err); if (local_err) { error_report_err(local_err); } } #ifdef CONFIG_TRACE_SIMPLE static void hmp_trace_file(Monitor *mon, const QDict *qdict) { const char *op = qdict_get_try_str(qdict, "op"); const char *arg = qdict_get_try_str(qdict, "arg"); if (!op) { st_print_trace_file_status((FILE *)mon, &monitor_fprintf); } else if (!strcmp(op, "on")) { st_set_trace_file_enabled(true); } else if (!strcmp(op, "off")) { st_set_trace_file_enabled(false); } else if (!strcmp(op, "flush")) { st_flush_trace_buffer(); } else if (!strcmp(op, "set")) { if (arg) { st_set_trace_file(arg); } } else { monitor_printf(mon, "unexpected argument \"%s\"\n", op); help_cmd(mon, "trace-file"); } } #endif static void hmp_info_help(Monitor *mon, const QDict *qdict) { help_cmd(mon, "info"); } static void query_commands_cb(QmpCommand *cmd, void *opaque) { CommandInfoList *info, **list = opaque; if (!cmd->enabled) { return; } info = g_malloc0(sizeof(*info)); info->value = g_malloc0(sizeof(*info->value)); info->value->name = g_strdup(cmd->name); info->next = *list; *list = info; } CommandInfoList *qmp_query_commands(Error **errp) { CommandInfoList *list = NULL; qmp_for_each_command(cur_mon->qmp.commands, query_commands_cb, &list); return list; } EventInfoList *qmp_query_events(Error **errp) { EventInfoList *info, *ev_list = NULL; QAPIEvent e; for (e = 0 ; e < QAPI_EVENT__MAX ; e++) { const char *event_name = QAPIEvent_str(e); assert(event_name != NULL); info = g_malloc0(sizeof(*info)); info->value = g_malloc0(sizeof(*info->value)); info->value->name = g_strdup(event_name); info->next = ev_list; ev_list = info; } return ev_list; } /* * Minor hack: generated marshalling suppressed for this command * ('gen': false in the schema) so we can parse the JSON string * directly into QObject instead of first parsing it with * visit_type_SchemaInfoList() into a SchemaInfoList, then marshal it * to QObject with generated output marshallers, every time. Instead, * we do it in test-qobject-input-visitor.c, just to make sure * qapi-gen.py's output actually conforms to the schema. */ static void qmp_query_qmp_schema(QDict *qdict, QObject **ret_data, Error **errp) { *ret_data = qobject_from_qlit(&qmp_schema_qlit); } /* * We used to define commands in qmp-commands.hx in addition to the * QAPI schema. This permitted defining some of them only in certain * configurations. query-commands has always reflected that (good, * because it lets QMP clients figure out what's actually available), * while query-qmp-schema never did (not so good). This function is a * hack to keep the configuration-specific commands defined exactly as * before, even though qmp-commands.hx is gone. * * FIXME Educate the QAPI schema on configuration-specific commands, * and drop this hack. */ static void qmp_unregister_commands_hack(void) { #ifndef CONFIG_REPLICATION qmp_unregister_command(&qmp_commands, "xen-set-replication"); qmp_unregister_command(&qmp_commands, "query-xen-replication-status"); qmp_unregister_command(&qmp_commands, "xen-colo-do-checkpoint"); #endif #ifndef TARGET_I386 qmp_unregister_command(&qmp_commands, "rtc-reset-reinjection"); qmp_unregister_command(&qmp_commands, "query-sev"); qmp_unregister_command(&qmp_commands, "query-sev-launch-measure"); qmp_unregister_command(&qmp_commands, "query-sev-capabilities"); #endif #ifndef TARGET_S390X qmp_unregister_command(&qmp_commands, "dump-skeys"); #endif #ifndef TARGET_ARM qmp_unregister_command(&qmp_commands, "query-gic-capabilities"); #endif #if !defined(TARGET_S390X) && !defined(TARGET_I386) qmp_unregister_command(&qmp_commands, "query-cpu-model-expansion"); #endif #if !defined(TARGET_S390X) qmp_unregister_command(&qmp_commands, "query-cpu-model-baseline"); qmp_unregister_command(&qmp_commands, "query-cpu-model-comparison"); #endif #if !defined(TARGET_PPC) && !defined(TARGET_ARM) && !defined(TARGET_I386) \ && !defined(TARGET_S390X) qmp_unregister_command(&qmp_commands, "query-cpu-definitions"); #endif } static void monitor_init_qmp_commands(void) { /* * Two command lists: * - qmp_commands contains all QMP commands * - qmp_cap_negotiation_commands contains just * "qmp_capabilities", to enforce capability negotiation */ qmp_init_marshal(&qmp_commands); qmp_register_command(&qmp_commands, "query-qmp-schema", qmp_query_qmp_schema, QCO_ALLOW_PRECONFIG); qmp_register_command(&qmp_commands, "device_add", qmp_device_add, QCO_NO_OPTIONS); qmp_register_command(&qmp_commands, "netdev_add", qmp_netdev_add, QCO_NO_OPTIONS); qmp_unregister_commands_hack(); QTAILQ_INIT(&qmp_cap_negotiation_commands); qmp_register_command(&qmp_cap_negotiation_commands, "qmp_capabilities", qmp_marshal_qmp_capabilities, QCO_ALLOW_PRECONFIG); } static bool qmp_oob_enabled(Monitor *mon) { return mon->qmp.capab[QMP_CAPABILITY_OOB]; } static void monitor_qmp_caps_reset(Monitor *mon) { memset(mon->qmp.capab_offered, 0, sizeof(mon->qmp.capab_offered)); memset(mon->qmp.capab, 0, sizeof(mon->qmp.capab)); mon->qmp.capab_offered[QMP_CAPABILITY_OOB] = mon->use_io_thread; } /* * Accept QMP capabilities in @list for @mon. * On success, set mon->qmp.capab[], and return true. * On error, set @errp, and return false. */ static bool qmp_caps_accept(Monitor *mon, QMPCapabilityList *list, Error **errp) { GString *unavailable = NULL; bool capab[QMP_CAPABILITY__MAX]; memset(capab, 0, sizeof(capab)); for (; list; list = list->next) { if (!mon->qmp.capab_offered[list->value]) { if (!unavailable) { unavailable = g_string_new(QMPCapability_str(list->value)); } else { g_string_append_printf(unavailable, ", %s", QMPCapability_str(list->value)); } } capab[list->value] = true; } if (unavailable) { error_setg(errp, "Capability %s not available", unavailable->str); g_string_free(unavailable, true); return false; } memcpy(mon->qmp.capab, capab, sizeof(capab)); return true; } void qmp_qmp_capabilities(bool has_enable, QMPCapabilityList *enable, Error **errp) { if (cur_mon->qmp.commands == &qmp_commands) { error_set(errp, ERROR_CLASS_COMMAND_NOT_FOUND, "Capabilities negotiation is already complete, command " "ignored"); return; } if (!qmp_caps_accept(cur_mon, enable, errp)) { return; } cur_mon->qmp.commands = &qmp_commands; } /* Set the current CPU defined by the user. Callers must hold BQL. */ int monitor_set_cpu(int cpu_index) { CPUState *cpu; cpu = qemu_get_cpu(cpu_index); if (cpu == NULL) { return -1; } g_free(cur_mon->mon_cpu_path); cur_mon->mon_cpu_path = object_get_canonical_path(OBJECT(cpu)); return 0; } /* Callers must hold BQL. */ static CPUState *mon_get_cpu_sync(bool synchronize) { CPUState *cpu; if (cur_mon->mon_cpu_path) { cpu = (CPUState *) object_resolve_path_type(cur_mon->mon_cpu_path, TYPE_CPU, NULL); if (!cpu) { g_free(cur_mon->mon_cpu_path); cur_mon->mon_cpu_path = NULL; } } if (!cur_mon->mon_cpu_path) { if (!first_cpu) { return NULL; } monitor_set_cpu(first_cpu->cpu_index); cpu = first_cpu; } if (synchronize) { cpu_synchronize_state(cpu); } return cpu; } CPUState *mon_get_cpu(void) { return mon_get_cpu_sync(true); } CPUArchState *mon_get_cpu_env(void) { CPUState *cs = mon_get_cpu(); return cs ? cs->env_ptr : NULL; } int monitor_get_cpu_index(void) { CPUState *cs = mon_get_cpu_sync(false); return cs ? cs->cpu_index : UNASSIGNED_CPU_INDEX; } static void hmp_info_registers(Monitor *mon, const QDict *qdict) { bool all_cpus = qdict_get_try_bool(qdict, "cpustate_all", false); CPUState *cs; if (all_cpus) { CPU_FOREACH(cs) { monitor_printf(mon, "\nCPU#%d\n", cs->cpu_index); cpu_dump_state(cs, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU); } } else { cs = mon_get_cpu(); if (!cs) { monitor_printf(mon, "No CPU available\n"); return; } cpu_dump_state(cs, (FILE *)mon, monitor_fprintf, CPU_DUMP_FPU); } } #ifdef CONFIG_TCG static void hmp_info_jit(Monitor *mon, const QDict *qdict) { if (!tcg_enabled()) { error_report("JIT information is only available with accel=tcg"); return; } dump_exec_info((FILE *)mon, monitor_fprintf); dump_drift_info((FILE *)mon, monitor_fprintf); } static void hmp_info_opcount(Monitor *mon, const QDict *qdict) { dump_opcount_info((FILE *)mon, monitor_fprintf); } #endif static void hmp_info_sync_profile(Monitor *mon, const QDict *qdict) { int64_t max = qdict_get_try_int(qdict, "max", 10); bool mean = qdict_get_try_bool(qdict, "mean", false); bool coalesce = !qdict_get_try_bool(qdict, "no_coalesce", false); enum QSPSortBy sort_by; sort_by = mean ? QSP_SORT_BY_AVG_WAIT_TIME : QSP_SORT_BY_TOTAL_WAIT_TIME; qsp_report((FILE *)mon, monitor_fprintf, max, sort_by, coalesce); } static void hmp_info_history(Monitor *mon, const QDict *qdict) { int i; const char *str; if (!mon->rs) return; i = 0; for(;;) { str = readline_get_history(mon->rs, i); if (!str) break; monitor_printf(mon, "%d: '%s'\n", i, str); i++; } } static void hmp_info_cpustats(Monitor *mon, const QDict *qdict) { CPUState *cs = mon_get_cpu(); if (!cs) { monitor_printf(mon, "No CPU available\n"); return; } cpu_dump_statistics(cs, (FILE *)mon, &monitor_fprintf, 0); } static void hmp_info_trace_events(Monitor *mon, const QDict *qdict) { const char *name = qdict_get_try_str(qdict, "name"); bool has_vcpu = qdict_haskey(qdict, "vcpu"); int vcpu = qdict_get_try_int(qdict, "vcpu", 0); TraceEventInfoList *events; TraceEventInfoList *elem; Error *local_err = NULL; if (name == NULL) { name = "*"; } if (vcpu < 0) { monitor_printf(mon, "argument vcpu must be positive"); return; } events = qmp_trace_event_get_state(name, has_vcpu, vcpu, &local_err); if (local_err) { error_report_err(local_err); return; } for (elem = events; elem != NULL; elem = elem->next) { monitor_printf(mon, "%s : state %u\n", elem->value->name, elem->value->state == TRACE_EVENT_STATE_ENABLED ? 1 : 0); } qapi_free_TraceEventInfoList(events); } void qmp_client_migrate_info(const char *protocol, const char *hostname, bool has_port, int64_t port, bool has_tls_port, int64_t tls_port, bool has_cert_subject, const char *cert_subject, Error **errp) { if (strcmp(protocol, "spice") == 0) { if (!qemu_using_spice(errp)) { return; } if (!has_port && !has_tls_port) { error_setg(errp, QERR_MISSING_PARAMETER, "port/tls-port"); return; } if (qemu_spice_migrate_info(hostname, has_port ? port : -1, has_tls_port ? tls_port : -1, cert_subject)) { error_setg(errp, QERR_UNDEFINED_ERROR); return; } return; } error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "protocol", "spice"); } static void hmp_logfile(Monitor *mon, const QDict *qdict) { Error *err = NULL; qemu_set_log_filename(qdict_get_str(qdict, "filename"), &err); if (err) { error_report_err(err); } } static void hmp_log(Monitor *mon, const QDict *qdict) { int mask; const char *items = qdict_get_str(qdict, "items"); if (!strcmp(items, "none")) { mask = 0; } else { mask = qemu_str_to_log_mask(items); if (!mask) { help_cmd(mon, "log"); return; } } qemu_set_log(mask); } static void hmp_singlestep(Monitor *mon, const QDict *qdict) { const char *option = qdict_get_try_str(qdict, "option"); if (!option || !strcmp(option, "on")) { singlestep = 1; } else if (!strcmp(option, "off")) { singlestep = 0; } else { monitor_printf(mon, "unexpected option %s\n", option); } } static void hmp_gdbserver(Monitor *mon, const QDict *qdict) { const char *device = qdict_get_try_str(qdict, "device"); if (!device) device = "tcp::" DEFAULT_GDBSTUB_PORT; if (gdbserver_start(device) < 0) { monitor_printf(mon, "Could not open gdbserver on device '%s'\n", device); } else if (strcmp(device, "none") == 0) { monitor_printf(mon, "Disabled gdbserver\n"); } else { monitor_printf(mon, "Waiting for gdb connection on device '%s'\n", device); } } static void hmp_watchdog_action(Monitor *mon, const QDict *qdict) { const char *action = qdict_get_str(qdict, "action"); if (select_watchdog_action(action) == -1) { monitor_printf(mon, "Unknown watchdog action '%s'\n", action); } } static void monitor_printc(Monitor *mon, int c) { monitor_printf(mon, "'"); switch(c) { case '\'': monitor_printf(mon, "\\'"); break; case '\\': monitor_printf(mon, "\\\\"); break; case '\n': monitor_printf(mon, "\\n"); break; case '\r': monitor_printf(mon, "\\r"); break; default: if (c >= 32 && c <= 126) { monitor_printf(mon, "%c", c); } else { monitor_printf(mon, "\\x%02x", c); } break; } monitor_printf(mon, "'"); } static void memory_dump(Monitor *mon, int count, int format, int wsize, hwaddr addr, int is_physical) { int l, line_size, i, max_digits, len; uint8_t buf[16]; uint64_t v; CPUState *cs = mon_get_cpu(); if (!cs && (format == 'i' || !is_physical)) { monitor_printf(mon, "Can not dump without CPU\n"); return; } if (format == 'i') { monitor_disas(mon, cs, addr, count, is_physical); return; } len = wsize * count; if (wsize == 1) line_size = 8; else line_size = 16; max_digits = 0; switch(format) { case 'o': max_digits = DIV_ROUND_UP(wsize * 8, 3); break; default: case 'x': max_digits = (wsize * 8) / 4; break; case 'u': case 'd': max_digits = DIV_ROUND_UP(wsize * 8 * 10, 33); break; case 'c': wsize = 1; break; } while (len > 0) { if (is_physical) monitor_printf(mon, TARGET_FMT_plx ":", addr); else monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr); l = len; if (l > line_size) l = line_size; if (is_physical) { cpu_physical_memory_read(addr, buf, l); } else { if (cpu_memory_rw_debug(cs, addr, buf, l, 0) < 0) { monitor_printf(mon, " Cannot access memory\n"); break; } } i = 0; while (i < l) { switch(wsize) { default: case 1: v = ldub_p(buf + i); break; case 2: v = lduw_p(buf + i); break; case 4: v = (uint32_t)ldl_p(buf + i); break; case 8: v = ldq_p(buf + i); break; } monitor_printf(mon, " "); switch(format) { case 'o': monitor_printf(mon, "%#*" PRIo64, max_digits, v); break; case 'x': monitor_printf(mon, "0x%0*" PRIx64, max_digits, v); break; case 'u': monitor_printf(mon, "%*" PRIu64, max_digits, v); break; case 'd': monitor_printf(mon, "%*" PRId64, max_digits, v); break; case 'c': monitor_printc(mon, v); break; } i += wsize; } monitor_printf(mon, "\n"); addr += l; len -= l; } } static void hmp_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); target_long addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 0); } static void hmp_physical_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); hwaddr addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 1); } static void *gpa2hva(MemoryRegion **p_mr, hwaddr addr, Error **errp) { MemoryRegionSection mrs = memory_region_find(get_system_memory(), addr, 1); if (!mrs.mr) { error_setg(errp, "No memory is mapped at address 0x%" HWADDR_PRIx, addr); return NULL; } if (!memory_region_is_ram(mrs.mr) && !memory_region_is_romd(mrs.mr)) { error_setg(errp, "Memory at address 0x%" HWADDR_PRIx "is not RAM", addr); memory_region_unref(mrs.mr); return NULL; } *p_mr = mrs.mr; return qemu_map_ram_ptr(mrs.mr->ram_block, mrs.offset_within_region); } static void hmp_gpa2hva(Monitor *mon, const QDict *qdict) { hwaddr addr = qdict_get_int(qdict, "addr"); Error *local_err = NULL; MemoryRegion *mr = NULL; void *ptr; ptr = gpa2hva(&mr, addr, &local_err); if (local_err) { error_report_err(local_err); return; } monitor_printf(mon, "Host virtual address for 0x%" HWADDR_PRIx " (%s) is %p\n", addr, mr->name, ptr); memory_region_unref(mr); } #ifdef CONFIG_LINUX static uint64_t vtop(void *ptr, Error **errp) { uint64_t pinfo; uint64_t ret = -1; uintptr_t addr = (uintptr_t) ptr; uintptr_t pagesize = getpagesize(); off_t offset = addr / pagesize * sizeof(pinfo); int fd; fd = open("/proc/self/pagemap", O_RDONLY); if (fd == -1) { error_setg_errno(errp, errno, "Cannot open /proc/self/pagemap"); return -1; } /* Force copy-on-write if necessary. */ atomic_add((uint8_t *)ptr, 0); if (pread(fd, &pinfo, sizeof(pinfo), offset) != sizeof(pinfo)) { error_setg_errno(errp, errno, "Cannot read pagemap"); goto out; } if ((pinfo & (1ull << 63)) == 0) { error_setg(errp, "Page not present"); goto out; } ret = ((pinfo & 0x007fffffffffffffull) * pagesize) | (addr & (pagesize - 1)); out: close(fd); return ret; } static void hmp_gpa2hpa(Monitor *mon, const QDict *qdict) { hwaddr addr = qdict_get_int(qdict, "addr"); Error *local_err = NULL; MemoryRegion *mr = NULL; void *ptr; uint64_t physaddr; ptr = gpa2hva(&mr, addr, &local_err); if (local_err) { error_report_err(local_err); return; } physaddr = vtop(ptr, &local_err); if (local_err) { error_report_err(local_err); } else { monitor_printf(mon, "Host physical address for 0x%" HWADDR_PRIx " (%s) is 0x%" PRIx64 "\n", addr, mr->name, (uint64_t) physaddr); } memory_region_unref(mr); } #endif static void do_print(Monitor *mon, const QDict *qdict) { int format = qdict_get_int(qdict, "format"); hwaddr val = qdict_get_int(qdict, "val"); switch(format) { case 'o': monitor_printf(mon, "%#" HWADDR_PRIo, val); break; case 'x': monitor_printf(mon, "%#" HWADDR_PRIx, val); break; case 'u': monitor_printf(mon, "%" HWADDR_PRIu, val); break; default: case 'd': monitor_printf(mon, "%" HWADDR_PRId, val); break; case 'c': monitor_printc(mon, val); break; } monitor_printf(mon, "\n"); } static void hmp_sum(Monitor *mon, const QDict *qdict) { uint32_t addr; uint16_t sum; uint32_t start = qdict_get_int(qdict, "start"); uint32_t size = qdict_get_int(qdict, "size"); sum = 0; for(addr = start; addr < (start + size); addr++) { uint8_t val = address_space_ldub(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, NULL); /* BSD sum algorithm ('sum' Unix command) */ sum = (sum >> 1) | (sum << 15); sum += val; } monitor_printf(mon, "%05d\n", sum); } static int mouse_button_state; static void hmp_mouse_move(Monitor *mon, const QDict *qdict) { int dx, dy, dz, button; const char *dx_str = qdict_get_str(qdict, "dx_str"); const char *dy_str = qdict_get_str(qdict, "dy_str"); const char *dz_str = qdict_get_try_str(qdict, "dz_str"); dx = strtol(dx_str, NULL, 0); dy = strtol(dy_str, NULL, 0); qemu_input_queue_rel(NULL, INPUT_AXIS_X, dx); qemu_input_queue_rel(NULL, INPUT_AXIS_Y, dy); if (dz_str) { dz = strtol(dz_str, NULL, 0); if (dz != 0) { button = (dz > 0) ? INPUT_BUTTON_WHEEL_UP : INPUT_BUTTON_WHEEL_DOWN; qemu_input_queue_btn(NULL, button, true); qemu_input_event_sync(); qemu_input_queue_btn(NULL, button, false); } } qemu_input_event_sync(); } static void hmp_mouse_button(Monitor *mon, const QDict *qdict) { static uint32_t bmap[INPUT_BUTTON__MAX] = { [INPUT_BUTTON_LEFT] = MOUSE_EVENT_LBUTTON, [INPUT_BUTTON_MIDDLE] = MOUSE_EVENT_MBUTTON, [INPUT_BUTTON_RIGHT] = MOUSE_EVENT_RBUTTON, }; int button_state = qdict_get_int(qdict, "button_state"); if (mouse_button_state == button_state) { return; } qemu_input_update_buttons(NULL, bmap, mouse_button_state, button_state); qemu_input_event_sync(); mouse_button_state = button_state; } static void hmp_ioport_read(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int has_index = qdict_haskey(qdict, "index"); uint32_t val; int suffix; if (has_index) { int index = qdict_get_int(qdict, "index"); cpu_outb(addr & IOPORTS_MASK, index & 0xff); addr++; } addr &= 0xffff; switch(size) { default: case 1: val = cpu_inb(addr); suffix = 'b'; break; case 2: val = cpu_inw(addr); suffix = 'w'; break; case 4: val = cpu_inl(addr); suffix = 'l'; break; } monitor_printf(mon, "port%c[0x%04x] = %#0*x\n", suffix, addr, size * 2, val); } static void hmp_ioport_write(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int val = qdict_get_int(qdict, "val"); addr &= IOPORTS_MASK; switch (size) { default: case 1: cpu_outb(addr, val); break; case 2: cpu_outw(addr, val); break; case 4: cpu_outl(addr, val); break; } } static void hmp_boot_set(Monitor *mon, const QDict *qdict) { Error *local_err = NULL; const char *bootdevice = qdict_get_str(qdict, "bootdevice"); qemu_boot_set(bootdevice, &local_err); if (local_err) { error_report_err(local_err); } else { monitor_printf(mon, "boot device list now set to %s\n", bootdevice); } } static void hmp_info_mtree(Monitor *mon, const QDict *qdict) { bool flatview = qdict_get_try_bool(qdict, "flatview", false); bool dispatch_tree = qdict_get_try_bool(qdict, "dispatch_tree", false); bool owner = qdict_get_try_bool(qdict, "owner", false); mtree_info((fprintf_function)monitor_printf, mon, flatview, dispatch_tree, owner); } static void hmp_info_numa(Monitor *mon, const QDict *qdict) { int i; NumaNodeMem *node_mem; CpuInfoList *cpu_list, *cpu; cpu_list = qmp_query_cpus(&error_abort); node_mem = g_new0(NumaNodeMem, nb_numa_nodes); query_numa_node_mem(node_mem); monitor_printf(mon, "%d nodes\n", nb_numa_nodes); for (i = 0; i < nb_numa_nodes; i++) { monitor_printf(mon, "node %d cpus:", i); for (cpu = cpu_list; cpu; cpu = cpu->next) { if (cpu->value->has_props && cpu->value->props->has_node_id && cpu->value->props->node_id == i) { monitor_printf(mon, " %" PRIi64, cpu->value->CPU); } } monitor_printf(mon, "\n"); monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i, node_mem[i].node_mem >> 20); monitor_printf(mon, "node %d plugged: %" PRId64 " MB\n", i, node_mem[i].node_plugged_mem >> 20); } qapi_free_CpuInfoList(cpu_list); g_free(node_mem); } #ifdef CONFIG_PROFILER int64_t dev_time; static void hmp_info_profile(Monitor *mon, const QDict *qdict) { static int64_t last_cpu_exec_time; int64_t cpu_exec_time; int64_t delta; cpu_exec_time = tcg_cpu_exec_time(); delta = cpu_exec_time - last_cpu_exec_time; monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n", dev_time, dev_time / (double)NANOSECONDS_PER_SECOND); monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n", delta, delta / (double)NANOSECONDS_PER_SECOND); last_cpu_exec_time = cpu_exec_time; dev_time = 0; } #else static void hmp_info_profile(Monitor *mon, const QDict *qdict) { monitor_printf(mon, "Internal profiler not compiled\n"); } #endif /* Capture support */ static QLIST_HEAD (capture_list_head, CaptureState) capture_head; static void hmp_info_capture(Monitor *mon, const QDict *qdict) { int i; CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { monitor_printf(mon, "[%d]: ", i); s->ops.info (s->opaque); } } static void hmp_stopcapture(Monitor *mon, const QDict *qdict) { int i; int n = qdict_get_int(qdict, "n"); CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { if (i == n) { s->ops.destroy (s->opaque); QLIST_REMOVE (s, entries); g_free (s); return; } } } static void hmp_wavcapture(Monitor *mon, const QDict *qdict) { const char *path = qdict_get_str(qdict, "path"); int has_freq = qdict_haskey(qdict, "freq"); int freq = qdict_get_try_int(qdict, "freq", -1); int has_bits = qdict_haskey(qdict, "bits"); int bits = qdict_get_try_int(qdict, "bits", -1); int has_channels = qdict_haskey(qdict, "nchannels"); int nchannels = qdict_get_try_int(qdict, "nchannels", -1); CaptureState *s; s = g_malloc0 (sizeof (*s)); freq = has_freq ? freq : 44100; bits = has_bits ? bits : 16; nchannels = has_channels ? nchannels : 2; if (wav_start_capture (s, path, freq, bits, nchannels)) { monitor_printf(mon, "Failed to add wave capture\n"); g_free (s); return; } QLIST_INSERT_HEAD (&capture_head, s, entries); } static qemu_acl *find_acl(Monitor *mon, const char *name) { qemu_acl *acl = qemu_acl_find(name); if (!acl) { monitor_printf(mon, "acl: unknown list '%s'\n", name); } return acl; } static void hmp_acl_show(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); qemu_acl_entry *entry; int i = 0; if (acl) { monitor_printf(mon, "policy: %s\n", acl->defaultDeny ? "deny" : "allow"); QTAILQ_FOREACH(entry, &acl->entries, next) { i++; monitor_printf(mon, "%d: %s %s\n", i, entry->deny ? "deny" : "allow", entry->match); } } } static void hmp_acl_reset(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { qemu_acl_reset(acl); monitor_printf(mon, "acl: removed all rules\n"); } } static void hmp_acl_policy(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *policy = qdict_get_str(qdict, "policy"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { if (strcmp(policy, "allow") == 0) { acl->defaultDeny = 0; monitor_printf(mon, "acl: policy set to 'allow'\n"); } else if (strcmp(policy, "deny") == 0) { acl->defaultDeny = 1; monitor_printf(mon, "acl: policy set to 'deny'\n"); } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); } } } static void hmp_acl_add(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); const char *policy = qdict_get_str(qdict, "policy"); int has_index = qdict_haskey(qdict, "index"); int index = qdict_get_try_int(qdict, "index", -1); qemu_acl *acl = find_acl(mon, aclname); int deny, ret; if (acl) { if (strcmp(policy, "allow") == 0) { deny = 0; } else if (strcmp(policy, "deny") == 0) { deny = 1; } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); return; } if (has_index) ret = qemu_acl_insert(acl, deny, match, index); else ret = qemu_acl_append(acl, deny, match); if (ret < 0) monitor_printf(mon, "acl: unable to add acl entry\n"); else monitor_printf(mon, "acl: added rule at position %d\n", ret); } } static void hmp_acl_remove(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); qemu_acl *acl = find_acl(mon, aclname); int ret; if (acl) { ret = qemu_acl_remove(acl, match); if (ret < 0) monitor_printf(mon, "acl: no matching acl entry\n"); else monitor_printf(mon, "acl: removed rule at position %d\n", ret); } } void qmp_getfd(const char *fdname, Error **errp) { mon_fd_t *monfd; int fd, tmp_fd; fd = qemu_chr_fe_get_msgfd(&cur_mon->chr); if (fd == -1) { error_setg(errp, QERR_FD_NOT_SUPPLIED); return; } if (qemu_isdigit(fdname[0])) { close(fd); error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "fdname", "a name not starting with a digit"); return; } qemu_mutex_lock(&cur_mon->mon_lock); QLIST_FOREACH(monfd, &cur_mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } tmp_fd = monfd->fd; monfd->fd = fd; qemu_mutex_unlock(&cur_mon->mon_lock); /* Make sure close() is outside critical section */ close(tmp_fd); return; } monfd = g_malloc0(sizeof(mon_fd_t)); monfd->name = g_strdup(fdname); monfd->fd = fd; QLIST_INSERT_HEAD(&cur_mon->fds, monfd, next); qemu_mutex_unlock(&cur_mon->mon_lock); } void qmp_closefd(const char *fdname, Error **errp) { mon_fd_t *monfd; int tmp_fd; qemu_mutex_lock(&cur_mon->mon_lock); QLIST_FOREACH(monfd, &cur_mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } QLIST_REMOVE(monfd, next); tmp_fd = monfd->fd; g_free(monfd->name); g_free(monfd); qemu_mutex_unlock(&cur_mon->mon_lock); /* Make sure close() is outside critical section */ close(tmp_fd); return; } qemu_mutex_unlock(&cur_mon->mon_lock); error_setg(errp, QERR_FD_NOT_FOUND, fdname); } int monitor_get_fd(Monitor *mon, const char *fdname, Error **errp) { mon_fd_t *monfd; qemu_mutex_lock(&mon->mon_lock); QLIST_FOREACH(monfd, &mon->fds, next) { int fd; if (strcmp(monfd->name, fdname) != 0) { continue; } fd = monfd->fd; /* caller takes ownership of fd */ QLIST_REMOVE(monfd, next); g_free(monfd->name); g_free(monfd); qemu_mutex_unlock(&mon->mon_lock); return fd; } qemu_mutex_unlock(&mon->mon_lock); error_setg(errp, "File descriptor named '%s' has not been found", fdname); return -1; } static void monitor_fdset_cleanup(MonFdset *mon_fdset) { MonFdsetFd *mon_fdset_fd; MonFdsetFd *mon_fdset_fd_next; QLIST_FOREACH_SAFE(mon_fdset_fd, &mon_fdset->fds, next, mon_fdset_fd_next) { if ((mon_fdset_fd->removed || (QLIST_EMPTY(&mon_fdset->dup_fds) && mon_refcount == 0)) && runstate_is_running()) { close(mon_fdset_fd->fd); g_free(mon_fdset_fd->opaque); QLIST_REMOVE(mon_fdset_fd, next); g_free(mon_fdset_fd); } } if (QLIST_EMPTY(&mon_fdset->fds) && QLIST_EMPTY(&mon_fdset->dup_fds)) { QLIST_REMOVE(mon_fdset, next); g_free(mon_fdset); } } static void monitor_fdsets_cleanup(void) { MonFdset *mon_fdset; MonFdset *mon_fdset_next; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH_SAFE(mon_fdset, &mon_fdsets, next, mon_fdset_next) { monitor_fdset_cleanup(mon_fdset); } qemu_mutex_unlock(&mon_fdsets_lock); } AddfdInfo *qmp_add_fd(bool has_fdset_id, int64_t fdset_id, bool has_opaque, const char *opaque, Error **errp) { int fd; Monitor *mon = cur_mon; AddfdInfo *fdinfo; fd = qemu_chr_fe_get_msgfd(&mon->chr); if (fd == -1) { error_setg(errp, QERR_FD_NOT_SUPPLIED); goto error; } fdinfo = monitor_fdset_add_fd(fd, has_fdset_id, fdset_id, has_opaque, opaque, errp); if (fdinfo) { return fdinfo; } error: if (fd != -1) { close(fd); } return NULL; } void qmp_remove_fd(int64_t fdset_id, bool has_fd, int64_t fd, Error **errp) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; char fd_str[60]; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { if (has_fd) { if (mon_fdset_fd->fd != fd) { continue; } mon_fdset_fd->removed = true; break; } else { mon_fdset_fd->removed = true; } } if (has_fd && !mon_fdset_fd) { goto error; } monitor_fdset_cleanup(mon_fdset); qemu_mutex_unlock(&mon_fdsets_lock); return; } error: qemu_mutex_unlock(&mon_fdsets_lock); if (has_fd) { snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64 ", fd:%" PRId64, fdset_id, fd); } else { snprintf(fd_str, sizeof(fd_str), "fdset-id:%" PRId64, fdset_id); } error_setg(errp, QERR_FD_NOT_FOUND, fd_str); } FdsetInfoList *qmp_query_fdsets(Error **errp) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; FdsetInfoList *fdset_list = NULL; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { FdsetInfoList *fdset_info = g_malloc0(sizeof(*fdset_info)); FdsetFdInfoList *fdsetfd_list = NULL; fdset_info->value = g_malloc0(sizeof(*fdset_info->value)); fdset_info->value->fdset_id = mon_fdset->id; QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { FdsetFdInfoList *fdsetfd_info; fdsetfd_info = g_malloc0(sizeof(*fdsetfd_info)); fdsetfd_info->value = g_malloc0(sizeof(*fdsetfd_info->value)); fdsetfd_info->value->fd = mon_fdset_fd->fd; if (mon_fdset_fd->opaque) { fdsetfd_info->value->has_opaque = true; fdsetfd_info->value->opaque = g_strdup(mon_fdset_fd->opaque); } else { fdsetfd_info->value->has_opaque = false; } fdsetfd_info->next = fdsetfd_list; fdsetfd_list = fdsetfd_info; } fdset_info->value->fds = fdsetfd_list; fdset_info->next = fdset_list; fdset_list = fdset_info; } qemu_mutex_unlock(&mon_fdsets_lock); return fdset_list; } AddfdInfo *monitor_fdset_add_fd(int fd, bool has_fdset_id, int64_t fdset_id, bool has_opaque, const char *opaque, Error **errp) { MonFdset *mon_fdset = NULL; MonFdsetFd *mon_fdset_fd; AddfdInfo *fdinfo; qemu_mutex_lock(&mon_fdsets_lock); if (has_fdset_id) { QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { /* Break if match found or match impossible due to ordering by ID */ if (fdset_id <= mon_fdset->id) { if (fdset_id < mon_fdset->id) { mon_fdset = NULL; } break; } } } if (mon_fdset == NULL) { int64_t fdset_id_prev = -1; MonFdset *mon_fdset_cur = QLIST_FIRST(&mon_fdsets); if (has_fdset_id) { if (fdset_id < 0) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "fdset-id", "a non-negative value"); qemu_mutex_unlock(&mon_fdsets_lock); return NULL; } /* Use specified fdset ID */ QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { mon_fdset_cur = mon_fdset; if (fdset_id < mon_fdset_cur->id) { break; } } } else { /* Use first available fdset ID */ QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { mon_fdset_cur = mon_fdset; if (fdset_id_prev == mon_fdset_cur->id - 1) { fdset_id_prev = mon_fdset_cur->id; continue; } break; } } mon_fdset = g_malloc0(sizeof(*mon_fdset)); if (has_fdset_id) { mon_fdset->id = fdset_id; } else { mon_fdset->id = fdset_id_prev + 1; } /* The fdset list is ordered by fdset ID */ if (!mon_fdset_cur) { QLIST_INSERT_HEAD(&mon_fdsets, mon_fdset, next); } else if (mon_fdset->id < mon_fdset_cur->id) { QLIST_INSERT_BEFORE(mon_fdset_cur, mon_fdset, next); } else { QLIST_INSERT_AFTER(mon_fdset_cur, mon_fdset, next); } } mon_fdset_fd = g_malloc0(sizeof(*mon_fdset_fd)); mon_fdset_fd->fd = fd; mon_fdset_fd->removed = false; if (has_opaque) { mon_fdset_fd->opaque = g_strdup(opaque); } QLIST_INSERT_HEAD(&mon_fdset->fds, mon_fdset_fd, next); fdinfo = g_malloc0(sizeof(*fdinfo)); fdinfo->fdset_id = mon_fdset->id; fdinfo->fd = mon_fdset_fd->fd; qemu_mutex_unlock(&mon_fdsets_lock); return fdinfo; } int monitor_fdset_get_fd(int64_t fdset_id, int flags) { #ifdef _WIN32 return -ENOENT; #else MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd; int mon_fd_flags; int ret; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd, &mon_fdset->fds, next) { mon_fd_flags = fcntl(mon_fdset_fd->fd, F_GETFL); if (mon_fd_flags == -1) { ret = -errno; goto out; } if ((flags & O_ACCMODE) == (mon_fd_flags & O_ACCMODE)) { ret = mon_fdset_fd->fd; goto out; } } ret = -EACCES; goto out; } ret = -ENOENT; out: qemu_mutex_unlock(&mon_fdsets_lock); return ret; #endif } int monitor_fdset_dup_fd_add(int64_t fdset_id, int dup_fd) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd_dup; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { if (mon_fdset->id != fdset_id) { continue; } QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) { if (mon_fdset_fd_dup->fd == dup_fd) { goto err; } } mon_fdset_fd_dup = g_malloc0(sizeof(*mon_fdset_fd_dup)); mon_fdset_fd_dup->fd = dup_fd; QLIST_INSERT_HEAD(&mon_fdset->dup_fds, mon_fdset_fd_dup, next); qemu_mutex_unlock(&mon_fdsets_lock); return 0; } err: qemu_mutex_unlock(&mon_fdsets_lock); return -1; } static int monitor_fdset_dup_fd_find_remove(int dup_fd, bool remove) { MonFdset *mon_fdset; MonFdsetFd *mon_fdset_fd_dup; qemu_mutex_lock(&mon_fdsets_lock); QLIST_FOREACH(mon_fdset, &mon_fdsets, next) { QLIST_FOREACH(mon_fdset_fd_dup, &mon_fdset->dup_fds, next) { if (mon_fdset_fd_dup->fd == dup_fd) { if (remove) { QLIST_REMOVE(mon_fdset_fd_dup, next); if (QLIST_EMPTY(&mon_fdset->dup_fds)) { monitor_fdset_cleanup(mon_fdset); } goto err; } else { qemu_mutex_unlock(&mon_fdsets_lock); return mon_fdset->id; } } } } err: qemu_mutex_unlock(&mon_fdsets_lock); return -1; } int monitor_fdset_dup_fd_find(int dup_fd) { return monitor_fdset_dup_fd_find_remove(dup_fd, false); } void monitor_fdset_dup_fd_remove(int dup_fd) { monitor_fdset_dup_fd_find_remove(dup_fd, true); } int monitor_fd_param(Monitor *mon, const char *fdname, Error **errp) { int fd; Error *local_err = NULL; if (!qemu_isdigit(fdname[0]) && mon) { fd = monitor_get_fd(mon, fdname, &local_err); } else { fd = qemu_parse_fd(fdname); if (fd == -1) { error_setg(&local_err, "Invalid file descriptor number '%s'", fdname); } } if (local_err) { error_propagate(errp, local_err); assert(fd == -1); } else { assert(fd != -1); } return fd; } /* Please update hmp-commands.hx when adding or changing commands */ static mon_cmd_t info_cmds[] = { #include "hmp-commands-info.h" { NULL, NULL, }, }; /* mon_cmds and info_cmds would be sorted at runtime */ static mon_cmd_t mon_cmds[] = { #include "hmp-commands.h" { NULL, NULL, }, }; /*******************************************************************/ static const char *pch; static sigjmp_buf expr_env; static void GCC_FMT_ATTR(2, 3) QEMU_NORETURN expr_error(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(mon, fmt, ap); monitor_printf(mon, "\n"); va_end(ap); siglongjmp(expr_env, 1); } /* return 0 if OK, -1 if not found */ static int get_monitor_def(target_long *pval, const char *name) { const MonitorDef *md = target_monitor_defs(); CPUState *cs = mon_get_cpu(); void *ptr; uint64_t tmp = 0; int ret; if (cs == NULL || md == NULL) { return -1; } for(; md->name != NULL; md++) { if (compare_cmd(name, md->name)) { if (md->get_value) { *pval = md->get_value(md, md->offset); } else { CPUArchState *env = mon_get_cpu_env(); ptr = (uint8_t *)env + md->offset; switch(md->type) { case MD_I32: *pval = *(int32_t *)ptr; break; case MD_TLONG: *pval = *(target_long *)ptr; break; default: *pval = 0; break; } } return 0; } } ret = target_get_monitor_def(cs, name, &tmp); if (!ret) { *pval = (target_long) tmp; } return ret; } static void next(void) { if (*pch != '\0') { pch++; while (qemu_isspace(*pch)) pch++; } } static int64_t expr_sum(Monitor *mon); static int64_t expr_unary(Monitor *mon) { int64_t n; char *p; int ret; switch(*pch) { case '+': next(); n = expr_unary(mon); break; case '-': next(); n = -expr_unary(mon); break; case '~': next(); n = ~expr_unary(mon); break; case '(': next(); n = expr_sum(mon); if (*pch != ')') { expr_error(mon, "')' expected"); } next(); break; case '\'': pch++; if (*pch == '\0') expr_error(mon, "character constant expected"); n = *pch; pch++; if (*pch != '\'') expr_error(mon, "missing terminating \' character"); next(); break; case '$': { char buf[128], *q; target_long reg=0; pch++; q = buf; while ((*pch >= 'a' && *pch <= 'z') || (*pch >= 'A' && *pch <= 'Z') || (*pch >= '0' && *pch <= '9') || *pch == '_' || *pch == '.') { if ((q - buf) < sizeof(buf) - 1) *q++ = *pch; pch++; } while (qemu_isspace(*pch)) pch++; *q = 0; ret = get_monitor_def(®, buf); if (ret < 0) expr_error(mon, "unknown register"); n = reg; } break; case '\0': expr_error(mon, "unexpected end of expression"); n = 0; break; default: errno = 0; n = strtoull(pch, &p, 0); if (errno == ERANGE) { expr_error(mon, "number too large"); } if (pch == p) { expr_error(mon, "invalid char '%c' in expression", *p); } pch = p; while (qemu_isspace(*pch)) pch++; break; } return n; } static int64_t expr_prod(Monitor *mon) { int64_t val, val2; int op; val = expr_unary(mon); for(;;) { op = *pch; if (op != '*' && op != '/' && op != '%') break; next(); val2 = expr_unary(mon); switch(op) { default: case '*': val *= val2; break; case '/': case '%': if (val2 == 0) expr_error(mon, "division by zero"); if (op == '/') val /= val2; else val %= val2; break; } } return val; } static int64_t expr_logic(Monitor *mon) { int64_t val, val2; int op; val = expr_prod(mon); for(;;) { op = *pch; if (op != '&' && op != '|' && op != '^') break; next(); val2 = expr_prod(mon); switch(op) { default: case '&': val &= val2; break; case '|': val |= val2; break; case '^': val ^= val2; break; } } return val; } static int64_t expr_sum(Monitor *mon) { int64_t val, val2; int op; val = expr_logic(mon); for(;;) { op = *pch; if (op != '+' && op != '-') break; next(); val2 = expr_logic(mon); if (op == '+') val += val2; else val -= val2; } return val; } static int get_expr(Monitor *mon, int64_t *pval, const char **pp) { pch = *pp; if (sigsetjmp(expr_env, 0)) { *pp = pch; return -1; } while (qemu_isspace(*pch)) pch++; *pval = expr_sum(mon); *pp = pch; return 0; } static int get_double(Monitor *mon, double *pval, const char **pp) { const char *p = *pp; char *tailp; double d; d = strtod(p, &tailp); if (tailp == p) { monitor_printf(mon, "Number expected\n"); return -1; } if (d != d || d - d != 0) { /* NaN or infinity */ monitor_printf(mon, "Bad number\n"); return -1; } *pval = d; *pp = tailp; return 0; } /* * Store the command-name in cmdname, and return a pointer to * the remaining of the command string. */ static const char *get_command_name(const char *cmdline, char *cmdname, size_t nlen) { size_t len; const char *p, *pstart; p = cmdline; while (qemu_isspace(*p)) p++; if (*p == '\0') return NULL; pstart = p; while (*p != '\0' && *p != '/' && !qemu_isspace(*p)) p++; len = p - pstart; if (len > nlen - 1) len = nlen - 1; memcpy(cmdname, pstart, len); cmdname[len] = '\0'; return p; } /** * Read key of 'type' into 'key' and return the current * 'type' pointer. */ static char *key_get_info(const char *type, char **key) { size_t len; char *p, *str; if (*type == ',') type++; p = strchr(type, ':'); if (!p) { *key = NULL; return NULL; } len = p - type; str = g_malloc(len + 1); memcpy(str, type, len); str[len] = '\0'; *key = str; return ++p; } static int default_fmt_format = 'x'; static int default_fmt_size = 4; static int is_valid_option(const char *c, const char *typestr) { char option[3]; option[0] = '-'; option[1] = *c; option[2] = '\0'; typestr = strstr(typestr, option); return (typestr != NULL); } static const mon_cmd_t *search_dispatch_table(const mon_cmd_t *disp_table, const char *cmdname) { const mon_cmd_t *cmd; for (cmd = disp_table; cmd->name != NULL; cmd++) { if (compare_cmd(cmdname, cmd->name)) { return cmd; } } return NULL; } /* * Parse command name from @cmdp according to command table @table. * If blank, return NULL. * Else, if no valid command can be found, report to @mon, and return * NULL. * Else, change @cmdp to point right behind the name, and return its * command table entry. * Do not assume the return value points into @table! It doesn't when * the command is found in a sub-command table. */ static const mon_cmd_t *monitor_parse_command(Monitor *mon, const char *cmdp_start, const char **cmdp, mon_cmd_t *table) { const char *p; const mon_cmd_t *cmd; char cmdname[256]; /* extract the command name */ p = get_command_name(*cmdp, cmdname, sizeof(cmdname)); if (!p) return NULL; cmd = search_dispatch_table(table, cmdname); if (!cmd) { monitor_printf(mon, "unknown command: '%.*s'\n", (int)(p - cmdp_start), cmdp_start); return NULL; } if (runstate_check(RUN_STATE_PRECONFIG) && !cmd_can_preconfig(cmd)) { monitor_printf(mon, "Command '%.*s' not available with -preconfig " "until after exit_preconfig.\n", (int)(p - cmdp_start), cmdp_start); return NULL; } /* filter out following useless space */ while (qemu_isspace(*p)) { p++; } *cmdp = p; /* search sub command */ if (cmd->sub_table != NULL && *p != '\0') { return monitor_parse_command(mon, cmdp_start, cmdp, cmd->sub_table); } return cmd; } /* * Parse arguments for @cmd. * If it can't be parsed, report to @mon, and return NULL. * Else, insert command arguments into a QDict, and return it. * Note: On success, caller has to free the QDict structure. */ static QDict *monitor_parse_arguments(Monitor *mon, const char **endp, const mon_cmd_t *cmd) { const char *typestr; char *key; int c; const char *p = *endp; char buf[1024]; QDict *qdict = qdict_new(); /* parse the parameters */ typestr = cmd->args_type; for(;;) { typestr = key_get_info(typestr, &key); if (!typestr) break; c = *typestr; typestr++; switch(c) { case 'F': case 'B': case 's': { int ret; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { /* no optional string: NULL argument */ break; } } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { switch(c) { case 'F': monitor_printf(mon, "%s: filename expected\n", cmd->name); break; case 'B': monitor_printf(mon, "%s: block device name expected\n", cmd->name); break; default: monitor_printf(mon, "%s: string expected\n", cmd->name); break; } goto fail; } qdict_put_str(qdict, key, buf); } break; case 'O': { QemuOptsList *opts_list; QemuOpts *opts; opts_list = qemu_find_opts(key); if (!opts_list || opts_list->desc->name) { goto bad_type; } while (qemu_isspace(*p)) { p++; } if (!*p) break; if (get_str(buf, sizeof(buf), &p) < 0) { goto fail; } opts = qemu_opts_parse_noisily(opts_list, buf, true); if (!opts) { goto fail; } qemu_opts_to_qdict(opts, qdict); qemu_opts_del(opts); } break; case '/': { int count, format, size; while (qemu_isspace(*p)) p++; if (*p == '/') { /* format found */ p++; count = 1; if (qemu_isdigit(*p)) { count = 0; while (qemu_isdigit(*p)) { count = count * 10 + (*p - '0'); p++; } } size = -1; format = -1; for(;;) { switch(*p) { case 'o': case 'd': case 'u': case 'x': case 'i': case 'c': format = *p++; break; case 'b': size = 1; p++; break; case 'h': size = 2; p++; break; case 'w': size = 4; p++; break; case 'g': case 'L': size = 8; p++; break; default: goto next; } } next: if (*p != '\0' && !qemu_isspace(*p)) { monitor_printf(mon, "invalid char in format: '%c'\n", *p); goto fail; } if (format < 0) format = default_fmt_format; if (format != 'i') { /* for 'i', not specifying a size gives -1 as size */ if (size < 0) size = default_fmt_size; default_fmt_size = size; } default_fmt_format = format; } else { count = 1; format = default_fmt_format; if (format != 'i') { size = default_fmt_size; } else { size = -1; } } qdict_put_int(qdict, "count", count); qdict_put_int(qdict, "format", format); qdict_put_int(qdict, "size", size); } break; case 'i': case 'l': case 'M': { int64_t val; while (qemu_isspace(*p)) p++; if (*typestr == '?' || *typestr == '.') { if (*typestr == '?') { if (*p == '\0') { typestr++; break; } } else { if (*p == '.') { p++; while (qemu_isspace(*p)) p++; } else { typestr++; break; } } typestr++; } if (get_expr(mon, &val, &p)) goto fail; /* Check if 'i' is greater than 32-bit */ if ((c == 'i') && ((val >> 32) & 0xffffffff)) { monitor_printf(mon, "\'%s\' has failed: ", cmd->name); monitor_printf(mon, "integer is for 32-bit values\n"); goto fail; } else if (c == 'M') { if (val < 0) { monitor_printf(mon, "enter a positive value\n"); goto fail; } val *= MiB; } qdict_put_int(qdict, key, val); } break; case 'o': { int ret; uint64_t val; const char *end; while (qemu_isspace(*p)) { p++; } if (*typestr == '?') { typestr++; if (*p == '\0') { break; } } ret = qemu_strtosz_MiB(p, &end, &val); if (ret < 0 || val > INT64_MAX) { monitor_printf(mon, "invalid size\n"); goto fail; } qdict_put_int(qdict, key, val); p = end; } break; case 'T': { double val; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { break; } } if (get_double(mon, &val, &p) < 0) { goto fail; } if (p[0] && p[1] == 's') { switch (*p) { case 'm': val /= 1e3; p += 2; break; case 'u': val /= 1e6; p += 2; break; case 'n': val /= 1e9; p += 2; break; } } if (*p && !qemu_isspace(*p)) { monitor_printf(mon, "Unknown unit suffix\n"); goto fail; } qdict_put(qdict, key, qnum_from_double(val)); } break; case 'b': { const char *beg; bool val; while (qemu_isspace(*p)) { p++; } beg = p; while (qemu_isgraph(*p)) { p++; } if (p - beg == 2 && !memcmp(beg, "on", p - beg)) { val = true; } else if (p - beg == 3 && !memcmp(beg, "off", p - beg)) { val = false; } else { monitor_printf(mon, "Expected 'on' or 'off'\n"); goto fail; } qdict_put_bool(qdict, key, val); } break; case '-': { const char *tmp = p; int skip_key = 0; /* option */ c = *typestr++; if (c == '\0') goto bad_type; while (qemu_isspace(*p)) p++; if (*p == '-') { p++; if(c != *p) { if(!is_valid_option(p, typestr)) { monitor_printf(mon, "%s: unsupported option -%c\n", cmd->name, *p); goto fail; } else { skip_key = 1; } } if(skip_key) { p = tmp; } else { /* has option */ p++; qdict_put_bool(qdict, key, true); } } } break; case 'S': { /* package all remaining string */ int len; while (qemu_isspace(*p)) { p++; } if (*typestr == '?') { typestr++; if (*p == '\0') { /* no remaining string: NULL argument */ break; } } len = strlen(p); if (len <= 0) { monitor_printf(mon, "%s: string expected\n", cmd->name); goto fail; } qdict_put_str(qdict, key, p); p += len; } break; default: bad_type: monitor_printf(mon, "%s: unknown type '%c'\n", cmd->name, c); goto fail; } g_free(key); key = NULL; } /* check that all arguments were parsed */ while (qemu_isspace(*p)) p++; if (*p != '\0') { monitor_printf(mon, "%s: extraneous characters at the end of line\n", cmd->name); goto fail; } return qdict; fail: qobject_unref(qdict); g_free(key); return NULL; } static void handle_hmp_command(Monitor *mon, const char *cmdline) { QDict *qdict; const mon_cmd_t *cmd; const char *cmd_start = cmdline; trace_handle_hmp_command(mon, cmdline); cmd = monitor_parse_command(mon, cmdline, &cmdline, mon->cmd_table); if (!cmd) { return; } qdict = monitor_parse_arguments(mon, &cmdline, cmd); if (!qdict) { while (cmdline > cmd_start && qemu_isspace(cmdline[-1])) { cmdline--; } monitor_printf(mon, "Try \"help %.*s\" for more information\n", (int)(cmdline - cmd_start), cmd_start); return; } cmd->cmd(mon, qdict); qobject_unref(qdict); } static void cmd_completion(Monitor *mon, const char *name, const char *list) { const char *p, *pstart; char cmd[128]; int len; p = list; for(;;) { pstart = p; p = qemu_strchrnul(p, '|'); len = p - pstart; if (len > sizeof(cmd) - 2) len = sizeof(cmd) - 2; memcpy(cmd, pstart, len); cmd[len] = '\0'; if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) { readline_add_completion(mon->rs, cmd); } if (*p == '\0') break; p++; } } static void file_completion(Monitor *mon, const char *input) { DIR *ffs; struct dirent *d; char path[1024]; char file[1024], file_prefix[1024]; int input_path_len; const char *p; p = strrchr(input, '/'); if (!p) { input_path_len = 0; pstrcpy(file_prefix, sizeof(file_prefix), input); pstrcpy(path, sizeof(path), "."); } else { input_path_len = p - input + 1; memcpy(path, input, input_path_len); if (input_path_len > sizeof(path) - 1) input_path_len = sizeof(path) - 1; path[input_path_len] = '\0'; pstrcpy(file_prefix, sizeof(file_prefix), p + 1); } ffs = opendir(path); if (!ffs) return; for(;;) { struct stat sb; d = readdir(ffs); if (!d) break; if (strcmp(d->d_name, ".") == 0 || strcmp(d->d_name, "..") == 0) { continue; } if (strstart(d->d_name, file_prefix, NULL)) { memcpy(file, input, input_path_len); if (input_path_len < sizeof(file)) pstrcpy(file + input_path_len, sizeof(file) - input_path_len, d->d_name); /* stat the file to find out if it's a directory. * In that case add a slash to speed up typing long paths */ if (stat(file, &sb) == 0 && S_ISDIR(sb.st_mode)) { pstrcat(file, sizeof(file), "/"); } readline_add_completion(mon->rs, file); } } closedir(ffs); } static const char *next_arg_type(const char *typestr) { const char *p = strchr(typestr, ':'); return (p != NULL ? ++p : typestr); } static void add_completion_option(ReadLineState *rs, const char *str, const char *option) { if (!str || !option) { return; } if (!strncmp(option, str, strlen(str))) { readline_add_completion(rs, option); } } void chardev_add_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; ChardevBackendInfoList *list, *start; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev_backends(NULL); while (list) { const char *chr_name = list->value->name; if (!strncmp(chr_name, str, len)) { readline_add_completion(rs, chr_name); } list = list->next; } qapi_free_ChardevBackendInfoList(start); } void netdev_add_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; int i; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); for (i = 0; i < NET_CLIENT_DRIVER__MAX; i++) { add_completion_option(rs, str, NetClientDriver_str(i)); } } void device_add_completion(ReadLineState *rs, int nb_args, const char *str) { GSList *list, *elt; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); list = elt = object_class_get_list(TYPE_DEVICE, false); while (elt) { const char *name; DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, TYPE_DEVICE); name = object_class_get_name(OBJECT_CLASS(dc)); if (dc->user_creatable && !strncmp(name, str, len)) { readline_add_completion(rs, name); } elt = elt->next; } g_slist_free(list); } void object_add_completion(ReadLineState *rs, int nb_args, const char *str) { GSList *list, *elt; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); list = elt = object_class_get_list(TYPE_USER_CREATABLE, false); while (elt) { const char *name; name = object_class_get_name(OBJECT_CLASS(elt->data)); if (!strncmp(name, str, len) && strcmp(name, TYPE_USER_CREATABLE)) { readline_add_completion(rs, name); } elt = elt->next; } g_slist_free(list); } static void peripheral_device_del_completion(ReadLineState *rs, const char *str, size_t len) { Object *peripheral = container_get(qdev_get_machine(), "/peripheral"); GSList *list, *item; list = qdev_build_hotpluggable_device_list(peripheral); if (!list) { return; } for (item = list; item; item = g_slist_next(item)) { DeviceState *dev = item->data; if (dev->id && !strncmp(str, dev->id, len)) { readline_add_completion(rs, dev->id); } } g_slist_free(list); } void chardev_remove_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; ChardevInfoList *list, *start; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev(NULL); while (list) { ChardevInfo *chr = list->value; if (!strncmp(chr->label, str, len)) { readline_add_completion(rs, chr->label); } list = list->next; } qapi_free_ChardevInfoList(start); } static void ringbuf_completion(ReadLineState *rs, const char *str) { size_t len; ChardevInfoList *list, *start; len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_query_chardev(NULL); while (list) { ChardevInfo *chr_info = list->value; if (!strncmp(chr_info->label, str, len)) { Chardev *chr = qemu_chr_find(chr_info->label); if (chr && CHARDEV_IS_RINGBUF(chr)) { readline_add_completion(rs, chr_info->label); } } list = list->next; } qapi_free_ChardevInfoList(start); } void ringbuf_write_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args != 2) { return; } ringbuf_completion(rs, str); } void device_del_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); peripheral_device_del_completion(rs, str, len); } void object_del_completion(ReadLineState *rs, int nb_args, const char *str) { ObjectPropertyInfoList *list, *start; size_t len; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); start = list = qmp_qom_list("/objects", NULL); while (list) { ObjectPropertyInfo *info = list->value; if (!strncmp(info->type, "child<", 5) && !strncmp(info->name, str, len)) { readline_add_completion(rs, info->name); } list = list->next; } qapi_free_ObjectPropertyInfoList(start); } void sendkey_completion(ReadLineState *rs, int nb_args, const char *str) { int i; char *sep; size_t len; if (nb_args != 2) { return; } sep = strrchr(str, '-'); if (sep) { str = sep + 1; } len = strlen(str); readline_set_completion_index(rs, len); for (i = 0; i < Q_KEY_CODE__MAX; i++) { if (!strncmp(str, QKeyCode_str(i), len)) { readline_add_completion(rs, QKeyCode_str(i)); } } } void set_link_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { NetClientState *ncs[MAX_QUEUE_NUM]; int count, i; count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_DRIVER_NONE, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { const char *name = ncs[i]->name; if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } else if (nb_args == 3) { add_completion_option(rs, str, "on"); add_completion_option(rs, str, "off"); } } void netdev_del_completion(ReadLineState *rs, int nb_args, const char *str) { int len, count, i; NetClientState *ncs[MAX_QUEUE_NUM]; if (nb_args != 2) { return; } len = strlen(str); readline_set_completion_index(rs, len); count = qemu_find_net_clients_except(NULL, ncs, NET_CLIENT_DRIVER_NIC, MAX_QUEUE_NUM); for (i = 0; i < MIN(count, MAX_QUEUE_NUM); i++) { QemuOpts *opts; const char *name = ncs[i]->name; if (strncmp(str, name, len)) { continue; } opts = qemu_opts_find(qemu_find_opts_err("netdev", NULL), name); if (opts) { readline_add_completion(rs, name); } } } void info_trace_events_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { TraceEventIter iter; TraceEvent *ev; char *pattern = g_strdup_printf("%s*", str); trace_event_iter_init(&iter, pattern); while ((ev = trace_event_iter_next(&iter)) != NULL) { readline_add_completion(rs, trace_event_get_name(ev)); } g_free(pattern); } } void trace_event_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { TraceEventIter iter; TraceEvent *ev; char *pattern = g_strdup_printf("%s*", str); trace_event_iter_init(&iter, pattern); while ((ev = trace_event_iter_next(&iter)) != NULL) { readline_add_completion(rs, trace_event_get_name(ev)); } g_free(pattern); } else if (nb_args == 3) { add_completion_option(rs, str, "on"); add_completion_option(rs, str, "off"); } } void watchdog_action_completion(ReadLineState *rs, int nb_args, const char *str) { int i; if (nb_args != 2) { return; } readline_set_completion_index(rs, strlen(str)); for (i = 0; i < WATCHDOG_ACTION__MAX; i++) { add_completion_option(rs, str, WatchdogAction_str(i)); } } void migrate_set_capability_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { int i; for (i = 0; i < MIGRATION_CAPABILITY__MAX; i++) { const char *name = MigrationCapability_str(i); if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } else if (nb_args == 3) { add_completion_option(rs, str, "on"); add_completion_option(rs, str, "off"); } } void migrate_set_parameter_completion(ReadLineState *rs, int nb_args, const char *str) { size_t len; len = strlen(str); readline_set_completion_index(rs, len); if (nb_args == 2) { int i; for (i = 0; i < MIGRATION_PARAMETER__MAX; i++) { const char *name = MigrationParameter_str(i); if (!strncmp(str, name, len)) { readline_add_completion(rs, name); } } } } static void vm_completion(ReadLineState *rs, const char *str) { size_t len; BlockDriverState *bs; BdrvNextIterator it; len = strlen(str); readline_set_completion_index(rs, len); for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { SnapshotInfoList *snapshots, *snapshot; AioContext *ctx = bdrv_get_aio_context(bs); bool ok = false; aio_context_acquire(ctx); if (bdrv_can_snapshot(bs)) { ok = bdrv_query_snapshot_info_list(bs, &snapshots, NULL) == 0; } aio_context_release(ctx); if (!ok) { continue; } snapshot = snapshots; while (snapshot) { char *completion = snapshot->value->name; if (!strncmp(str, completion, len)) { readline_add_completion(rs, completion); } completion = snapshot->value->id; if (!strncmp(str, completion, len)) { readline_add_completion(rs, completion); } snapshot = snapshot->next; } qapi_free_SnapshotInfoList(snapshots); } } void delvm_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args == 2) { vm_completion(rs, str); } } void loadvm_completion(ReadLineState *rs, int nb_args, const char *str) { if (nb_args == 2) { vm_completion(rs, str); } } static void monitor_find_completion_by_table(Monitor *mon, const mon_cmd_t *cmd_table, char **args, int nb_args) { const char *cmdname; int i; const char *ptype, *old_ptype, *str, *name; const mon_cmd_t *cmd; BlockBackend *blk = NULL; if (nb_args <= 1) { /* command completion */ if (nb_args == 0) cmdname = ""; else cmdname = args[0]; readline_set_completion_index(mon->rs, strlen(cmdname)); for (cmd = cmd_table; cmd->name != NULL; cmd++) { if (!runstate_check(RUN_STATE_PRECONFIG) || cmd_can_preconfig(cmd)) { cmd_completion(mon, cmdname, cmd->name); } } } else { /* find the command */ for (cmd = cmd_table; cmd->name != NULL; cmd++) { if (compare_cmd(args[0], cmd->name) && (!runstate_check(RUN_STATE_PRECONFIG) || cmd_can_preconfig(cmd))) { break; } } if (!cmd->name) { return; } if (cmd->sub_table) { /* do the job again */ monitor_find_completion_by_table(mon, cmd->sub_table, &args[1], nb_args - 1); return; } if (cmd->command_completion) { cmd->command_completion(mon->rs, nb_args, args[nb_args - 1]); return; } ptype = next_arg_type(cmd->args_type); for(i = 0; i < nb_args - 2; i++) { if (*ptype != '\0') { ptype = next_arg_type(ptype); while (*ptype == '?') ptype = next_arg_type(ptype); } } str = args[nb_args - 1]; old_ptype = NULL; while (*ptype == '-' && old_ptype != ptype) { old_ptype = ptype; ptype = next_arg_type(ptype); } switch(*ptype) { case 'F': /* file completion */ readline_set_completion_index(mon->rs, strlen(str)); file_completion(mon, str); break; case 'B': /* block device name completion */ readline_set_completion_index(mon->rs, strlen(str)); while ((blk = blk_next(blk)) != NULL) { name = blk_name(blk); if (str[0] == '\0' || !strncmp(name, str, strlen(str))) { readline_add_completion(mon->rs, name); } } break; case 's': case 'S': if (!strcmp(cmd->name, "help|?")) { monitor_find_completion_by_table(mon, cmd_table, &args[1], nb_args - 1); } break; default: break; } } } static void monitor_find_completion(void *opaque, const char *cmdline) { Monitor *mon = opaque; char *args[MAX_ARGS]; int nb_args, len; /* 1. parse the cmdline */ if (parse_cmdline(cmdline, &nb_args, args) < 0) { return; } /* if the line ends with a space, it means we want to complete the next arg */ len = strlen(cmdline); if (len > 0 && qemu_isspace(cmdline[len - 1])) { if (nb_args >= MAX_ARGS) { goto cleanup; } args[nb_args++] = g_strdup(""); } /* 2. auto complete according to args */ monitor_find_completion_by_table(mon, mon->cmd_table, args, nb_args); cleanup: free_cmdline_args(args, nb_args); } static int monitor_can_read(void *opaque) { Monitor *mon = opaque; return !atomic_mb_read(&mon->suspend_cnt); } /* * Emit QMP response @rsp with ID @id to @mon. * Null @rsp can only happen for commands with QCO_NO_SUCCESS_RESP. * Nothing is emitted then. */ static void monitor_qmp_respond(Monitor *mon, QDict *rsp, QObject *id) { if (rsp) { if (id) { qdict_put_obj(rsp, "id", qobject_ref(id)); } qmp_send_response(mon, rsp); } } static void monitor_qmp_dispatch(Monitor *mon, QObject *req, QObject *id) { Monitor *old_mon; QDict *rsp; QDict *error; old_mon = cur_mon; cur_mon = mon; rsp = qmp_dispatch(mon->qmp.commands, req, qmp_oob_enabled(mon)); cur_mon = old_mon; if (mon->qmp.commands == &qmp_cap_negotiation_commands) { error = qdict_get_qdict(rsp, "error"); if (error && !g_strcmp0(qdict_get_try_str(error, "class"), QapiErrorClass_str(ERROR_CLASS_COMMAND_NOT_FOUND))) { /* Provide a more useful error message */ qdict_del(error, "desc"); qdict_put_str(error, "desc", "Expecting capabilities negotiation" " with 'qmp_capabilities'"); } } monitor_qmp_respond(mon, rsp, id); qobject_unref(rsp); } /* * Pop a QMP request from a monitor request queue. * Return the request, or NULL all request queues are empty. * We are using round-robin fashion to pop the request, to avoid * processing commands only on a very busy monitor. To achieve that, * when we process one request on a specific monitor, we put that * monitor to the end of mon_list queue. * * Note: if the function returned with non-NULL, then the caller will * be with mon->qmp.qmp_queue_lock held, and the caller is responsible * to release it. */ static QMPRequest *monitor_qmp_requests_pop_any_with_lock(void) { QMPRequest *req_obj = NULL; Monitor *mon; qemu_mutex_lock(&monitor_lock); QTAILQ_FOREACH(mon, &mon_list, entry) { qemu_mutex_lock(&mon->qmp.qmp_queue_lock); req_obj = g_queue_pop_head(mon->qmp.qmp_requests); if (req_obj) { /* With the lock of corresponding queue held */ break; } qemu_mutex_unlock(&mon->qmp.qmp_queue_lock); } if (req_obj) { /* * We found one request on the monitor. Degrade this monitor's * priority to lowest by re-inserting it to end of queue. */ QTAILQ_REMOVE(&mon_list, mon, entry); QTAILQ_INSERT_TAIL(&mon_list, mon, entry); } qemu_mutex_unlock(&monitor_lock); return req_obj; } static void monitor_qmp_bh_dispatcher(void *data) { QMPRequest *req_obj = monitor_qmp_requests_pop_any_with_lock(); QDict *rsp; bool need_resume; Monitor *mon; if (!req_obj) { return; } mon = req_obj->mon; /* qmp_oob_enabled() might change after "qmp_capabilities" */ need_resume = !qmp_oob_enabled(mon) || mon->qmp.qmp_requests->length == QMP_REQ_QUEUE_LEN_MAX - 1; qemu_mutex_unlock(&mon->qmp.qmp_queue_lock); if (req_obj->req) { trace_monitor_qmp_cmd_in_band(qobject_get_try_str(req_obj->id) ?: ""); monitor_qmp_dispatch(mon, req_obj->req, req_obj->id); } else { assert(req_obj->err); rsp = qmp_error_response(req_obj->err); req_obj->err = NULL; monitor_qmp_respond(mon, rsp, NULL); qobject_unref(rsp); } if (need_resume) { /* Pairs with the monitor_suspend() in handle_qmp_command() */ monitor_resume(mon); } qmp_request_free(req_obj); /* Reschedule instead of looping so the main loop stays responsive */ qemu_bh_schedule(qmp_dispatcher_bh); } static void handle_qmp_command(void *opaque, QObject *req, Error *err) { Monitor *mon = opaque; QObject *id = NULL; QDict *qdict; QMPRequest *req_obj; assert(!req != !err); qdict = qobject_to(QDict, req); if (qdict) { id = qobject_ref(qdict_get(qdict, "id")); qdict_del(qdict, "id"); } /* else will fail qmp_dispatch() */ if (req && trace_event_get_state_backends(TRACE_HANDLE_QMP_COMMAND)) { QString *req_json = qobject_to_json(req); trace_handle_qmp_command(mon, qstring_get_str(req_json)); qobject_unref(req_json); } if (qdict && qmp_is_oob(qdict)) { /* OOB commands are executed immediately */ trace_monitor_qmp_cmd_out_of_band(qobject_get_try_str(id) ?: ""); monitor_qmp_dispatch(mon, req, id); qobject_unref(req); qobject_unref(id); return; } req_obj = g_new0(QMPRequest, 1); req_obj->mon = mon; req_obj->id = id; req_obj->req = req; req_obj->err = err; /* Protect qmp_requests and fetching its length. */ qemu_mutex_lock(&mon->qmp.qmp_queue_lock); /* * Suspend the monitor when we can't queue more requests after * this one. Dequeuing in monitor_qmp_bh_dispatcher() will resume * it. Note that when OOB is disabled, we queue at most one * command, for backward compatibility. */ if (!qmp_oob_enabled(mon) || mon->qmp.qmp_requests->length == QMP_REQ_QUEUE_LEN_MAX - 1) { monitor_suspend(mon); } /* * Put the request to the end of queue so that requests will be * handled in time order. Ownership for req_obj, req, id, * etc. will be delivered to the handler side. */ assert(mon->qmp.qmp_requests->length < QMP_REQ_QUEUE_LEN_MAX); g_queue_push_tail(mon->qmp.qmp_requests, req_obj); qemu_mutex_unlock(&mon->qmp.qmp_queue_lock); /* Kick the dispatcher routine */ qemu_bh_schedule(qmp_dispatcher_bh); } static void monitor_qmp_read(void *opaque, const uint8_t *buf, int size) { Monitor *mon = opaque; json_message_parser_feed(&mon->qmp.parser, (const char *) buf, size); } static void monitor_read(void *opaque, const uint8_t *buf, int size) { Monitor *old_mon = cur_mon; int i; cur_mon = opaque; if (cur_mon->rs) { for (i = 0; i < size; i++) readline_handle_byte(cur_mon->rs, buf[i]); } else { if (size == 0 || buf[size - 1] != 0) monitor_printf(cur_mon, "corrupted command\n"); else handle_hmp_command(cur_mon, (char *)buf); } cur_mon = old_mon; } static void monitor_command_cb(void *opaque, const char *cmdline, void *readline_opaque) { Monitor *mon = opaque; monitor_suspend(mon); handle_hmp_command(mon, cmdline); monitor_resume(mon); } int monitor_suspend(Monitor *mon) { if (monitor_is_hmp_non_interactive(mon)) { return -ENOTTY; } atomic_inc(&mon->suspend_cnt); if (mon->use_io_thread) { /* * Kick I/O thread to make sure this takes effect. It'll be * evaluated again in prepare() of the watch object. */ aio_notify(iothread_get_aio_context(mon_iothread)); } trace_monitor_suspend(mon, 1); return 0; } static void monitor_accept_input(void *opaque) { Monitor *mon = opaque; qemu_chr_fe_accept_input(&mon->chr); } void monitor_resume(Monitor *mon) { if (monitor_is_hmp_non_interactive(mon)) { return; } if (atomic_dec_fetch(&mon->suspend_cnt) == 0) { AioContext *ctx; if (mon->use_io_thread) { ctx = iothread_get_aio_context(mon_iothread); } else { ctx = qemu_get_aio_context(); } if (!monitor_is_qmp(mon)) { assert(mon->rs); readline_show_prompt(mon->rs); } aio_bh_schedule_oneshot(ctx, monitor_accept_input, mon); } trace_monitor_suspend(mon, -1); } static QDict *qmp_greeting(Monitor *mon) { QList *cap_list = qlist_new(); QObject *ver = NULL; QMPCapability cap; qmp_marshal_query_version(NULL, &ver, NULL); for (cap = 0; cap < QMP_CAPABILITY__MAX; cap++) { if (mon->qmp.capab_offered[cap]) { qlist_append_str(cap_list, QMPCapability_str(cap)); } } return qdict_from_jsonf_nofail( "{'QMP': {'version': %p, 'capabilities': %p}}", ver, cap_list); } static void monitor_qmp_event(void *opaque, int event) { QDict *data; Monitor *mon = opaque; switch (event) { case CHR_EVENT_OPENED: mon->qmp.commands = &qmp_cap_negotiation_commands; monitor_qmp_caps_reset(mon); data = qmp_greeting(mon); qmp_send_response(mon, data); qobject_unref(data); mon_refcount++; break; case CHR_EVENT_CLOSED: /* * Note: this is only useful when the output of the chardev * backend is still open. For example, when the backend is * stdio, it's possible that stdout is still open when stdin * is closed. */ monitor_qmp_cleanup_queues(mon); json_message_parser_destroy(&mon->qmp.parser); json_message_parser_init(&mon->qmp.parser, handle_qmp_command, mon, NULL); mon_refcount--; monitor_fdsets_cleanup(); break; } } static void monitor_event(void *opaque, int event) { Monitor *mon = opaque; switch (event) { case CHR_EVENT_MUX_IN: qemu_mutex_lock(&mon->mon_lock); mon->mux_out = 0; qemu_mutex_unlock(&mon->mon_lock); if (mon->reset_seen) { readline_restart(mon->rs); monitor_resume(mon); monitor_flush(mon); } else { atomic_mb_set(&mon->suspend_cnt, 0); } break; case CHR_EVENT_MUX_OUT: if (mon->reset_seen) { if (atomic_mb_read(&mon->suspend_cnt) == 0) { monitor_printf(mon, "\n"); } monitor_flush(mon); monitor_suspend(mon); } else { atomic_inc(&mon->suspend_cnt); } qemu_mutex_lock(&mon->mon_lock); mon->mux_out = 1; qemu_mutex_unlock(&mon->mon_lock); break; case CHR_EVENT_OPENED: monitor_printf(mon, "QEMU %s monitor - type 'help' for more " "information\n", QEMU_VERSION); if (!mon->mux_out) { readline_restart(mon->rs); readline_show_prompt(mon->rs); } mon->reset_seen = 1; mon_refcount++; break; case CHR_EVENT_CLOSED: mon_refcount--; monitor_fdsets_cleanup(); break; } } static int compare_mon_cmd(const void *a, const void *b) { return strcmp(((const mon_cmd_t *)a)->name, ((const mon_cmd_t *)b)->name); } static void sortcmdlist(void) { int array_num; int elem_size = sizeof(mon_cmd_t); array_num = sizeof(mon_cmds)/elem_size-1; qsort((void *)mon_cmds, array_num, elem_size, compare_mon_cmd); array_num = sizeof(info_cmds)/elem_size-1; qsort((void *)info_cmds, array_num, elem_size, compare_mon_cmd); } static void monitor_iothread_init(void) { mon_iothread = iothread_create("mon_iothread", &error_abort); } void monitor_init_globals(void) { monitor_init_qmp_commands(); monitor_qapi_event_init(); sortcmdlist(); qemu_mutex_init(&monitor_lock); qemu_mutex_init(&mon_fdsets_lock); /* * The dispatcher BH must run in the main loop thread, since we * have commands assuming that context. It would be nice to get * rid of those assumptions. */ qmp_dispatcher_bh = aio_bh_new(iohandler_get_aio_context(), monitor_qmp_bh_dispatcher, NULL); } /* These functions just adapt the readline interface in a typesafe way. We * could cast function pointers but that discards compiler checks. */ static void GCC_FMT_ATTR(2, 3) monitor_readline_printf(void *opaque, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(opaque, fmt, ap); va_end(ap); } static void monitor_readline_flush(void *opaque) { monitor_flush(opaque); } /* * Print to current monitor if we have one, else to stream. * TODO should return int, so callers can calculate width, but that * requires surgery to monitor_vprintf(). Left for another day. */ void monitor_vfprintf(FILE *stream, const char *fmt, va_list ap) { if (cur_mon && !monitor_cur_is_qmp()) { monitor_vprintf(cur_mon, fmt, ap); } else { vfprintf(stream, fmt, ap); } } /* * Print to current monitor if we have one, else to stderr. * TODO should return int, so callers can calculate width, but that * requires surgery to monitor_vprintf(). Left for another day. */ void error_vprintf(const char *fmt, va_list ap) { monitor_vfprintf(stderr, fmt, ap); } void error_vprintf_unless_qmp(const char *fmt, va_list ap) { if (cur_mon && !monitor_cur_is_qmp()) { monitor_vprintf(cur_mon, fmt, ap); } else if (!cur_mon) { vfprintf(stderr, fmt, ap); } } static void monitor_list_append(Monitor *mon) { qemu_mutex_lock(&monitor_lock); /* * This prevents inserting new monitors during monitor_cleanup(). * A cleaner solution would involve the main thread telling other * threads to terminate, waiting for their termination. */ if (!monitor_destroyed) { QTAILQ_INSERT_HEAD(&mon_list, mon, entry); mon = NULL; } qemu_mutex_unlock(&monitor_lock); if (mon) { monitor_data_destroy(mon); g_free(mon); } } static void monitor_qmp_setup_handlers_bh(void *opaque) { Monitor *mon = opaque; GMainContext *context; assert(mon->use_io_thread); context = iothread_get_g_main_context(mon_iothread); assert(context); qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read, monitor_qmp_read, monitor_qmp_event, NULL, mon, context, true); monitor_list_append(mon); } void monitor_init(Chardev *chr, int flags) { Monitor *mon = g_malloc(sizeof(*mon)); bool use_readline = flags & MONITOR_USE_READLINE; /* Note: we run QMP monitor in I/O thread when @chr supports that */ monitor_data_init(mon, false, (flags & MONITOR_USE_CONTROL) && qemu_chr_has_feature(chr, QEMU_CHAR_FEATURE_GCONTEXT)); qemu_chr_fe_init(&mon->chr, chr, &error_abort); mon->flags = flags; if (use_readline) { mon->rs = readline_init(monitor_readline_printf, monitor_readline_flush, mon, monitor_find_completion); monitor_read_command(mon, 0); } if (monitor_is_qmp(mon)) { qemu_chr_fe_set_echo(&mon->chr, true); json_message_parser_init(&mon->qmp.parser, handle_qmp_command, mon, NULL); if (mon->use_io_thread) { /* * Make sure the old iowatch is gone. It's possible when * e.g. the chardev is in client mode, with wait=on. */ remove_fd_in_watch(chr); /* * We can't call qemu_chr_fe_set_handlers() directly here * since chardev might be running in the monitor I/O * thread. Schedule a bottom half. */ aio_bh_schedule_oneshot(iothread_get_aio_context(mon_iothread), monitor_qmp_setup_handlers_bh, mon); /* The bottom half will add @mon to @mon_list */ return; } else { qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read, monitor_qmp_read, monitor_qmp_event, NULL, mon, NULL, true); } } else { qemu_chr_fe_set_handlers(&mon->chr, monitor_can_read, monitor_read, monitor_event, NULL, mon, NULL, true); } monitor_list_append(mon); } void monitor_cleanup(void) { Monitor *mon, *next; /* * We need to explicitly stop the I/O thread (but not destroy it), * clean up the monitor resources, then destroy the I/O thread since * we need to unregister from chardev below in * monitor_data_destroy(), and chardev is not thread-safe yet */ if (mon_iothread) { iothread_stop(mon_iothread); } /* Flush output buffers and destroy monitors */ qemu_mutex_lock(&monitor_lock); monitor_destroyed = true; QTAILQ_FOREACH_SAFE(mon, &mon_list, entry, next) { QTAILQ_REMOVE(&mon_list, mon, entry); /* Permit QAPI event emission from character frontend release */ qemu_mutex_unlock(&monitor_lock); monitor_flush(mon); monitor_data_destroy(mon); qemu_mutex_lock(&monitor_lock); g_free(mon); } qemu_mutex_unlock(&monitor_lock); /* QEMUBHs needs to be deleted before destroying the I/O thread */ qemu_bh_delete(qmp_dispatcher_bh); qmp_dispatcher_bh = NULL; if (mon_iothread) { iothread_destroy(mon_iothread); mon_iothread = NULL; } } QemuOptsList qemu_mon_opts = { .name = "mon", .implied_opt_name = "chardev", .head = QTAILQ_HEAD_INITIALIZER(qemu_mon_opts.head), .desc = { { .name = "mode", .type = QEMU_OPT_STRING, },{ .name = "chardev", .type = QEMU_OPT_STRING, },{ .name = "pretty", .type = QEMU_OPT_BOOL, }, { /* end of list */ } }, }; #ifndef TARGET_I386 void qmp_rtc_reset_reinjection(Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "rtc-reset-reinjection"); } SevInfo *qmp_query_sev(Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "query-sev"); return NULL; } SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "query-sev-launch-measure"); return NULL; } SevCapability *qmp_query_sev_capabilities(Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "query-sev-capabilities"); return NULL; } #endif #ifndef TARGET_S390X void qmp_dump_skeys(const char *filename, Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "dump-skeys"); } #endif #ifndef TARGET_ARM GICCapabilityList *qmp_query_gic_capabilities(Error **errp) { error_setg(errp, QERR_FEATURE_DISABLED, "query-gic-capabilities"); return NULL; } #endif HotpluggableCPUList *qmp_query_hotpluggable_cpus(Error **errp) { MachineState *ms = MACHINE(qdev_get_machine()); MachineClass *mc = MACHINE_GET_CLASS(ms); if (!mc->has_hotpluggable_cpus) { error_setg(errp, QERR_FEATURE_DISABLED, "query-hotpluggable-cpus"); return NULL; } return machine_query_hotpluggable_cpus(ms); }