/* * QEMU monitor * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "hw/hw.h" #include "hw/qdev.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/pci.h" #include "hw/watchdog.h" #include "hw/loader.h" #include "gdbstub.h" #include "net.h" #include "net/slirp.h" #include "qemu-char.h" #include "sysemu.h" #include "monitor.h" #include "readline.h" #include "console.h" #include "block.h" #include "audio/audio.h" #include "disas.h" #include "balloon.h" #include "qemu-timer.h" #include "migration.h" #include "kvm.h" #include "acl.h" #include "qint.h" #include "qfloat.h" #include "qlist.h" #include "qdict.h" #include "qbool.h" #include "qstring.h" #include "qerror.h" #include "qjson.h" #include "json-streamer.h" #include "json-parser.h" #include "osdep.h" //#define DEBUG //#define DEBUG_COMPLETION /* * Supported types: * * 'F' filename * 'B' block device name * 's' string (accept optional quote) * 'i' 32 bit integer * 'l' target long (32 or 64 bit) * 'M' just like 'l', except in user mode the value is * multiplied by 2^20 (think Mebibyte) * 'b' double * user mode accepts an optional G, g, M, m, K, k suffix, * which multiplies the value by 2^30 for suffixes G and * g, 2^20 for M and m, 2^10 for K and k * 'T' double * user mode accepts an optional ms, us, ns suffix, * which divides the value by 1e3, 1e6, 1e9, respectively * '/' optional gdb-like print format (like "/10x") * * '?' optional type (for all types, except '/') * '.' other form of optional type (for 'i' and 'l') * '-' optional parameter (eg. '-f') * */ typedef struct MonitorCompletionData MonitorCompletionData; struct MonitorCompletionData { Monitor *mon; void (*user_print)(Monitor *mon, const QObject *data); }; typedef struct mon_cmd_t { const char *name; const char *args_type; const char *params; const char *help; void (*user_print)(Monitor *mon, const QObject *data); int (*cmd_new_ret)(Monitor *mon, const QDict *params, QObject **ret_data); union { void (*info)(Monitor *mon); void (*info_new)(Monitor *mon, QObject **ret_data); int (*info_async)(Monitor *mon, MonitorCompletion *cb, void *opaque); void (*cmd)(Monitor *mon, const QDict *qdict); void (*cmd_new)(Monitor *mon, const QDict *params, QObject **ret_data); int (*cmd_async)(Monitor *mon, const QDict *params, MonitorCompletion *cb, void *opaque); } mhandler; int async; } mon_cmd_t; /* file descriptors passed via SCM_RIGHTS */ typedef struct mon_fd_t mon_fd_t; struct mon_fd_t { char *name; int fd; QLIST_ENTRY(mon_fd_t) next; }; typedef struct MonitorControl { QObject *id; int print_enabled; JSONMessageParser parser; int command_mode; } MonitorControl; struct Monitor { CharDriverState *chr; int mux_out; int reset_seen; int flags; int suspend_cnt; uint8_t outbuf[1024]; int outbuf_index; ReadLineState *rs; MonitorControl *mc; CPUState *mon_cpu; BlockDriverCompletionFunc *password_completion_cb; void *password_opaque; QError *error; QLIST_HEAD(,mon_fd_t) fds; QLIST_ENTRY(Monitor) entry; }; static QLIST_HEAD(mon_list, Monitor) mon_list; static const mon_cmd_t mon_cmds[]; static const mon_cmd_t info_cmds[]; Monitor *cur_mon = NULL; static void monitor_command_cb(Monitor *mon, const char *cmdline, void *opaque); static inline int qmp_cmd_mode(const Monitor *mon) { return (mon->mc ? mon->mc->command_mode : 0); } /* Return true if in control mode, false otherwise */ static inline int monitor_ctrl_mode(const Monitor *mon) { return (mon->flags & MONITOR_USE_CONTROL); } static void monitor_read_command(Monitor *mon, int show_prompt) { if (!mon->rs) return; readline_start(mon->rs, "(qemu) ", 0, monitor_command_cb, NULL); if (show_prompt) readline_show_prompt(mon->rs); } static int monitor_read_password(Monitor *mon, ReadLineFunc *readline_func, void *opaque) { if (monitor_ctrl_mode(mon)) { qemu_error_new(QERR_MISSING_PARAMETER, "password"); return -EINVAL; } else if (mon->rs) { readline_start(mon->rs, "Password: ", 1, readline_func, opaque); /* prompt is printed on return from the command handler */ return 0; } else { monitor_printf(mon, "terminal does not support password prompting\n"); return -ENOTTY; } } void monitor_flush(Monitor *mon) { if (mon && mon->outbuf_index != 0 && !mon->mux_out) { qemu_chr_write(mon->chr, mon->outbuf, mon->outbuf_index); mon->outbuf_index = 0; } } /* flush at every end of line or if the buffer is full */ static void monitor_puts(Monitor *mon, const char *str) { char c; for(;;) { c = *str++; if (c == '\0') break; if (c == '\n') mon->outbuf[mon->outbuf_index++] = '\r'; mon->outbuf[mon->outbuf_index++] = c; if (mon->outbuf_index >= (sizeof(mon->outbuf) - 1) || c == '\n') monitor_flush(mon); } } void monitor_vprintf(Monitor *mon, const char *fmt, va_list ap) { if (!mon) return; if (mon->mc && !mon->mc->print_enabled) { qemu_error_new(QERR_UNDEFINED_ERROR); } else { char buf[4096]; vsnprintf(buf, sizeof(buf), fmt, ap); monitor_puts(mon, buf); } } void monitor_printf(Monitor *mon, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf(mon, fmt, ap); va_end(ap); } void monitor_print_filename(Monitor *mon, const char *filename) { int i; for (i = 0; filename[i]; i++) { switch (filename[i]) { case ' ': case '"': case '\\': monitor_printf(mon, "\\%c", filename[i]); break; case '\t': monitor_printf(mon, "\\t"); break; case '\r': monitor_printf(mon, "\\r"); break; case '\n': monitor_printf(mon, "\\n"); break; default: monitor_printf(mon, "%c", filename[i]); break; } } } static int monitor_fprintf(FILE *stream, const char *fmt, ...) { va_list ap; va_start(ap, fmt); monitor_vprintf((Monitor *)stream, fmt, ap); va_end(ap); return 0; } static void monitor_user_noop(Monitor *mon, const QObject *data) { } static inline int monitor_handler_ported(const mon_cmd_t *cmd) { return cmd->user_print != NULL; } static inline bool monitor_handler_is_async(const mon_cmd_t *cmd) { return cmd->async != 0; } static inline int monitor_has_error(const Monitor *mon) { return mon->error != NULL; } static void monitor_json_emitter(Monitor *mon, const QObject *data) { QString *json; json = qobject_to_json(data); assert(json != NULL); mon->mc->print_enabled = 1; monitor_printf(mon, "%s\n", qstring_get_str(json)); mon->mc->print_enabled = 0; QDECREF(json); } static void monitor_protocol_emitter(Monitor *mon, QObject *data) { QDict *qmp; qmp = qdict_new(); if (!monitor_has_error(mon)) { /* success response */ if (data) { qobject_incref(data); qdict_put_obj(qmp, "return", data); } else { /* return an empty QDict by default */ qdict_put(qmp, "return", qdict_new()); } } else { /* error response */ qdict_put(mon->error->error, "desc", qerror_human(mon->error)); qdict_put(qmp, "error", mon->error->error); QINCREF(mon->error->error); QDECREF(mon->error); mon->error = NULL; } if (mon->mc->id) { qdict_put_obj(qmp, "id", mon->mc->id); mon->mc->id = NULL; } monitor_json_emitter(mon, QOBJECT(qmp)); QDECREF(qmp); } static void timestamp_put(QDict *qdict) { int err; QObject *obj; qemu_timeval tv; err = qemu_gettimeofday(&tv); if (err < 0) return; obj = qobject_from_jsonf("{ 'seconds': %" PRId64 ", " "'microseconds': %" PRId64 " }", (int64_t) tv.tv_sec, (int64_t) tv.tv_usec); qdict_put_obj(qdict, "timestamp", obj); } /** * monitor_protocol_event(): Generate a Monitor event * * Event-specific data can be emitted through the (optional) 'data' parameter. */ void monitor_protocol_event(MonitorEvent event, QObject *data) { QDict *qmp; const char *event_name; Monitor *mon; assert(event < QEVENT_MAX); switch (event) { case QEVENT_DEBUG: event_name = "DEBUG"; break; case QEVENT_SHUTDOWN: event_name = "SHUTDOWN"; break; case QEVENT_RESET: event_name = "RESET"; break; case QEVENT_POWERDOWN: event_name = "POWERDOWN"; break; case QEVENT_STOP: event_name = "STOP"; break; case QEVENT_VNC_CONNECTED: event_name = "VNC_CONNECTED"; break; case QEVENT_VNC_INITIALIZED: event_name = "VNC_INITIALIZED"; break; case QEVENT_VNC_DISCONNECTED: event_name = "VNC_DISCONNECTED"; break; case QEVENT_BLOCK_IO_ERROR: event_name = "BLOCK_IO_ERROR"; break; default: abort(); break; } qmp = qdict_new(); timestamp_put(qmp); qdict_put(qmp, "event", qstring_from_str(event_name)); if (data) { qobject_incref(data); qdict_put_obj(qmp, "data", data); } QLIST_FOREACH(mon, &mon_list, entry) { if (monitor_ctrl_mode(mon) && qmp_cmd_mode(mon)) { monitor_json_emitter(mon, QOBJECT(qmp)); } } QDECREF(qmp); } static int do_qmp_capabilities(Monitor *mon, const QDict *params, QObject **ret_data) { /* Will setup QMP capabilities in the future */ if (monitor_ctrl_mode(mon)) { mon->mc->command_mode = 1; } return 0; } static int compare_cmd(const char *name, const char *list) { const char *p, *pstart; int len; len = strlen(name); p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); if ((p - pstart) == len && !memcmp(pstart, name, len)) return 1; if (*p == '\0') break; p++; } return 0; } static void help_cmd_dump(Monitor *mon, const mon_cmd_t *cmds, const char *prefix, const char *name) { const mon_cmd_t *cmd; for(cmd = cmds; cmd->name != NULL; cmd++) { if (!name || !strcmp(name, cmd->name)) monitor_printf(mon, "%s%s %s -- %s\n", prefix, cmd->name, cmd->params, cmd->help); } } static void help_cmd(Monitor *mon, const char *name) { if (name && !strcmp(name, "info")) { help_cmd_dump(mon, info_cmds, "info ", NULL); } else { help_cmd_dump(mon, mon_cmds, "", name); if (name && !strcmp(name, "log")) { const CPULogItem *item; monitor_printf(mon, "Log items (comma separated):\n"); monitor_printf(mon, "%-10s %s\n", "none", "remove all logs"); for(item = cpu_log_items; item->mask != 0; item++) { monitor_printf(mon, "%-10s %s\n", item->name, item->help); } } } } static void do_help_cmd(Monitor *mon, const QDict *qdict) { help_cmd(mon, qdict_get_try_str(qdict, "name")); } static void do_commit(Monitor *mon, const QDict *qdict) { int all_devices; DriveInfo *dinfo; const char *device = qdict_get_str(qdict, "device"); all_devices = !strcmp(device, "all"); QTAILQ_FOREACH(dinfo, &drives, next) { if (!all_devices) if (strcmp(bdrv_get_device_name(dinfo->bdrv), device)) continue; bdrv_commit(dinfo->bdrv); } } static void user_monitor_complete(void *opaque, QObject *ret_data) { MonitorCompletionData *data = (MonitorCompletionData *)opaque; if (ret_data) { data->user_print(data->mon, ret_data); } monitor_resume(data->mon); qemu_free(data); } static void qmp_monitor_complete(void *opaque, QObject *ret_data) { monitor_protocol_emitter(opaque, ret_data); } static void qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd, const QDict *params) { cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon); } static void qmp_async_info_handler(Monitor *mon, const mon_cmd_t *cmd) { cmd->mhandler.info_async(mon, qmp_monitor_complete, mon); } static void user_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd, const QDict *params) { int ret; MonitorCompletionData *cb_data = qemu_malloc(sizeof(*cb_data)); cb_data->mon = mon; cb_data->user_print = cmd->user_print; monitor_suspend(mon); ret = cmd->mhandler.cmd_async(mon, params, user_monitor_complete, cb_data); if (ret < 0) { monitor_resume(mon); qemu_free(cb_data); } } static void user_async_info_handler(Monitor *mon, const mon_cmd_t *cmd) { int ret; MonitorCompletionData *cb_data = qemu_malloc(sizeof(*cb_data)); cb_data->mon = mon; cb_data->user_print = cmd->user_print; monitor_suspend(mon); ret = cmd->mhandler.info_async(mon, user_monitor_complete, cb_data); if (ret < 0) { monitor_resume(mon); qemu_free(cb_data); } } static void do_info(Monitor *mon, const QDict *qdict, QObject **ret_data) { const mon_cmd_t *cmd; const char *item = qdict_get_try_str(qdict, "item"); if (!item) { assert(monitor_ctrl_mode(mon) == 0); goto help; } for (cmd = info_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(item, cmd->name)) break; } if (cmd->name == NULL) { if (monitor_ctrl_mode(mon)) { qemu_error_new(QERR_COMMAND_NOT_FOUND, item); return; } goto help; } if (monitor_handler_is_async(cmd)) { if (monitor_ctrl_mode(mon)) { qmp_async_info_handler(mon, cmd); } else { user_async_info_handler(mon, cmd); } /* * Indicate that this command is asynchronous and will not return any * data (not even empty). Instead, the data will be returned via a * completion callback. */ *ret_data = qobject_from_jsonf("{ '__mon_async': 'return' }"); } else if (monitor_handler_ported(cmd)) { cmd->mhandler.info_new(mon, ret_data); if (!monitor_ctrl_mode(mon)) { /* * User Protocol function is called here, Monitor Protocol is * handled by monitor_call_handler() */ if (*ret_data) cmd->user_print(mon, *ret_data); } } else { if (monitor_ctrl_mode(mon)) { /* handler not converted yet */ qemu_error_new(QERR_COMMAND_NOT_FOUND, item); } else { cmd->mhandler.info(mon); } } return; help: help_cmd(mon, "info"); } static void do_info_version_print(Monitor *mon, const QObject *data) { QDict *qdict; qdict = qobject_to_qdict(data); monitor_printf(mon, "%s%s\n", qdict_get_str(qdict, "qemu"), qdict_get_str(qdict, "package")); } /** * do_info_version(): Show QEMU version * * Return a QDict with the following information: * * - "qemu": QEMU's version * - "package": package's version * * Example: * * { "qemu": "0.11.50", "package": "" } */ static void do_info_version(Monitor *mon, QObject **ret_data) { *ret_data = qobject_from_jsonf("{ 'qemu': %s, 'package': %s }", QEMU_VERSION, QEMU_PKGVERSION); } static void do_info_name_print(Monitor *mon, const QObject *data) { QDict *qdict; qdict = qobject_to_qdict(data); if (qdict_size(qdict) == 0) { return; } monitor_printf(mon, "%s\n", qdict_get_str(qdict, "name")); } /** * do_info_name(): Show VM name * * Return a QDict with the following information: * * - "name": VM's name (optional) * * Example: * * { "name": "qemu-name" } */ static void do_info_name(Monitor *mon, QObject **ret_data) { *ret_data = qemu_name ? qobject_from_jsonf("{'name': %s }", qemu_name) : qobject_from_jsonf("{}"); } static QObject *get_cmd_dict(const char *name) { const char *p; /* Remove '|' from some commands */ p = strchr(name, '|'); if (p) { p++; } else { p = name; } return qobject_from_jsonf("{ 'name': %s }", p); } /** * do_info_commands(): List QMP available commands * * Each command is represented by a QDict, the returned QObject is a QList * of all commands. * * The QDict contains: * * - "name": command's name * * Example: * * { [ { "name": "query-balloon" }, { "name": "system_powerdown" } ] } */ static void do_info_commands(Monitor *mon, QObject **ret_data) { QList *cmd_list; const mon_cmd_t *cmd; cmd_list = qlist_new(); for (cmd = mon_cmds; cmd->name != NULL; cmd++) { if (monitor_handler_ported(cmd) && !compare_cmd(cmd->name, "info")) { qlist_append_obj(cmd_list, get_cmd_dict(cmd->name)); } } for (cmd = info_cmds; cmd->name != NULL; cmd++) { if (monitor_handler_ported(cmd)) { char buf[128]; snprintf(buf, sizeof(buf), "query-%s", cmd->name); qlist_append_obj(cmd_list, get_cmd_dict(buf)); } } *ret_data = QOBJECT(cmd_list); } #if defined(TARGET_I386) static void do_info_hpet_print(Monitor *mon, const QObject *data) { monitor_printf(mon, "HPET is %s by QEMU\n", qdict_get_bool(qobject_to_qdict(data), "enabled") ? "enabled" : "disabled"); } /** * do_info_hpet(): Show HPET state * * Return a QDict with the following information: * * - "enabled": true if hpet if enabled, false otherwise * * Example: * * { "enabled": true } */ static void do_info_hpet(Monitor *mon, QObject **ret_data) { *ret_data = qobject_from_jsonf("{ 'enabled': %i }", !no_hpet); } #endif static void do_info_uuid_print(Monitor *mon, const QObject *data) { monitor_printf(mon, "%s\n", qdict_get_str(qobject_to_qdict(data), "UUID")); } /** * do_info_uuid(): Show VM UUID * * Return a QDict with the following information: * * - "UUID": Universally Unique Identifier * * Example: * * { "UUID": "550e8400-e29b-41d4-a716-446655440000" } */ static void do_info_uuid(Monitor *mon, QObject **ret_data) { char uuid[64]; snprintf(uuid, sizeof(uuid), UUID_FMT, qemu_uuid[0], qemu_uuid[1], qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], qemu_uuid[5], qemu_uuid[6], qemu_uuid[7], qemu_uuid[8], qemu_uuid[9], qemu_uuid[10], qemu_uuid[11], qemu_uuid[12], qemu_uuid[13], qemu_uuid[14], qemu_uuid[15]); *ret_data = qobject_from_jsonf("{ 'UUID': %s }", uuid); } /* get the current CPU defined by the user */ static int mon_set_cpu(int cpu_index) { CPUState *env; for(env = first_cpu; env != NULL; env = env->next_cpu) { if (env->cpu_index == cpu_index) { cur_mon->mon_cpu = env; return 0; } } return -1; } static CPUState *mon_get_cpu(void) { if (!cur_mon->mon_cpu) { mon_set_cpu(0); } cpu_synchronize_state(cur_mon->mon_cpu); return cur_mon->mon_cpu; } static void do_info_registers(Monitor *mon) { CPUState *env; env = mon_get_cpu(); #ifdef TARGET_I386 cpu_dump_state(env, (FILE *)mon, monitor_fprintf, X86_DUMP_FPU); #else cpu_dump_state(env, (FILE *)mon, monitor_fprintf, 0); #endif } static void print_cpu_iter(QObject *obj, void *opaque) { QDict *cpu; int active = ' '; Monitor *mon = opaque; assert(qobject_type(obj) == QTYPE_QDICT); cpu = qobject_to_qdict(obj); if (qdict_get_bool(cpu, "current")) { active = '*'; } monitor_printf(mon, "%c CPU #%d: ", active, (int)qdict_get_int(cpu, "CPU")); #if defined(TARGET_I386) monitor_printf(mon, "pc=0x" TARGET_FMT_lx, (target_ulong) qdict_get_int(cpu, "pc")); #elif defined(TARGET_PPC) monitor_printf(mon, "nip=0x" TARGET_FMT_lx, (target_long) qdict_get_int(cpu, "nip")); #elif defined(TARGET_SPARC) monitor_printf(mon, "pc=0x " TARGET_FMT_lx, (target_long) qdict_get_int(cpu, "pc")); monitor_printf(mon, "npc=0x" TARGET_FMT_lx, (target_long) qdict_get_int(cpu, "npc")); #elif defined(TARGET_MIPS) monitor_printf(mon, "PC=0x" TARGET_FMT_lx, (target_long) qdict_get_int(cpu, "PC")); #endif if (qdict_get_bool(cpu, "halted")) { monitor_printf(mon, " (halted)"); } monitor_printf(mon, "\n"); } static void monitor_print_cpus(Monitor *mon, const QObject *data) { QList *cpu_list; assert(qobject_type(data) == QTYPE_QLIST); cpu_list = qobject_to_qlist(data); qlist_iter(cpu_list, print_cpu_iter, mon); } /** * do_info_cpus(): Show CPU information * * Return a QList. Each CPU is represented by a QDict, which contains: * * - "cpu": CPU index * - "current": true if this is the current CPU, false otherwise * - "halted": true if the cpu is halted, false otherwise * - Current program counter. The key's name depends on the architecture: * "pc": i386/x86)64 * "nip": PPC * "pc" and "npc": sparc * "PC": mips * * Example: * * [ { "CPU": 0, "current": true, "halted": false, "pc": 3227107138 }, * { "CPU": 1, "current": false, "halted": true, "pc": 7108165 } ] */ static void do_info_cpus(Monitor *mon, QObject **ret_data) { CPUState *env; QList *cpu_list; cpu_list = qlist_new(); /* just to set the default cpu if not already done */ mon_get_cpu(); for(env = first_cpu; env != NULL; env = env->next_cpu) { QDict *cpu; QObject *obj; cpu_synchronize_state(env); obj = qobject_from_jsonf("{ 'CPU': %d, 'current': %i, 'halted': %i }", env->cpu_index, env == mon->mon_cpu, env->halted); cpu = qobject_to_qdict(obj); #if defined(TARGET_I386) qdict_put(cpu, "pc", qint_from_int(env->eip + env->segs[R_CS].base)); #elif defined(TARGET_PPC) qdict_put(cpu, "nip", qint_from_int(env->nip)); #elif defined(TARGET_SPARC) qdict_put(cpu, "pc", qint_from_int(env->pc)); qdict_put(cpu, "npc", qint_from_int(env->npc)); #elif defined(TARGET_MIPS) qdict_put(cpu, "PC", qint_from_int(env->active_tc.PC)); #endif qlist_append(cpu_list, cpu); } *ret_data = QOBJECT(cpu_list); } static void do_cpu_set(Monitor *mon, const QDict *qdict, QObject **ret_data) { int index = qdict_get_int(qdict, "index"); if (mon_set_cpu(index) < 0) qemu_error_new(QERR_INVALID_PARAMETER, "index"); } static void do_info_jit(Monitor *mon) { dump_exec_info((FILE *)mon, monitor_fprintf); } static void do_info_history(Monitor *mon) { int i; const char *str; if (!mon->rs) return; i = 0; for(;;) { str = readline_get_history(mon->rs, i); if (!str) break; monitor_printf(mon, "%d: '%s'\n", i, str); i++; } } #if defined(TARGET_PPC) /* XXX: not implemented in other targets */ static void do_info_cpu_stats(Monitor *mon) { CPUState *env; env = mon_get_cpu(); cpu_dump_statistics(env, (FILE *)mon, &monitor_fprintf, 0); } #endif /** * do_quit(): Quit QEMU execution */ static int do_quit(Monitor *mon, const QDict *qdict, QObject **ret_data) { exit(0); return 0; } static int eject_device(Monitor *mon, BlockDriverState *bs, int force) { if (bdrv_is_inserted(bs)) { if (!force) { if (!bdrv_is_removable(bs)) { qemu_error_new(QERR_DEVICE_NOT_REMOVABLE, bdrv_get_device_name(bs)); return -1; } if (bdrv_is_locked(bs)) { qemu_error_new(QERR_DEVICE_LOCKED, bdrv_get_device_name(bs)); return -1; } } bdrv_close(bs); } return 0; } static void do_eject(Monitor *mon, const QDict *qdict, QObject **ret_data) { BlockDriverState *bs; int force = qdict_get_int(qdict, "force"); const char *filename = qdict_get_str(qdict, "device"); bs = bdrv_find(filename); if (!bs) { qemu_error_new(QERR_DEVICE_NOT_FOUND, filename); return; } eject_device(mon, bs, force); } static void do_block_set_passwd(Monitor *mon, const QDict *qdict, QObject **ret_data) { BlockDriverState *bs; bs = bdrv_find(qdict_get_str(qdict, "device")); if (!bs) { qemu_error_new(QERR_DEVICE_NOT_FOUND, qdict_get_str(qdict, "device")); return; } if (bdrv_set_key(bs, qdict_get_str(qdict, "password")) < 0) { qemu_error_new(QERR_INVALID_PASSWORD); } } static void do_change_block(Monitor *mon, const char *device, const char *filename, const char *fmt) { BlockDriverState *bs; BlockDriver *drv = NULL; bs = bdrv_find(device); if (!bs) { qemu_error_new(QERR_DEVICE_NOT_FOUND, device); return; } if (fmt) { drv = bdrv_find_whitelisted_format(fmt); if (!drv) { qemu_error_new(QERR_INVALID_BLOCK_FORMAT, fmt); return; } } if (eject_device(mon, bs, 0) < 0) return; bdrv_open2(bs, filename, BDRV_O_RDWR, drv); monitor_read_bdrv_key_start(mon, bs, NULL, NULL); } static void change_vnc_password(const char *password) { if (vnc_display_password(NULL, password) < 0) qemu_error_new(QERR_SET_PASSWD_FAILED); } static void change_vnc_password_cb(Monitor *mon, const char *password, void *opaque) { change_vnc_password(password); monitor_read_command(mon, 1); } static void do_change_vnc(Monitor *mon, const char *target, const char *arg) { if (strcmp(target, "passwd") == 0 || strcmp(target, "password") == 0) { if (arg) { char password[9]; strncpy(password, arg, sizeof(password)); password[sizeof(password) - 1] = '\0'; change_vnc_password(password); } else { monitor_read_password(mon, change_vnc_password_cb, NULL); } } else { if (vnc_display_open(NULL, target) < 0) qemu_error_new(QERR_VNC_SERVER_FAILED, target); } } /** * do_change(): Change a removable medium, or VNC configuration */ static void do_change(Monitor *mon, const QDict *qdict, QObject **ret_data) { const char *device = qdict_get_str(qdict, "device"); const char *target = qdict_get_str(qdict, "target"); const char *arg = qdict_get_try_str(qdict, "arg"); if (strcmp(device, "vnc") == 0) { do_change_vnc(mon, target, arg); } else { do_change_block(mon, device, target, arg); } } static void do_screen_dump(Monitor *mon, const QDict *qdict) { vga_hw_screen_dump(qdict_get_str(qdict, "filename")); } static void do_logfile(Monitor *mon, const QDict *qdict) { cpu_set_log_filename(qdict_get_str(qdict, "filename")); } static void do_log(Monitor *mon, const QDict *qdict) { int mask; const char *items = qdict_get_str(qdict, "items"); if (!strcmp(items, "none")) { mask = 0; } else { mask = cpu_str_to_log_mask(items); if (!mask) { help_cmd(mon, "log"); return; } } cpu_set_log(mask); } static void do_singlestep(Monitor *mon, const QDict *qdict) { const char *option = qdict_get_try_str(qdict, "option"); if (!option || !strcmp(option, "on")) { singlestep = 1; } else if (!strcmp(option, "off")) { singlestep = 0; } else { monitor_printf(mon, "unexpected option %s\n", option); } } /** * do_stop(): Stop VM execution */ static int do_stop(Monitor *mon, const QDict *qdict, QObject **ret_data) { vm_stop(EXCP_INTERRUPT); return 0; } static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs); struct bdrv_iterate_context { Monitor *mon; int err; }; /** * do_cont(): Resume emulation. */ static int do_cont(Monitor *mon, const QDict *qdict, QObject **ret_data) { struct bdrv_iterate_context context = { mon, 0 }; bdrv_iterate(encrypted_bdrv_it, &context); /* only resume the vm if all keys are set and valid */ if (!context.err) { vm_start(); return 0; } else { return -1; } } static void bdrv_key_cb(void *opaque, int err) { Monitor *mon = opaque; /* another key was set successfully, retry to continue */ if (!err) do_cont(mon, NULL, NULL); } static void encrypted_bdrv_it(void *opaque, BlockDriverState *bs) { struct bdrv_iterate_context *context = opaque; if (!context->err && bdrv_key_required(bs)) { context->err = -EBUSY; monitor_read_bdrv_key_start(context->mon, bs, bdrv_key_cb, context->mon); } } static void do_gdbserver(Monitor *mon, const QDict *qdict) { const char *device = qdict_get_try_str(qdict, "device"); if (!device) device = "tcp::" DEFAULT_GDBSTUB_PORT; if (gdbserver_start(device) < 0) { monitor_printf(mon, "Could not open gdbserver on device '%s'\n", device); } else if (strcmp(device, "none") == 0) { monitor_printf(mon, "Disabled gdbserver\n"); } else { monitor_printf(mon, "Waiting for gdb connection on device '%s'\n", device); } } static void do_watchdog_action(Monitor *mon, const QDict *qdict) { const char *action = qdict_get_str(qdict, "action"); if (select_watchdog_action(action) == -1) { monitor_printf(mon, "Unknown watchdog action '%s'\n", action); } } static void monitor_printc(Monitor *mon, int c) { monitor_printf(mon, "'"); switch(c) { case '\'': monitor_printf(mon, "\\'"); break; case '\\': monitor_printf(mon, "\\\\"); break; case '\n': monitor_printf(mon, "\\n"); break; case '\r': monitor_printf(mon, "\\r"); break; default: if (c >= 32 && c <= 126) { monitor_printf(mon, "%c", c); } else { monitor_printf(mon, "\\x%02x", c); } break; } monitor_printf(mon, "'"); } static void memory_dump(Monitor *mon, int count, int format, int wsize, target_phys_addr_t addr, int is_physical) { CPUState *env; int l, line_size, i, max_digits, len; uint8_t buf[16]; uint64_t v; if (format == 'i') { int flags; flags = 0; env = mon_get_cpu(); if (!is_physical) return; #ifdef TARGET_I386 if (wsize == 2) { flags = 1; } else if (wsize == 4) { flags = 0; } else { /* as default we use the current CS size */ flags = 0; if (env) { #ifdef TARGET_X86_64 if ((env->efer & MSR_EFER_LMA) && (env->segs[R_CS].flags & DESC_L_MASK)) flags = 2; else #endif if (!(env->segs[R_CS].flags & DESC_B_MASK)) flags = 1; } } #endif monitor_disas(mon, env, addr, count, is_physical, flags); return; } len = wsize * count; if (wsize == 1) line_size = 8; else line_size = 16; max_digits = 0; switch(format) { case 'o': max_digits = (wsize * 8 + 2) / 3; break; default: case 'x': max_digits = (wsize * 8) / 4; break; case 'u': case 'd': max_digits = (wsize * 8 * 10 + 32) / 33; break; case 'c': wsize = 1; break; } while (len > 0) { if (is_physical) monitor_printf(mon, TARGET_FMT_plx ":", addr); else monitor_printf(mon, TARGET_FMT_lx ":", (target_ulong)addr); l = len; if (l > line_size) l = line_size; if (is_physical) { cpu_physical_memory_rw(addr, buf, l, 0); } else { env = mon_get_cpu(); if (cpu_memory_rw_debug(env, addr, buf, l, 0) < 0) { monitor_printf(mon, " Cannot access memory\n"); break; } } i = 0; while (i < l) { switch(wsize) { default: case 1: v = ldub_raw(buf + i); break; case 2: v = lduw_raw(buf + i); break; case 4: v = (uint32_t)ldl_raw(buf + i); break; case 8: v = ldq_raw(buf + i); break; } monitor_printf(mon, " "); switch(format) { case 'o': monitor_printf(mon, "%#*" PRIo64, max_digits, v); break; case 'x': monitor_printf(mon, "0x%0*" PRIx64, max_digits, v); break; case 'u': monitor_printf(mon, "%*" PRIu64, max_digits, v); break; case 'd': monitor_printf(mon, "%*" PRId64, max_digits, v); break; case 'c': monitor_printc(mon, v); break; } i += wsize; } monitor_printf(mon, "\n"); addr += l; len -= l; } } static void do_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); target_long addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 0); } static void do_physical_memory_dump(Monitor *mon, const QDict *qdict) { int count = qdict_get_int(qdict, "count"); int format = qdict_get_int(qdict, "format"); int size = qdict_get_int(qdict, "size"); target_phys_addr_t addr = qdict_get_int(qdict, "addr"); memory_dump(mon, count, format, size, addr, 1); } static void do_print(Monitor *mon, const QDict *qdict) { int format = qdict_get_int(qdict, "format"); target_phys_addr_t val = qdict_get_int(qdict, "val"); #if TARGET_PHYS_ADDR_BITS == 32 switch(format) { case 'o': monitor_printf(mon, "%#o", val); break; case 'x': monitor_printf(mon, "%#x", val); break; case 'u': monitor_printf(mon, "%u", val); break; default: case 'd': monitor_printf(mon, "%d", val); break; case 'c': monitor_printc(mon, val); break; } #else switch(format) { case 'o': monitor_printf(mon, "%#" PRIo64, val); break; case 'x': monitor_printf(mon, "%#" PRIx64, val); break; case 'u': monitor_printf(mon, "%" PRIu64, val); break; default: case 'd': monitor_printf(mon, "%" PRId64, val); break; case 'c': monitor_printc(mon, val); break; } #endif monitor_printf(mon, "\n"); } static void do_memory_save(Monitor *mon, const QDict *qdict, QObject **ret_data) { FILE *f; uint32_t size = qdict_get_int(qdict, "size"); const char *filename = qdict_get_str(qdict, "filename"); target_long addr = qdict_get_int(qdict, "val"); uint32_t l; CPUState *env; uint8_t buf[1024]; env = mon_get_cpu(); f = fopen(filename, "wb"); if (!f) { qemu_error_new(QERR_OPEN_FILE_FAILED, filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_memory_rw_debug(env, addr, buf, l, 0); if (fwrite(buf, 1, l, f) != l) { monitor_printf(mon, "fwrite() error in do_memory_save\n"); goto exit; } addr += l; size -= l; } exit: fclose(f); } static void do_physical_memory_save(Monitor *mon, const QDict *qdict, QObject **ret_data) { FILE *f; uint32_t l; uint8_t buf[1024]; uint32_t size = qdict_get_int(qdict, "size"); const char *filename = qdict_get_str(qdict, "filename"); target_phys_addr_t addr = qdict_get_int(qdict, "val"); f = fopen(filename, "wb"); if (!f) { qemu_error_new(QERR_OPEN_FILE_FAILED, filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_physical_memory_rw(addr, buf, l, 0); if (fwrite(buf, 1, l, f) != l) { monitor_printf(mon, "fwrite() error in do_physical_memory_save\n"); goto exit; } fflush(f); addr += l; size -= l; } exit: fclose(f); } static void do_sum(Monitor *mon, const QDict *qdict) { uint32_t addr; uint8_t buf[1]; uint16_t sum; uint32_t start = qdict_get_int(qdict, "start"); uint32_t size = qdict_get_int(qdict, "size"); sum = 0; for(addr = start; addr < (start + size); addr++) { cpu_physical_memory_rw(addr, buf, 1, 0); /* BSD sum algorithm ('sum' Unix command) */ sum = (sum >> 1) | (sum << 15); sum += buf[0]; } monitor_printf(mon, "%05d\n", sum); } typedef struct { int keycode; const char *name; } KeyDef; static const KeyDef key_defs[] = { { 0x2a, "shift" }, { 0x36, "shift_r" }, { 0x38, "alt" }, { 0xb8, "alt_r" }, { 0x64, "altgr" }, { 0xe4, "altgr_r" }, { 0x1d, "ctrl" }, { 0x9d, "ctrl_r" }, { 0xdd, "menu" }, { 0x01, "esc" }, { 0x02, "1" }, { 0x03, "2" }, { 0x04, "3" }, { 0x05, "4" }, { 0x06, "5" }, { 0x07, "6" }, { 0x08, "7" }, { 0x09, "8" }, { 0x0a, "9" }, { 0x0b, "0" }, { 0x0c, "minus" }, { 0x0d, "equal" }, { 0x0e, "backspace" }, { 0x0f, "tab" }, { 0x10, "q" }, { 0x11, "w" }, { 0x12, "e" }, { 0x13, "r" }, { 0x14, "t" }, { 0x15, "y" }, { 0x16, "u" }, { 0x17, "i" }, { 0x18, "o" }, { 0x19, "p" }, { 0x1c, "ret" }, { 0x1e, "a" }, { 0x1f, "s" }, { 0x20, "d" }, { 0x21, "f" }, { 0x22, "g" }, { 0x23, "h" }, { 0x24, "j" }, { 0x25, "k" }, { 0x26, "l" }, { 0x2c, "z" }, { 0x2d, "x" }, { 0x2e, "c" }, { 0x2f, "v" }, { 0x30, "b" }, { 0x31, "n" }, { 0x32, "m" }, { 0x33, "comma" }, { 0x34, "dot" }, { 0x35, "slash" }, { 0x37, "asterisk" }, { 0x39, "spc" }, { 0x3a, "caps_lock" }, { 0x3b, "f1" }, { 0x3c, "f2" }, { 0x3d, "f3" }, { 0x3e, "f4" }, { 0x3f, "f5" }, { 0x40, "f6" }, { 0x41, "f7" }, { 0x42, "f8" }, { 0x43, "f9" }, { 0x44, "f10" }, { 0x45, "num_lock" }, { 0x46, "scroll_lock" }, { 0xb5, "kp_divide" }, { 0x37, "kp_multiply" }, { 0x4a, "kp_subtract" }, { 0x4e, "kp_add" }, { 0x9c, "kp_enter" }, { 0x53, "kp_decimal" }, { 0x54, "sysrq" }, { 0x52, "kp_0" }, { 0x4f, "kp_1" }, { 0x50, "kp_2" }, { 0x51, "kp_3" }, { 0x4b, "kp_4" }, { 0x4c, "kp_5" }, { 0x4d, "kp_6" }, { 0x47, "kp_7" }, { 0x48, "kp_8" }, { 0x49, "kp_9" }, { 0x56, "<" }, { 0x57, "f11" }, { 0x58, "f12" }, { 0xb7, "print" }, { 0xc7, "home" }, { 0xc9, "pgup" }, { 0xd1, "pgdn" }, { 0xcf, "end" }, { 0xcb, "left" }, { 0xc8, "up" }, { 0xd0, "down" }, { 0xcd, "right" }, { 0xd2, "insert" }, { 0xd3, "delete" }, #if defined(TARGET_SPARC) && !defined(TARGET_SPARC64) { 0xf0, "stop" }, { 0xf1, "again" }, { 0xf2, "props" }, { 0xf3, "undo" }, { 0xf4, "front" }, { 0xf5, "copy" }, { 0xf6, "open" }, { 0xf7, "paste" }, { 0xf8, "find" }, { 0xf9, "cut" }, { 0xfa, "lf" }, { 0xfb, "help" }, { 0xfc, "meta_l" }, { 0xfd, "meta_r" }, { 0xfe, "compose" }, #endif { 0, NULL }, }; static int get_keycode(const char *key) { const KeyDef *p; char *endp; int ret; for(p = key_defs; p->name != NULL; p++) { if (!strcmp(key, p->name)) return p->keycode; } if (strstart(key, "0x", NULL)) { ret = strtoul(key, &endp, 0); if (*endp == '\0' && ret >= 0x01 && ret <= 0xff) return ret; } return -1; } #define MAX_KEYCODES 16 static uint8_t keycodes[MAX_KEYCODES]; static int nb_pending_keycodes; static QEMUTimer *key_timer; static void release_keys(void *opaque) { int keycode; while (nb_pending_keycodes > 0) { nb_pending_keycodes--; keycode = keycodes[nb_pending_keycodes]; if (keycode & 0x80) kbd_put_keycode(0xe0); kbd_put_keycode(keycode | 0x80); } } static void do_sendkey(Monitor *mon, const QDict *qdict) { char keyname_buf[16]; char *separator; int keyname_len, keycode, i; const char *string = qdict_get_str(qdict, "string"); int has_hold_time = qdict_haskey(qdict, "hold_time"); int hold_time = qdict_get_try_int(qdict, "hold_time", -1); if (nb_pending_keycodes > 0) { qemu_del_timer(key_timer); release_keys(NULL); } if (!has_hold_time) hold_time = 100; i = 0; while (1) { separator = strchr(string, '-'); keyname_len = separator ? separator - string : strlen(string); if (keyname_len > 0) { pstrcpy(keyname_buf, sizeof(keyname_buf), string); if (keyname_len > sizeof(keyname_buf) - 1) { monitor_printf(mon, "invalid key: '%s...'\n", keyname_buf); return; } if (i == MAX_KEYCODES) { monitor_printf(mon, "too many keys\n"); return; } keyname_buf[keyname_len] = 0; keycode = get_keycode(keyname_buf); if (keycode < 0) { monitor_printf(mon, "unknown key: '%s'\n", keyname_buf); return; } keycodes[i++] = keycode; } if (!separator) break; string = separator + 1; } nb_pending_keycodes = i; /* key down events */ for (i = 0; i < nb_pending_keycodes; i++) { keycode = keycodes[i]; if (keycode & 0x80) kbd_put_keycode(0xe0); kbd_put_keycode(keycode & 0x7f); } /* delayed key up events */ qemu_mod_timer(key_timer, qemu_get_clock(vm_clock) + muldiv64(get_ticks_per_sec(), hold_time, 1000)); } static int mouse_button_state; static void do_mouse_move(Monitor *mon, const QDict *qdict) { int dx, dy, dz; const char *dx_str = qdict_get_str(qdict, "dx_str"); const char *dy_str = qdict_get_str(qdict, "dy_str"); const char *dz_str = qdict_get_try_str(qdict, "dz_str"); dx = strtol(dx_str, NULL, 0); dy = strtol(dy_str, NULL, 0); dz = 0; if (dz_str) dz = strtol(dz_str, NULL, 0); kbd_mouse_event(dx, dy, dz, mouse_button_state); } static void do_mouse_button(Monitor *mon, const QDict *qdict) { int button_state = qdict_get_int(qdict, "button_state"); mouse_button_state = button_state; kbd_mouse_event(0, 0, 0, mouse_button_state); } static void do_ioport_read(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int has_index = qdict_haskey(qdict, "index"); uint32_t val; int suffix; if (has_index) { int index = qdict_get_int(qdict, "index"); cpu_outb(addr & IOPORTS_MASK, index & 0xff); addr++; } addr &= 0xffff; switch(size) { default: case 1: val = cpu_inb(addr); suffix = 'b'; break; case 2: val = cpu_inw(addr); suffix = 'w'; break; case 4: val = cpu_inl(addr); suffix = 'l'; break; } monitor_printf(mon, "port%c[0x%04x] = %#0*x\n", suffix, addr, size * 2, val); } static void do_ioport_write(Monitor *mon, const QDict *qdict) { int size = qdict_get_int(qdict, "size"); int addr = qdict_get_int(qdict, "addr"); int val = qdict_get_int(qdict, "val"); addr &= IOPORTS_MASK; switch (size) { default: case 1: cpu_outb(addr, val); break; case 2: cpu_outw(addr, val); break; case 4: cpu_outl(addr, val); break; } } static void do_boot_set(Monitor *mon, const QDict *qdict) { int res; const char *bootdevice = qdict_get_str(qdict, "bootdevice"); res = qemu_boot_set(bootdevice); if (res == 0) { monitor_printf(mon, "boot device list now set to %s\n", bootdevice); } else if (res > 0) { monitor_printf(mon, "setting boot device list failed\n"); } else { monitor_printf(mon, "no function defined to set boot device list for " "this architecture\n"); } } /** * do_system_reset(): Issue a machine reset */ static int do_system_reset(Monitor *mon, const QDict *qdict, QObject **ret_data) { qemu_system_reset_request(); return 0; } /** * do_system_powerdown(): Issue a machine powerdown */ static int do_system_powerdown(Monitor *mon, const QDict *qdict, QObject **ret_data) { qemu_system_powerdown_request(); return 0; } #if defined(TARGET_I386) static void print_pte(Monitor *mon, uint32_t addr, uint32_t pte, uint32_t mask) { monitor_printf(mon, "%08x: %08x %c%c%c%c%c%c%c%c\n", addr, pte & mask, pte & PG_GLOBAL_MASK ? 'G' : '-', pte & PG_PSE_MASK ? 'P' : '-', pte & PG_DIRTY_MASK ? 'D' : '-', pte & PG_ACCESSED_MASK ? 'A' : '-', pte & PG_PCD_MASK ? 'C' : '-', pte & PG_PWT_MASK ? 'T' : '-', pte & PG_USER_MASK ? 'U' : '-', pte & PG_RW_MASK ? 'W' : '-'); } static void tlb_info(Monitor *mon) { CPUState *env; int l1, l2; uint32_t pgd, pde, pte; env = mon_get_cpu(); if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } pgd = env->cr[3] & ~0xfff; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4); pde = le32_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { print_pte(mon, (l1 << 22), pde, ~((1 << 20) - 1)); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, (uint8_t *)&pte, 4); pte = le32_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, (l1 << 22) + (l2 << 12), pte & ~PG_PSE_MASK, ~0xfff); } } } } } } static void mem_print(Monitor *mon, uint32_t *pstart, int *plast_prot, uint32_t end, int prot) { int prot1; prot1 = *plast_prot; if (prot != prot1) { if (*pstart != -1) { monitor_printf(mon, "%08x-%08x %08x %c%c%c\n", *pstart, end, end - *pstart, prot1 & PG_USER_MASK ? 'u' : '-', 'r', prot1 & PG_RW_MASK ? 'w' : '-'); } if (prot != 0) *pstart = end; else *pstart = -1; *plast_prot = prot; } } static void mem_info(Monitor *mon) { CPUState *env; int l1, l2, prot, last_prot; uint32_t pgd, pde, pte, start, end; env = mon_get_cpu(); if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } pgd = env->cr[3] & ~0xfff; last_prot = 0; start = -1; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4); pde = le32_to_cpu(pde); end = l1 << 22; if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(mon, &start, &last_prot, end, prot); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, (uint8_t *)&pte, 4); pte = le32_to_cpu(pte); end = (l1 << 22) + (l2 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(mon, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, &start, &last_prot, end, prot); } } } #endif #if defined(TARGET_SH4) static void print_tlb(Monitor *mon, int idx, tlb_t *tlb) { monitor_printf(mon, " tlb%i:\t" "asid=%hhu vpn=%x\tppn=%x\tsz=%hhu size=%u\t" "v=%hhu shared=%hhu cached=%hhu prot=%hhu " "dirty=%hhu writethrough=%hhu\n", idx, tlb->asid, tlb->vpn, tlb->ppn, tlb->sz, tlb->size, tlb->v, tlb->sh, tlb->c, tlb->pr, tlb->d, tlb->wt); } static void tlb_info(Monitor *mon) { CPUState *env = mon_get_cpu(); int i; monitor_printf (mon, "ITLB:\n"); for (i = 0 ; i < ITLB_SIZE ; i++) print_tlb (mon, i, &env->itlb[i]); monitor_printf (mon, "UTLB:\n"); for (i = 0 ; i < UTLB_SIZE ; i++) print_tlb (mon, i, &env->utlb[i]); } #endif static void do_info_kvm_print(Monitor *mon, const QObject *data) { QDict *qdict; qdict = qobject_to_qdict(data); monitor_printf(mon, "kvm support: "); if (qdict_get_bool(qdict, "present")) { monitor_printf(mon, "%s\n", qdict_get_bool(qdict, "enabled") ? "enabled" : "disabled"); } else { monitor_printf(mon, "not compiled\n"); } } /** * do_info_kvm(): Show KVM information * * Return a QDict with the following information: * * - "enabled": true if KVM support is enabled, false otherwise * - "present": true if QEMU has KVM support, false otherwise * * Example: * * { "enabled": true, "present": true } */ static void do_info_kvm(Monitor *mon, QObject **ret_data) { #ifdef CONFIG_KVM *ret_data = qobject_from_jsonf("{ 'enabled': %i, 'present': true }", kvm_enabled()); #else *ret_data = qobject_from_jsonf("{ 'enabled': false, 'present': false }"); #endif } static void do_info_numa(Monitor *mon) { int i; CPUState *env; monitor_printf(mon, "%d nodes\n", nb_numa_nodes); for (i = 0; i < nb_numa_nodes; i++) { monitor_printf(mon, "node %d cpus:", i); for (env = first_cpu; env != NULL; env = env->next_cpu) { if (env->numa_node == i) { monitor_printf(mon, " %d", env->cpu_index); } } monitor_printf(mon, "\n"); monitor_printf(mon, "node %d size: %" PRId64 " MB\n", i, node_mem[i] >> 20); } } #ifdef CONFIG_PROFILER int64_t qemu_time; int64_t dev_time; static void do_info_profile(Monitor *mon) { int64_t total; total = qemu_time; if (total == 0) total = 1; monitor_printf(mon, "async time %" PRId64 " (%0.3f)\n", dev_time, dev_time / (double)get_ticks_per_sec()); monitor_printf(mon, "qemu time %" PRId64 " (%0.3f)\n", qemu_time, qemu_time / (double)get_ticks_per_sec()); qemu_time = 0; dev_time = 0; } #else static void do_info_profile(Monitor *mon) { monitor_printf(mon, "Internal profiler not compiled\n"); } #endif /* Capture support */ static QLIST_HEAD (capture_list_head, CaptureState) capture_head; static void do_info_capture(Monitor *mon) { int i; CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { monitor_printf(mon, "[%d]: ", i); s->ops.info (s->opaque); } } #ifdef HAS_AUDIO static void do_stop_capture(Monitor *mon, const QDict *qdict) { int i; int n = qdict_get_int(qdict, "n"); CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { if (i == n) { s->ops.destroy (s->opaque); QLIST_REMOVE (s, entries); qemu_free (s); return; } } } static void do_wav_capture(Monitor *mon, const QDict *qdict) { const char *path = qdict_get_str(qdict, "path"); int has_freq = qdict_haskey(qdict, "freq"); int freq = qdict_get_try_int(qdict, "freq", -1); int has_bits = qdict_haskey(qdict, "bits"); int bits = qdict_get_try_int(qdict, "bits", -1); int has_channels = qdict_haskey(qdict, "nchannels"); int nchannels = qdict_get_try_int(qdict, "nchannels", -1); CaptureState *s; s = qemu_mallocz (sizeof (*s)); freq = has_freq ? freq : 44100; bits = has_bits ? bits : 16; nchannels = has_channels ? nchannels : 2; if (wav_start_capture (s, path, freq, bits, nchannels)) { monitor_printf(mon, "Faied to add wave capture\n"); qemu_free (s); } QLIST_INSERT_HEAD (&capture_head, s, entries); } #endif #if defined(TARGET_I386) static void do_inject_nmi(Monitor *mon, const QDict *qdict) { CPUState *env; int cpu_index = qdict_get_int(qdict, "cpu_index"); for (env = first_cpu; env != NULL; env = env->next_cpu) if (env->cpu_index == cpu_index) { cpu_interrupt(env, CPU_INTERRUPT_NMI); break; } } #endif static void do_info_status_print(Monitor *mon, const QObject *data) { QDict *qdict; qdict = qobject_to_qdict(data); monitor_printf(mon, "VM status: "); if (qdict_get_bool(qdict, "running")) { monitor_printf(mon, "running"); if (qdict_get_bool(qdict, "singlestep")) { monitor_printf(mon, " (single step mode)"); } } else { monitor_printf(mon, "paused"); } monitor_printf(mon, "\n"); } /** * do_info_status(): VM status * * Return a QDict with the following information: * * - "running": true if the VM is running, or false if it is paused * - "singlestep": true if the VM is in single step mode, false otherwise * * Example: * * { "running": true, "singlestep": false } */ static void do_info_status(Monitor *mon, QObject **ret_data) { *ret_data = qobject_from_jsonf("{ 'running': %i, 'singlestep': %i }", vm_running, singlestep); } static void print_balloon_stat(const char *key, QObject *obj, void *opaque) { Monitor *mon = opaque; if (strcmp(key, "actual")) monitor_printf(mon, ",%s=%" PRId64, key, qint_get_int(qobject_to_qint(obj))); } static void monitor_print_balloon(Monitor *mon, const QObject *data) { QDict *qdict; qdict = qobject_to_qdict(data); if (!qdict_haskey(qdict, "actual")) return; monitor_printf(mon, "balloon: actual=%" PRId64, qdict_get_int(qdict, "actual") >> 20); qdict_iter(qdict, print_balloon_stat, mon); monitor_printf(mon, "\n"); } /** * do_info_balloon(): Balloon information * * Make an asynchronous request for balloon info. When the request completes * a QDict will be returned according to the following specification: * * - "actual": current balloon value in bytes * The following fields may or may not be present: * - "mem_swapped_in": Amount of memory swapped in (bytes) * - "mem_swapped_out": Amount of memory swapped out (bytes) * - "major_page_faults": Number of major faults * - "minor_page_faults": Number of minor faults * - "free_mem": Total amount of free and unused memory (bytes) * - "total_mem": Total amount of available memory (bytes) * * Example: * * { "actual": 1073741824, "mem_swapped_in": 0, "mem_swapped_out": 0, * "major_page_faults": 142, "minor_page_faults": 239245, * "free_mem": 1014185984, "total_mem": 1044668416 } */ static int do_info_balloon(Monitor *mon, MonitorCompletion cb, void *opaque) { int ret; if (kvm_enabled() && !kvm_has_sync_mmu()) { qemu_error_new(QERR_KVM_MISSING_CAP, "synchronous MMU", "balloon"); return -1; } ret = qemu_balloon_status(cb, opaque); if (!ret) { qemu_error_new(QERR_DEVICE_NOT_ACTIVE, "balloon"); return -1; } return 0; } /** * do_balloon(): Request VM to change its memory allocation */ static int do_balloon(Monitor *mon, const QDict *params, MonitorCompletion cb, void *opaque) { int ret; if (kvm_enabled() && !kvm_has_sync_mmu()) { qemu_error_new(QERR_KVM_MISSING_CAP, "synchronous MMU", "balloon"); return -1; } ret = qemu_balloon(qdict_get_int(params, "value"), cb, opaque); if (ret == 0) { qemu_error_new(QERR_DEVICE_NOT_ACTIVE, "balloon"); return -1; } return 0; } static qemu_acl *find_acl(Monitor *mon, const char *name) { qemu_acl *acl = qemu_acl_find(name); if (!acl) { monitor_printf(mon, "acl: unknown list '%s'\n", name); } return acl; } static void do_acl_show(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); qemu_acl_entry *entry; int i = 0; if (acl) { monitor_printf(mon, "policy: %s\n", acl->defaultDeny ? "deny" : "allow"); QTAILQ_FOREACH(entry, &acl->entries, next) { i++; monitor_printf(mon, "%d: %s %s\n", i, entry->deny ? "deny" : "allow", entry->match); } } } static void do_acl_reset(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { qemu_acl_reset(acl); monitor_printf(mon, "acl: removed all rules\n"); } } static void do_acl_policy(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *policy = qdict_get_str(qdict, "policy"); qemu_acl *acl = find_acl(mon, aclname); if (acl) { if (strcmp(policy, "allow") == 0) { acl->defaultDeny = 0; monitor_printf(mon, "acl: policy set to 'allow'\n"); } else if (strcmp(policy, "deny") == 0) { acl->defaultDeny = 1; monitor_printf(mon, "acl: policy set to 'deny'\n"); } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); } } } static void do_acl_add(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); const char *policy = qdict_get_str(qdict, "policy"); int has_index = qdict_haskey(qdict, "index"); int index = qdict_get_try_int(qdict, "index", -1); qemu_acl *acl = find_acl(mon, aclname); int deny, ret; if (acl) { if (strcmp(policy, "allow") == 0) { deny = 0; } else if (strcmp(policy, "deny") == 0) { deny = 1; } else { monitor_printf(mon, "acl: unknown policy '%s', " "expected 'deny' or 'allow'\n", policy); return; } if (has_index) ret = qemu_acl_insert(acl, deny, match, index); else ret = qemu_acl_append(acl, deny, match); if (ret < 0) monitor_printf(mon, "acl: unable to add acl entry\n"); else monitor_printf(mon, "acl: added rule at position %d\n", ret); } } static void do_acl_remove(Monitor *mon, const QDict *qdict) { const char *aclname = qdict_get_str(qdict, "aclname"); const char *match = qdict_get_str(qdict, "match"); qemu_acl *acl = find_acl(mon, aclname); int ret; if (acl) { ret = qemu_acl_remove(acl, match); if (ret < 0) monitor_printf(mon, "acl: no matching acl entry\n"); else monitor_printf(mon, "acl: removed rule at position %d\n", ret); } } #if defined(TARGET_I386) static void do_inject_mce(Monitor *mon, const QDict *qdict) { CPUState *cenv; int cpu_index = qdict_get_int(qdict, "cpu_index"); int bank = qdict_get_int(qdict, "bank"); uint64_t status = qdict_get_int(qdict, "status"); uint64_t mcg_status = qdict_get_int(qdict, "mcg_status"); uint64_t addr = qdict_get_int(qdict, "addr"); uint64_t misc = qdict_get_int(qdict, "misc"); for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) if (cenv->cpu_index == cpu_index && cenv->mcg_cap) { cpu_inject_x86_mce(cenv, bank, status, mcg_status, addr, misc); break; } } #endif static void do_getfd(Monitor *mon, const QDict *qdict, QObject **ret_data) { const char *fdname = qdict_get_str(qdict, "fdname"); mon_fd_t *monfd; int fd; fd = qemu_chr_get_msgfd(mon->chr); if (fd == -1) { qemu_error_new(QERR_FD_NOT_SUPPLIED); return; } if (qemu_isdigit(fdname[0])) { qemu_error_new(QERR_INVALID_PARAMETER, "fdname"); return; } fd = dup(fd); if (fd == -1) { if (errno == EMFILE) qemu_error_new(QERR_TOO_MANY_FILES); else qemu_error_new(QERR_UNDEFINED_ERROR); return; } QLIST_FOREACH(monfd, &mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } close(monfd->fd); monfd->fd = fd; return; } monfd = qemu_mallocz(sizeof(mon_fd_t)); monfd->name = qemu_strdup(fdname); monfd->fd = fd; QLIST_INSERT_HEAD(&mon->fds, monfd, next); } static void do_closefd(Monitor *mon, const QDict *qdict, QObject **ret_data) { const char *fdname = qdict_get_str(qdict, "fdname"); mon_fd_t *monfd; QLIST_FOREACH(monfd, &mon->fds, next) { if (strcmp(monfd->name, fdname) != 0) { continue; } QLIST_REMOVE(monfd, next); close(monfd->fd); qemu_free(monfd->name); qemu_free(monfd); return; } qemu_error_new(QERR_FD_NOT_FOUND, fdname); } static void do_loadvm(Monitor *mon, const QDict *qdict) { int saved_vm_running = vm_running; const char *name = qdict_get_str(qdict, "name"); vm_stop(0); if (load_vmstate(mon, name) >= 0 && saved_vm_running) vm_start(); } int monitor_get_fd(Monitor *mon, const char *fdname) { mon_fd_t *monfd; QLIST_FOREACH(monfd, &mon->fds, next) { int fd; if (strcmp(monfd->name, fdname) != 0) { continue; } fd = monfd->fd; /* caller takes ownership of fd */ QLIST_REMOVE(monfd, next); qemu_free(monfd->name); qemu_free(monfd); return fd; } return -1; } static const mon_cmd_t mon_cmds[] = { #include "qemu-monitor.h" { NULL, NULL, }, }; /* Please update qemu-monitor.hx when adding or changing commands */ static const mon_cmd_t info_cmds[] = { { .name = "version", .args_type = "", .params = "", .help = "show the version of QEMU", .user_print = do_info_version_print, .mhandler.info_new = do_info_version, }, { .name = "commands", .args_type = "", .params = "", .help = "list QMP available commands", .user_print = monitor_user_noop, .mhandler.info_new = do_info_commands, }, { .name = "network", .args_type = "", .params = "", .help = "show the network state", .mhandler.info = do_info_network, }, { .name = "chardev", .args_type = "", .params = "", .help = "show the character devices", .user_print = qemu_chr_info_print, .mhandler.info_new = qemu_chr_info, }, { .name = "block", .args_type = "", .params = "", .help = "show the block devices", .user_print = bdrv_info_print, .mhandler.info_new = bdrv_info, }, { .name = "blockstats", .args_type = "", .params = "", .help = "show block device statistics", .user_print = bdrv_stats_print, .mhandler.info_new = bdrv_info_stats, }, { .name = "registers", .args_type = "", .params = "", .help = "show the cpu registers", .mhandler.info = do_info_registers, }, { .name = "cpus", .args_type = "", .params = "", .help = "show infos for each CPU", .user_print = monitor_print_cpus, .mhandler.info_new = do_info_cpus, }, { .name = "history", .args_type = "", .params = "", .help = "show the command line history", .mhandler.info = do_info_history, }, { .name = "irq", .args_type = "", .params = "", .help = "show the interrupts statistics (if available)", .mhandler.info = irq_info, }, { .name = "pic", .args_type = "", .params = "", .help = "show i8259 (PIC) state", .mhandler.info = pic_info, }, { .name = "pci", .args_type = "", .params = "", .help = "show PCI info", .user_print = do_pci_info_print, .mhandler.info_new = do_pci_info, }, #if defined(TARGET_I386) || defined(TARGET_SH4) { .name = "tlb", .args_type = "", .params = "", .help = "show virtual to physical memory mappings", .mhandler.info = tlb_info, }, #endif #if defined(TARGET_I386) { .name = "mem", .args_type = "", .params = "", .help = "show the active virtual memory mappings", .mhandler.info = mem_info, }, { .name = "hpet", .args_type = "", .params = "", .help = "show state of HPET", .user_print = do_info_hpet_print, .mhandler.info_new = do_info_hpet, }, #endif { .name = "jit", .args_type = "", .params = "", .help = "show dynamic compiler info", .mhandler.info = do_info_jit, }, { .name = "kvm", .args_type = "", .params = "", .help = "show KVM information", .user_print = do_info_kvm_print, .mhandler.info_new = do_info_kvm, }, { .name = "numa", .args_type = "", .params = "", .help = "show NUMA information", .mhandler.info = do_info_numa, }, { .name = "usb", .args_type = "", .params = "", .help = "show guest USB devices", .mhandler.info = usb_info, }, { .name = "usbhost", .args_type = "", .params = "", .help = "show host USB devices", .mhandler.info = usb_host_info, }, { .name = "profile", .args_type = "", .params = "", .help = "show profiling information", .mhandler.info = do_info_profile, }, { .name = "capture", .args_type = "", .params = "", .help = "show capture information", .mhandler.info = do_info_capture, }, { .name = "snapshots", .args_type = "", .params = "", .help = "show the currently saved VM snapshots", .mhandler.info = do_info_snapshots, }, { .name = "status", .args_type = "", .params = "", .help = "show the current VM status (running|paused)", .user_print = do_info_status_print, .mhandler.info_new = do_info_status, }, { .name = "pcmcia", .args_type = "", .params = "", .help = "show guest PCMCIA status", .mhandler.info = pcmcia_info, }, { .name = "mice", .args_type = "", .params = "", .help = "show which guest mouse is receiving events", .user_print = do_info_mice_print, .mhandler.info_new = do_info_mice, }, { .name = "vnc", .args_type = "", .params = "", .help = "show the vnc server status", .user_print = do_info_vnc_print, .mhandler.info_new = do_info_vnc, }, { .name = "name", .args_type = "", .params = "", .help = "show the current VM name", .user_print = do_info_name_print, .mhandler.info_new = do_info_name, }, { .name = "uuid", .args_type = "", .params = "", .help = "show the current VM UUID", .user_print = do_info_uuid_print, .mhandler.info_new = do_info_uuid, }, #if defined(TARGET_PPC) { .name = "cpustats", .args_type = "", .params = "", .help = "show CPU statistics", .mhandler.info = do_info_cpu_stats, }, #endif #if defined(CONFIG_SLIRP) { .name = "usernet", .args_type = "", .params = "", .help = "show user network stack connection states", .mhandler.info = do_info_usernet, }, #endif { .name = "migrate", .args_type = "", .params = "", .help = "show migration status", .user_print = do_info_migrate_print, .mhandler.info_new = do_info_migrate, }, { .name = "balloon", .args_type = "", .params = "", .help = "show balloon information", .user_print = monitor_print_balloon, .mhandler.info_async = do_info_balloon, .async = 1, }, { .name = "qtree", .args_type = "", .params = "", .help = "show device tree", .mhandler.info = do_info_qtree, }, { .name = "qdm", .args_type = "", .params = "", .help = "show qdev device model list", .mhandler.info = do_info_qdm, }, { .name = "roms", .args_type = "", .params = "", .help = "show roms", .mhandler.info = do_info_roms, }, { .name = NULL, }, }; /*******************************************************************/ static const char *pch; static jmp_buf expr_env; #define MD_TLONG 0 #define MD_I32 1 typedef struct MonitorDef { const char *name; int offset; target_long (*get_value)(const struct MonitorDef *md, int val); int type; } MonitorDef; #if defined(TARGET_I386) static target_long monitor_get_pc (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return env->eip + env->segs[R_CS].base; } #endif #if defined(TARGET_PPC) static target_long monitor_get_ccr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); unsigned int u; int i; u = 0; for (i = 0; i < 8; i++) u |= env->crf[i] << (32 - (4 * i)); return u; } static target_long monitor_get_msr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return env->msr; } static target_long monitor_get_xer (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return env->xer; } static target_long monitor_get_decr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return cpu_ppc_load_decr(env); } static target_long monitor_get_tbu (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return cpu_ppc_load_tbu(env); } static target_long monitor_get_tbl (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return cpu_ppc_load_tbl(env); } #endif #if defined(TARGET_SPARC) #ifndef TARGET_SPARC64 static target_long monitor_get_psr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return GET_PSR(env); } #endif static target_long monitor_get_reg(const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); return env->regwptr[val]; } #endif static const MonitorDef monitor_defs[] = { #ifdef TARGET_I386 #define SEG(name, seg) \ { name, offsetof(CPUState, segs[seg].selector), NULL, MD_I32 },\ { name ".base", offsetof(CPUState, segs[seg].base) },\ { name ".limit", offsetof(CPUState, segs[seg].limit), NULL, MD_I32 }, { "eax", offsetof(CPUState, regs[0]) }, { "ecx", offsetof(CPUState, regs[1]) }, { "edx", offsetof(CPUState, regs[2]) }, { "ebx", offsetof(CPUState, regs[3]) }, { "esp|sp", offsetof(CPUState, regs[4]) }, { "ebp|fp", offsetof(CPUState, regs[5]) }, { "esi", offsetof(CPUState, regs[6]) }, { "edi", offsetof(CPUState, regs[7]) }, #ifdef TARGET_X86_64 { "r8", offsetof(CPUState, regs[8]) }, { "r9", offsetof(CPUState, regs[9]) }, { "r10", offsetof(CPUState, regs[10]) }, { "r11", offsetof(CPUState, regs[11]) }, { "r12", offsetof(CPUState, regs[12]) }, { "r13", offsetof(CPUState, regs[13]) }, { "r14", offsetof(CPUState, regs[14]) }, { "r15", offsetof(CPUState, regs[15]) }, #endif { "eflags", offsetof(CPUState, eflags) }, { "eip", offsetof(CPUState, eip) }, SEG("cs", R_CS) SEG("ds", R_DS) SEG("es", R_ES) SEG("ss", R_SS) SEG("fs", R_FS) SEG("gs", R_GS) { "pc", 0, monitor_get_pc, }, #elif defined(TARGET_PPC) /* General purpose registers */ { "r0", offsetof(CPUState, gpr[0]) }, { "r1", offsetof(CPUState, gpr[1]) }, { "r2", offsetof(CPUState, gpr[2]) }, { "r3", offsetof(CPUState, gpr[3]) }, { "r4", offsetof(CPUState, gpr[4]) }, { "r5", offsetof(CPUState, gpr[5]) }, { "r6", offsetof(CPUState, gpr[6]) }, { "r7", offsetof(CPUState, gpr[7]) }, { "r8", offsetof(CPUState, gpr[8]) }, { "r9", offsetof(CPUState, gpr[9]) }, { "r10", offsetof(CPUState, gpr[10]) }, { "r11", offsetof(CPUState, gpr[11]) }, { "r12", offsetof(CPUState, gpr[12]) }, { "r13", offsetof(CPUState, gpr[13]) }, { "r14", offsetof(CPUState, gpr[14]) }, { "r15", offsetof(CPUState, gpr[15]) }, { "r16", offsetof(CPUState, gpr[16]) }, { "r17", offsetof(CPUState, gpr[17]) }, { "r18", offsetof(CPUState, gpr[18]) }, { "r19", offsetof(CPUState, gpr[19]) }, { "r20", offsetof(CPUState, gpr[20]) }, { "r21", offsetof(CPUState, gpr[21]) }, { "r22", offsetof(CPUState, gpr[22]) }, { "r23", offsetof(CPUState, gpr[23]) }, { "r24", offsetof(CPUState, gpr[24]) }, { "r25", offsetof(CPUState, gpr[25]) }, { "r26", offsetof(CPUState, gpr[26]) }, { "r27", offsetof(CPUState, gpr[27]) }, { "r28", offsetof(CPUState, gpr[28]) }, { "r29", offsetof(CPUState, gpr[29]) }, { "r30", offsetof(CPUState, gpr[30]) }, { "r31", offsetof(CPUState, gpr[31]) }, /* Floating point registers */ { "f0", offsetof(CPUState, fpr[0]) }, { "f1", offsetof(CPUState, fpr[1]) }, { "f2", offsetof(CPUState, fpr[2]) }, { "f3", offsetof(CPUState, fpr[3]) }, { "f4", offsetof(CPUState, fpr[4]) }, { "f5", offsetof(CPUState, fpr[5]) }, { "f6", offsetof(CPUState, fpr[6]) }, { "f7", offsetof(CPUState, fpr[7]) }, { "f8", offsetof(CPUState, fpr[8]) }, { "f9", offsetof(CPUState, fpr[9]) }, { "f10", offsetof(CPUState, fpr[10]) }, { "f11", offsetof(CPUState, fpr[11]) }, { "f12", offsetof(CPUState, fpr[12]) }, { "f13", offsetof(CPUState, fpr[13]) }, { "f14", offsetof(CPUState, fpr[14]) }, { "f15", offsetof(CPUState, fpr[15]) }, { "f16", offsetof(CPUState, fpr[16]) }, { "f17", offsetof(CPUState, fpr[17]) }, { "f18", offsetof(CPUState, fpr[18]) }, { "f19", offsetof(CPUState, fpr[19]) }, { "f20", offsetof(CPUState, fpr[20]) }, { "f21", offsetof(CPUState, fpr[21]) }, { "f22", offsetof(CPUState, fpr[22]) }, { "f23", offsetof(CPUState, fpr[23]) }, { "f24", offsetof(CPUState, fpr[24]) }, { "f25", offsetof(CPUState, fpr[25]) }, { "f26", offsetof(CPUState, fpr[26]) }, { "f27", offsetof(CPUState, fpr[27]) }, { "f28", offsetof(CPUState, fpr[28]) }, { "f29", offsetof(CPUState, fpr[29]) }, { "f30", offsetof(CPUState, fpr[30]) }, { "f31", offsetof(CPUState, fpr[31]) }, { "fpscr", offsetof(CPUState, fpscr) }, /* Next instruction pointer */ { "nip|pc", offsetof(CPUState, nip) }, { "lr", offsetof(CPUState, lr) }, { "ctr", offsetof(CPUState, ctr) }, { "decr", 0, &monitor_get_decr, }, { "ccr", 0, &monitor_get_ccr, }, /* Machine state register */ { "msr", 0, &monitor_get_msr, }, { "xer", 0, &monitor_get_xer, }, { "tbu", 0, &monitor_get_tbu, }, { "tbl", 0, &monitor_get_tbl, }, #if defined(TARGET_PPC64) /* Address space register */ { "asr", offsetof(CPUState, asr) }, #endif /* Segment registers */ { "sdr1", offsetof(CPUState, sdr1) }, { "sr0", offsetof(CPUState, sr[0]) }, { "sr1", offsetof(CPUState, sr[1]) }, { "sr2", offsetof(CPUState, sr[2]) }, { "sr3", offsetof(CPUState, sr[3]) }, { "sr4", offsetof(CPUState, sr[4]) }, { "sr5", offsetof(CPUState, sr[5]) }, { "sr6", offsetof(CPUState, sr[6]) }, { "sr7", offsetof(CPUState, sr[7]) }, { "sr8", offsetof(CPUState, sr[8]) }, { "sr9", offsetof(CPUState, sr[9]) }, { "sr10", offsetof(CPUState, sr[10]) }, { "sr11", offsetof(CPUState, sr[11]) }, { "sr12", offsetof(CPUState, sr[12]) }, { "sr13", offsetof(CPUState, sr[13]) }, { "sr14", offsetof(CPUState, sr[14]) }, { "sr15", offsetof(CPUState, sr[15]) }, /* Too lazy to put BATs and SPRs ... */ #elif defined(TARGET_SPARC) { "g0", offsetof(CPUState, gregs[0]) }, { "g1", offsetof(CPUState, gregs[1]) }, { "g2", offsetof(CPUState, gregs[2]) }, { "g3", offsetof(CPUState, gregs[3]) }, { "g4", offsetof(CPUState, gregs[4]) }, { "g5", offsetof(CPUState, gregs[5]) }, { "g6", offsetof(CPUState, gregs[6]) }, { "g7", offsetof(CPUState, gregs[7]) }, { "o0", 0, monitor_get_reg }, { "o1", 1, monitor_get_reg }, { "o2", 2, monitor_get_reg }, { "o3", 3, monitor_get_reg }, { "o4", 4, monitor_get_reg }, { "o5", 5, monitor_get_reg }, { "o6", 6, monitor_get_reg }, { "o7", 7, monitor_get_reg }, { "l0", 8, monitor_get_reg }, { "l1", 9, monitor_get_reg }, { "l2", 10, monitor_get_reg }, { "l3", 11, monitor_get_reg }, { "l4", 12, monitor_get_reg }, { "l5", 13, monitor_get_reg }, { "l6", 14, monitor_get_reg }, { "l7", 15, monitor_get_reg }, { "i0", 16, monitor_get_reg }, { "i1", 17, monitor_get_reg }, { "i2", 18, monitor_get_reg }, { "i3", 19, monitor_get_reg }, { "i4", 20, monitor_get_reg }, { "i5", 21, monitor_get_reg }, { "i6", 22, monitor_get_reg }, { "i7", 23, monitor_get_reg }, { "pc", offsetof(CPUState, pc) }, { "npc", offsetof(CPUState, npc) }, { "y", offsetof(CPUState, y) }, #ifndef TARGET_SPARC64 { "psr", 0, &monitor_get_psr, }, { "wim", offsetof(CPUState, wim) }, #endif { "tbr", offsetof(CPUState, tbr) }, { "fsr", offsetof(CPUState, fsr) }, { "f0", offsetof(CPUState, fpr[0]) }, { "f1", offsetof(CPUState, fpr[1]) }, { "f2", offsetof(CPUState, fpr[2]) }, { "f3", offsetof(CPUState, fpr[3]) }, { "f4", offsetof(CPUState, fpr[4]) }, { "f5", offsetof(CPUState, fpr[5]) }, { "f6", offsetof(CPUState, fpr[6]) }, { "f7", offsetof(CPUState, fpr[7]) }, { "f8", offsetof(CPUState, fpr[8]) }, { "f9", offsetof(CPUState, fpr[9]) }, { "f10", offsetof(CPUState, fpr[10]) }, { "f11", offsetof(CPUState, fpr[11]) }, { "f12", offsetof(CPUState, fpr[12]) }, { "f13", offsetof(CPUState, fpr[13]) }, { "f14", offsetof(CPUState, fpr[14]) }, { "f15", offsetof(CPUState, fpr[15]) }, { "f16", offsetof(CPUState, fpr[16]) }, { "f17", offsetof(CPUState, fpr[17]) }, { "f18", offsetof(CPUState, fpr[18]) }, { "f19", offsetof(CPUState, fpr[19]) }, { "f20", offsetof(CPUState, fpr[20]) }, { "f21", offsetof(CPUState, fpr[21]) }, { "f22", offsetof(CPUState, fpr[22]) }, { "f23", offsetof(CPUState, fpr[23]) }, { "f24", offsetof(CPUState, fpr[24]) }, { "f25", offsetof(CPUState, fpr[25]) }, { "f26", offsetof(CPUState, fpr[26]) }, { "f27", offsetof(CPUState, fpr[27]) }, { "f28", offsetof(CPUState, fpr[28]) }, { "f29", offsetof(CPUState, fpr[29]) }, { "f30", offsetof(CPUState, fpr[30]) }, { "f31", offsetof(CPUState, fpr[31]) }, #ifdef TARGET_SPARC64 { "f32", offsetof(CPUState, fpr[32]) }, { "f34", offsetof(CPUState, fpr[34]) }, { "f36", offsetof(CPUState, fpr[36]) }, { "f38", offsetof(CPUState, fpr[38]) }, { "f40", offsetof(CPUState, fpr[40]) }, { "f42", offsetof(CPUState, fpr[42]) }, { "f44", offsetof(CPUState, fpr[44]) }, { "f46", offsetof(CPUState, fpr[46]) }, { "f48", offsetof(CPUState, fpr[48]) }, { "f50", offsetof(CPUState, fpr[50]) }, { "f52", offsetof(CPUState, fpr[52]) }, { "f54", offsetof(CPUState, fpr[54]) }, { "f56", offsetof(CPUState, fpr[56]) }, { "f58", offsetof(CPUState, fpr[58]) }, { "f60", offsetof(CPUState, fpr[60]) }, { "f62", offsetof(CPUState, fpr[62]) }, { "asi", offsetof(CPUState, asi) }, { "pstate", offsetof(CPUState, pstate) }, { "cansave", offsetof(CPUState, cansave) }, { "canrestore", offsetof(CPUState, canrestore) }, { "otherwin", offsetof(CPUState, otherwin) }, { "wstate", offsetof(CPUState, wstate) }, { "cleanwin", offsetof(CPUState, cleanwin) }, { "fprs", offsetof(CPUState, fprs) }, #endif #endif { NULL }, }; static void expr_error(Monitor *mon, const char *msg) { monitor_printf(mon, "%s\n", msg); longjmp(expr_env, 1); } /* return 0 if OK, -1 if not found */ static int get_monitor_def(target_long *pval, const char *name) { const MonitorDef *md; void *ptr; for(md = monitor_defs; md->name != NULL; md++) { if (compare_cmd(name, md->name)) { if (md->get_value) { *pval = md->get_value(md, md->offset); } else { CPUState *env = mon_get_cpu(); ptr = (uint8_t *)env + md->offset; switch(md->type) { case MD_I32: *pval = *(int32_t *)ptr; break; case MD_TLONG: *pval = *(target_long *)ptr; break; default: *pval = 0; break; } } return 0; } } return -1; } static void next(void) { if (*pch != '\0') { pch++; while (qemu_isspace(*pch)) pch++; } } static int64_t expr_sum(Monitor *mon); static int64_t expr_unary(Monitor *mon) { int64_t n; char *p; int ret; switch(*pch) { case '+': next(); n = expr_unary(mon); break; case '-': next(); n = -expr_unary(mon); break; case '~': next(); n = ~expr_unary(mon); break; case '(': next(); n = expr_sum(mon); if (*pch != ')') { expr_error(mon, "')' expected"); } next(); break; case '\'': pch++; if (*pch == '\0') expr_error(mon, "character constant expected"); n = *pch; pch++; if (*pch != '\'') expr_error(mon, "missing terminating \' character"); next(); break; case '$': { char buf[128], *q; target_long reg=0; pch++; q = buf; while ((*pch >= 'a' && *pch <= 'z') || (*pch >= 'A' && *pch <= 'Z') || (*pch >= '0' && *pch <= '9') || *pch == '_' || *pch == '.') { if ((q - buf) < sizeof(buf) - 1) *q++ = *pch; pch++; } while (qemu_isspace(*pch)) pch++; *q = 0; ret = get_monitor_def(®, buf); if (ret < 0) expr_error(mon, "unknown register"); n = reg; } break; case '\0': expr_error(mon, "unexpected end of expression"); n = 0; break; default: #if TARGET_PHYS_ADDR_BITS > 32 n = strtoull(pch, &p, 0); #else n = strtoul(pch, &p, 0); #endif if (pch == p) { expr_error(mon, "invalid char in expression"); } pch = p; while (qemu_isspace(*pch)) pch++; break; } return n; } static int64_t expr_prod(Monitor *mon) { int64_t val, val2; int op; val = expr_unary(mon); for(;;) { op = *pch; if (op != '*' && op != '/' && op != '%') break; next(); val2 = expr_unary(mon); switch(op) { default: case '*': val *= val2; break; case '/': case '%': if (val2 == 0) expr_error(mon, "division by zero"); if (op == '/') val /= val2; else val %= val2; break; } } return val; } static int64_t expr_logic(Monitor *mon) { int64_t val, val2; int op; val = expr_prod(mon); for(;;) { op = *pch; if (op != '&' && op != '|' && op != '^') break; next(); val2 = expr_prod(mon); switch(op) { default: case '&': val &= val2; break; case '|': val |= val2; break; case '^': val ^= val2; break; } } return val; } static int64_t expr_sum(Monitor *mon) { int64_t val, val2; int op; val = expr_logic(mon); for(;;) { op = *pch; if (op != '+' && op != '-') break; next(); val2 = expr_logic(mon); if (op == '+') val += val2; else val -= val2; } return val; } static int get_expr(Monitor *mon, int64_t *pval, const char **pp) { pch = *pp; if (setjmp(expr_env)) { *pp = pch; return -1; } while (qemu_isspace(*pch)) pch++; *pval = expr_sum(mon); *pp = pch; return 0; } static int get_double(Monitor *mon, double *pval, const char **pp) { const char *p = *pp; char *tailp; double d; d = strtod(p, &tailp); if (tailp == p) { monitor_printf(mon, "Number expected\n"); return -1; } if (d != d || d - d != 0) { /* NaN or infinity */ monitor_printf(mon, "Bad number\n"); return -1; } *pval = d; *pp = tailp; return 0; } static int get_str(char *buf, int buf_size, const char **pp) { const char *p; char *q; int c; q = buf; p = *pp; while (qemu_isspace(*p)) p++; if (*p == '\0') { fail: *q = '\0'; *pp = p; return -1; } if (*p == '\"') { p++; while (*p != '\0' && *p != '\"') { if (*p == '\\') { p++; c = *p++; switch(c) { case 'n': c = '\n'; break; case 'r': c = '\r'; break; case '\\': case '\'': case '\"': break; default: qemu_printf("unsupported escape code: '\\%c'\n", c); goto fail; } if ((q - buf) < buf_size - 1) { *q++ = c; } } else { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } if (*p != '\"') { qemu_printf("unterminated string\n"); goto fail; } p++; } else { while (*p != '\0' && !qemu_isspace(*p)) { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } *q = '\0'; *pp = p; return 0; } /* * Store the command-name in cmdname, and return a pointer to * the remaining of the command string. */ static const char *get_command_name(const char *cmdline, char *cmdname, size_t nlen) { size_t len; const char *p, *pstart; p = cmdline; while (qemu_isspace(*p)) p++; if (*p == '\0') return NULL; pstart = p; while (*p != '\0' && *p != '/' && !qemu_isspace(*p)) p++; len = p - pstart; if (len > nlen - 1) len = nlen - 1; memcpy(cmdname, pstart, len); cmdname[len] = '\0'; return p; } /** * Read key of 'type' into 'key' and return the current * 'type' pointer. */ static char *key_get_info(const char *type, char **key) { size_t len; char *p, *str; if (*type == ',') type++; p = strchr(type, ':'); if (!p) { *key = NULL; return NULL; } len = p - type; str = qemu_malloc(len + 1); memcpy(str, type, len); str[len] = '\0'; *key = str; return ++p; } static int default_fmt_format = 'x'; static int default_fmt_size = 4; #define MAX_ARGS 16 static int is_valid_option(const char *c, const char *typestr) { char option[3]; option[0] = '-'; option[1] = *c; option[2] = '\0'; typestr = strstr(typestr, option); return (typestr != NULL); } static const mon_cmd_t *monitor_find_command(const char *cmdname) { const mon_cmd_t *cmd; for (cmd = mon_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(cmdname, cmd->name)) { return cmd; } } return NULL; } static const mon_cmd_t *monitor_parse_command(Monitor *mon, const char *cmdline, QDict *qdict) { const char *p, *typestr; int c; const mon_cmd_t *cmd; char cmdname[256]; char buf[1024]; char *key; #ifdef DEBUG monitor_printf(mon, "command='%s'\n", cmdline); #endif /* extract the command name */ p = get_command_name(cmdline, cmdname, sizeof(cmdname)); if (!p) return NULL; cmd = monitor_find_command(cmdname); if (!cmd) { monitor_printf(mon, "unknown command: '%s'\n", cmdname); return NULL; } /* parse the parameters */ typestr = cmd->args_type; for(;;) { typestr = key_get_info(typestr, &key); if (!typestr) break; c = *typestr; typestr++; switch(c) { case 'F': case 'B': case 's': { int ret; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { /* no optional string: NULL argument */ break; } } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { switch(c) { case 'F': monitor_printf(mon, "%s: filename expected\n", cmdname); break; case 'B': monitor_printf(mon, "%s: block device name expected\n", cmdname); break; default: monitor_printf(mon, "%s: string expected\n", cmdname); break; } goto fail; } qdict_put(qdict, key, qstring_from_str(buf)); } break; case '/': { int count, format, size; while (qemu_isspace(*p)) p++; if (*p == '/') { /* format found */ p++; count = 1; if (qemu_isdigit(*p)) { count = 0; while (qemu_isdigit(*p)) { count = count * 10 + (*p - '0'); p++; } } size = -1; format = -1; for(;;) { switch(*p) { case 'o': case 'd': case 'u': case 'x': case 'i': case 'c': format = *p++; break; case 'b': size = 1; p++; break; case 'h': size = 2; p++; break; case 'w': size = 4; p++; break; case 'g': case 'L': size = 8; p++; break; default: goto next; } } next: if (*p != '\0' && !qemu_isspace(*p)) { monitor_printf(mon, "invalid char in format: '%c'\n", *p); goto fail; } if (format < 0) format = default_fmt_format; if (format != 'i') { /* for 'i', not specifying a size gives -1 as size */ if (size < 0) size = default_fmt_size; default_fmt_size = size; } default_fmt_format = format; } else { count = 1; format = default_fmt_format; if (format != 'i') { size = default_fmt_size; } else { size = -1; } } qdict_put(qdict, "count", qint_from_int(count)); qdict_put(qdict, "format", qint_from_int(format)); qdict_put(qdict, "size", qint_from_int(size)); } break; case 'i': case 'l': case 'M': { int64_t val; while (qemu_isspace(*p)) p++; if (*typestr == '?' || *typestr == '.') { if (*typestr == '?') { if (*p == '\0') { typestr++; break; } } else { if (*p == '.') { p++; while (qemu_isspace(*p)) p++; } else { typestr++; break; } } typestr++; } if (get_expr(mon, &val, &p)) goto fail; /* Check if 'i' is greater than 32-bit */ if ((c == 'i') && ((val >> 32) & 0xffffffff)) { monitor_printf(mon, "\'%s\' has failed: ", cmdname); monitor_printf(mon, "integer is for 32-bit values\n"); goto fail; } else if (c == 'M') { val <<= 20; } qdict_put(qdict, key, qint_from_int(val)); } break; case 'b': case 'T': { double val; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { break; } } if (get_double(mon, &val, &p) < 0) { goto fail; } if (c == 'b' && *p) { switch (*p) { case 'K': case 'k': val *= 1 << 10; p++; break; case 'M': case 'm': val *= 1 << 20; p++; break; case 'G': case 'g': val *= 1 << 30; p++; break; } } if (c == 'T' && p[0] && p[1] == 's') { switch (*p) { case 'm': val /= 1e3; p += 2; break; case 'u': val /= 1e6; p += 2; break; case 'n': val /= 1e9; p += 2; break; } } if (*p && !qemu_isspace(*p)) { monitor_printf(mon, "Unknown unit suffix\n"); goto fail; } qdict_put(qdict, key, qfloat_from_double(val)); } break; case '-': { const char *tmp = p; int has_option, skip_key = 0; /* option */ c = *typestr++; if (c == '\0') goto bad_type; while (qemu_isspace(*p)) p++; has_option = 0; if (*p == '-') { p++; if(c != *p) { if(!is_valid_option(p, typestr)) { monitor_printf(mon, "%s: unsupported option -%c\n", cmdname, *p); goto fail; } else { skip_key = 1; } } if(skip_key) { p = tmp; } else { p++; has_option = 1; } } qdict_put(qdict, key, qint_from_int(has_option)); } break; default: bad_type: monitor_printf(mon, "%s: unknown type '%c'\n", cmdname, c); goto fail; } qemu_free(key); key = NULL; } /* check that all arguments were parsed */ while (qemu_isspace(*p)) p++; if (*p != '\0') { monitor_printf(mon, "%s: extraneous characters at the end of line\n", cmdname); goto fail; } return cmd; fail: qemu_free(key); return NULL; } static void monitor_print_error(Monitor *mon) { qerror_print(mon->error); QDECREF(mon->error); mon->error = NULL; } static int is_async_return(const QObject *data) { if (data && qobject_type(data) == QTYPE_QDICT) { return qdict_haskey(qobject_to_qdict(data), "__mon_async"); } return 0; } static void monitor_call_handler(Monitor *mon, const mon_cmd_t *cmd, const QDict *params) { QObject *data = NULL; if (cmd->cmd_new_ret) { cmd->cmd_new_ret(mon, params, &data); } else { cmd->mhandler.cmd_new(mon, params, &data); } if (is_async_return(data)) { /* * Asynchronous commands have no initial return data but they can * generate errors. Data is returned via the async completion handler. */ if (monitor_ctrl_mode(mon) && monitor_has_error(mon)) { monitor_protocol_emitter(mon, NULL); } } else if (monitor_ctrl_mode(mon)) { /* Monitor Protocol */ monitor_protocol_emitter(mon, data); } else { /* User Protocol */ if (data) cmd->user_print(mon, data); } qobject_decref(data); } static void handle_user_command(Monitor *mon, const char *cmdline) { QDict *qdict; const mon_cmd_t *cmd; qdict = qdict_new(); cmd = monitor_parse_command(mon, cmdline, qdict); if (!cmd) goto out; qemu_errors_to_mon(mon); if (monitor_handler_is_async(cmd)) { user_async_cmd_handler(mon, cmd, qdict); } else if (monitor_handler_ported(cmd)) { monitor_call_handler(mon, cmd, qdict); } else { cmd->mhandler.cmd(mon, qdict); } if (monitor_has_error(mon)) monitor_print_error(mon); qemu_errors_to_previous(); out: QDECREF(qdict); } static void cmd_completion(const char *name, const char *list) { const char *p, *pstart; char cmd[128]; int len; p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); len = p - pstart; if (len > sizeof(cmd) - 2) len = sizeof(cmd) - 2; memcpy(cmd, pstart, len); cmd[len] = '\0'; if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) { readline_add_completion(cur_mon->rs, cmd); } if (*p == '\0') break; p++; } } static void file_completion(const char *input) { DIR *ffs; struct dirent *d; char path[1024]; char file[1024], file_prefix[1024]; int input_path_len; const char *p; p = strrchr(input, '/'); if (!p) { input_path_len = 0; pstrcpy(file_prefix, sizeof(file_prefix), input); pstrcpy(path, sizeof(path), "."); } else { input_path_len = p - input + 1; memcpy(path, input, input_path_len); if (input_path_len > sizeof(path) - 1) input_path_len = sizeof(path) - 1; path[input_path_len] = '\0'; pstrcpy(file_prefix, sizeof(file_prefix), p + 1); } #ifdef DEBUG_COMPLETION monitor_printf(cur_mon, "input='%s' path='%s' prefix='%s'\n", input, path, file_prefix); #endif ffs = opendir(path); if (!ffs) return; for(;;) { struct stat sb; d = readdir(ffs); if (!d) break; if (strstart(d->d_name, file_prefix, NULL)) { memcpy(file, input, input_path_len); if (input_path_len < sizeof(file)) pstrcpy(file + input_path_len, sizeof(file) - input_path_len, d->d_name); /* stat the file to find out if it's a directory. * In that case add a slash to speed up typing long paths */ stat(file, &sb); if(S_ISDIR(sb.st_mode)) pstrcat(file, sizeof(file), "/"); readline_add_completion(cur_mon->rs, file); } } closedir(ffs); } static void block_completion_it(void *opaque, BlockDriverState *bs) { const char *name = bdrv_get_device_name(bs); const char *input = opaque; if (input[0] == '\0' || !strncmp(name, (char *)input, strlen(input))) { readline_add_completion(cur_mon->rs, name); } } /* NOTE: this parser is an approximate form of the real command parser */ static void parse_cmdline(const char *cmdline, int *pnb_args, char **args) { const char *p; int nb_args, ret; char buf[1024]; p = cmdline; nb_args = 0; for(;;) { while (qemu_isspace(*p)) p++; if (*p == '\0') break; if (nb_args >= MAX_ARGS) break; ret = get_str(buf, sizeof(buf), &p); args[nb_args] = qemu_strdup(buf); nb_args++; if (ret < 0) break; } *pnb_args = nb_args; } static const char *next_arg_type(const char *typestr) { const char *p = strchr(typestr, ':'); return (p != NULL ? ++p : typestr); } static void monitor_find_completion(const char *cmdline) { const char *cmdname; char *args[MAX_ARGS]; int nb_args, i, len; const char *ptype, *str; const mon_cmd_t *cmd; const KeyDef *key; parse_cmdline(cmdline, &nb_args, args); #ifdef DEBUG_COMPLETION for(i = 0; i < nb_args; i++) { monitor_printf(cur_mon, "arg%d = '%s'\n", i, (char *)args[i]); } #endif /* if the line ends with a space, it means we want to complete the next arg */ len = strlen(cmdline); if (len > 0 && qemu_isspace(cmdline[len - 1])) { if (nb_args >= MAX_ARGS) return; args[nb_args++] = qemu_strdup(""); } if (nb_args <= 1) { /* command completion */ if (nb_args == 0) cmdname = ""; else cmdname = args[0]; readline_set_completion_index(cur_mon->rs, strlen(cmdname)); for(cmd = mon_cmds; cmd->name != NULL; cmd++) { cmd_completion(cmdname, cmd->name); } } else { /* find the command */ for(cmd = mon_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(args[0], cmd->name)) goto found; } return; found: ptype = next_arg_type(cmd->args_type); for(i = 0; i < nb_args - 2; i++) { if (*ptype != '\0') { ptype = next_arg_type(ptype); while (*ptype == '?') ptype = next_arg_type(ptype); } } str = args[nb_args - 1]; if (*ptype == '-' && ptype[1] != '\0') { ptype += 2; } switch(*ptype) { case 'F': /* file completion */ readline_set_completion_index(cur_mon->rs, strlen(str)); file_completion(str); break; case 'B': /* block device name completion */ readline_set_completion_index(cur_mon->rs, strlen(str)); bdrv_iterate(block_completion_it, (void *)str); break; case 's': /* XXX: more generic ? */ if (!strcmp(cmd->name, "info")) { readline_set_completion_index(cur_mon->rs, strlen(str)); for(cmd = info_cmds; cmd->name != NULL; cmd++) { cmd_completion(str, cmd->name); } } else if (!strcmp(cmd->name, "sendkey")) { char *sep = strrchr(str, '-'); if (sep) str = sep + 1; readline_set_completion_index(cur_mon->rs, strlen(str)); for(key = key_defs; key->name != NULL; key++) { cmd_completion(str, key->name); } } else if (!strcmp(cmd->name, "help|?")) { readline_set_completion_index(cur_mon->rs, strlen(str)); for (cmd = mon_cmds; cmd->name != NULL; cmd++) { cmd_completion(str, cmd->name); } } break; default: break; } } for(i = 0; i < nb_args; i++) qemu_free(args[i]); } static int monitor_can_read(void *opaque) { Monitor *mon = opaque; return (mon->suspend_cnt == 0) ? 1 : 0; } typedef struct CmdArgs { QString *name; int type; int flag; int optional; } CmdArgs; static int check_opt(const CmdArgs *cmd_args, const char *name, QDict *args) { if (!cmd_args->optional) { qemu_error_new(QERR_MISSING_PARAMETER, name); return -1; } if (cmd_args->type == '-') { /* handlers expect a value, they need to be changed */ qdict_put(args, name, qint_from_int(0)); } return 0; } static int check_arg(const CmdArgs *cmd_args, QDict *args) { QObject *value; const char *name; name = qstring_get_str(cmd_args->name); if (!args) { return check_opt(cmd_args, name, args); } value = qdict_get(args, name); if (!value) { return check_opt(cmd_args, name, args); } switch (cmd_args->type) { case 'F': case 'B': case 's': if (qobject_type(value) != QTYPE_QSTRING) { qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "string"); return -1; } break; case '/': { int i; const char *keys[] = { "count", "format", "size", NULL }; for (i = 0; keys[i]; i++) { QObject *obj = qdict_get(args, keys[i]); if (!obj) { qemu_error_new(QERR_MISSING_PARAMETER, name); return -1; } if (qobject_type(obj) != QTYPE_QINT) { qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "int"); return -1; } } break; } case 'i': case 'l': case 'M': if (qobject_type(value) != QTYPE_QINT) { qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "int"); return -1; } break; case 'b': case 'T': if (qobject_type(value) != QTYPE_QINT && qobject_type(value) != QTYPE_QFLOAT) { qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "number"); return -1; } break; case '-': if (qobject_type(value) != QTYPE_QINT && qobject_type(value) != QTYPE_QBOOL) { qemu_error_new(QERR_INVALID_PARAMETER_TYPE, name, "bool"); return -1; } if (qobject_type(value) == QTYPE_QBOOL) { /* handlers expect a QInt, they need to be changed */ qdict_put(args, name, qint_from_int(qbool_get_int(qobject_to_qbool(value)))); } break; default: /* impossible */ abort(); } return 0; } static void cmd_args_init(CmdArgs *cmd_args) { cmd_args->name = qstring_new(); cmd_args->type = cmd_args->flag = cmd_args->optional = 0; } /* * This is not trivial, we have to parse Monitor command's argument * type syntax to be able to check the arguments provided by clients. * * In the near future we will be using an array for that and will be * able to drop all this parsing... */ static int monitor_check_qmp_args(const mon_cmd_t *cmd, QDict *args) { int err; const char *p; CmdArgs cmd_args; if (cmd->args_type == NULL) { return (qdict_size(args) == 0 ? 0 : -1); } err = 0; cmd_args_init(&cmd_args); for (p = cmd->args_type;; p++) { if (*p == ':') { cmd_args.type = *++p; p++; if (cmd_args.type == '-') { cmd_args.flag = *p++; cmd_args.optional = 1; } else if (*p == '?') { cmd_args.optional = 1; p++; } assert(*p == ',' || *p == '\0'); err = check_arg(&cmd_args, args); QDECREF(cmd_args.name); cmd_args_init(&cmd_args); if (err < 0) { break; } } else { qstring_append_chr(cmd_args.name, *p); } if (*p == '\0') { break; } } QDECREF(cmd_args.name); return err; } static int invalid_qmp_mode(const Monitor *mon, const char *cmd_name) { int is_cap = compare_cmd(cmd_name, "qmp_capabilities"); return (qmp_cmd_mode(mon) ? is_cap : !is_cap); } static void handle_qmp_command(JSONMessageParser *parser, QList *tokens) { int err; QObject *obj; QDict *input, *args; const mon_cmd_t *cmd; Monitor *mon = cur_mon; const char *cmd_name, *info_item; args = NULL; qemu_errors_to_mon(mon); obj = json_parser_parse(tokens, NULL); if (!obj) { // FIXME: should be triggered in json_parser_parse() qemu_error_new(QERR_JSON_PARSING); goto err_out; } else if (qobject_type(obj) != QTYPE_QDICT) { qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "object"); qobject_decref(obj); goto err_out; } input = qobject_to_qdict(obj); mon->mc->id = qdict_get(input, "id"); qobject_incref(mon->mc->id); obj = qdict_get(input, "execute"); if (!obj) { qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "execute"); goto err_input; } else if (qobject_type(obj) != QTYPE_QSTRING) { qemu_error_new(QERR_QMP_BAD_INPUT_OBJECT, "string"); goto err_input; } cmd_name = qstring_get_str(qobject_to_qstring(obj)); if (invalid_qmp_mode(mon, cmd_name)) { qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name); goto err_input; } /* * XXX: We need this special case until we get info handlers * converted into 'query-' commands */ if (compare_cmd(cmd_name, "info")) { qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name); goto err_input; } else if (strstart(cmd_name, "query-", &info_item)) { cmd = monitor_find_command("info"); qdict_put_obj(input, "arguments", qobject_from_jsonf("{ 'item': %s }", info_item)); } else { cmd = monitor_find_command(cmd_name); if (!cmd || !monitor_handler_ported(cmd)) { qemu_error_new(QERR_COMMAND_NOT_FOUND, cmd_name); goto err_input; } } obj = qdict_get(input, "arguments"); if (!obj) { args = qdict_new(); } else { args = qobject_to_qdict(obj); QINCREF(args); } QDECREF(input); err = monitor_check_qmp_args(cmd, args); if (err < 0) { goto err_out; } if (monitor_handler_is_async(cmd)) { qmp_async_cmd_handler(mon, cmd, args); } else { monitor_call_handler(mon, cmd, args); } goto out; err_input: QDECREF(input); err_out: monitor_protocol_emitter(mon, NULL); out: QDECREF(args); qemu_errors_to_previous(); } /** * monitor_control_read(): Read and handle QMP input */ static void monitor_control_read(void *opaque, const uint8_t *buf, int size) { Monitor *old_mon = cur_mon; cur_mon = opaque; json_message_parser_feed(&cur_mon->mc->parser, (const char *) buf, size); cur_mon = old_mon; } static void monitor_read(void *opaque, const uint8_t *buf, int size) { Monitor *old_mon = cur_mon; int i; cur_mon = opaque; if (cur_mon->rs) { for (i = 0; i < size; i++) readline_handle_byte(cur_mon->rs, buf[i]); } else { if (size == 0 || buf[size - 1] != 0) monitor_printf(cur_mon, "corrupted command\n"); else handle_user_command(cur_mon, (char *)buf); } cur_mon = old_mon; } static void monitor_command_cb(Monitor *mon, const char *cmdline, void *opaque) { monitor_suspend(mon); handle_user_command(mon, cmdline); monitor_resume(mon); } int monitor_suspend(Monitor *mon) { if (!mon->rs) return -ENOTTY; mon->suspend_cnt++; return 0; } void monitor_resume(Monitor *mon) { if (!mon->rs) return; if (--mon->suspend_cnt == 0) readline_show_prompt(mon->rs); } static QObject *get_qmp_greeting(void) { QObject *ver; do_info_version(NULL, &ver); return qobject_from_jsonf("{'QMP':{'version': %p,'capabilities': []}}",ver); } /** * monitor_control_event(): Print QMP gretting */ static void monitor_control_event(void *opaque, int event) { QObject *data; Monitor *mon = opaque; switch (event) { case CHR_EVENT_OPENED: mon->mc->command_mode = 0; json_message_parser_init(&mon->mc->parser, handle_qmp_command); data = get_qmp_greeting(); monitor_json_emitter(mon, data); qobject_decref(data); break; case CHR_EVENT_CLOSED: json_message_parser_destroy(&mon->mc->parser); break; } } static void monitor_event(void *opaque, int event) { Monitor *mon = opaque; switch (event) { case CHR_EVENT_MUX_IN: mon->mux_out = 0; if (mon->reset_seen) { readline_restart(mon->rs); monitor_resume(mon); monitor_flush(mon); } else { mon->suspend_cnt = 0; } break; case CHR_EVENT_MUX_OUT: if (mon->reset_seen) { if (mon->suspend_cnt == 0) { monitor_printf(mon, "\n"); } monitor_flush(mon); monitor_suspend(mon); } else { mon->suspend_cnt++; } mon->mux_out = 1; break; case CHR_EVENT_OPENED: monitor_printf(mon, "QEMU %s monitor - type 'help' for more " "information\n", QEMU_VERSION); if (!mon->mux_out) { readline_show_prompt(mon->rs); } mon->reset_seen = 1; break; } } /* * Local variables: * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 8 * End: */ void monitor_init(CharDriverState *chr, int flags) { static int is_first_init = 1; Monitor *mon; if (is_first_init) { key_timer = qemu_new_timer(vm_clock, release_keys, NULL); is_first_init = 0; } mon = qemu_mallocz(sizeof(*mon)); mon->chr = chr; mon->flags = flags; if (flags & MONITOR_USE_READLINE) { mon->rs = readline_init(mon, monitor_find_completion); monitor_read_command(mon, 0); } if (monitor_ctrl_mode(mon)) { mon->mc = qemu_mallocz(sizeof(MonitorControl)); /* Control mode requires special handlers */ qemu_chr_add_handlers(chr, monitor_can_read, monitor_control_read, monitor_control_event, mon); } else { qemu_chr_add_handlers(chr, monitor_can_read, monitor_read, monitor_event, mon); } QLIST_INSERT_HEAD(&mon_list, mon, entry); if (!cur_mon || (flags & MONITOR_IS_DEFAULT)) cur_mon = mon; } static void bdrv_password_cb(Monitor *mon, const char *password, void *opaque) { BlockDriverState *bs = opaque; int ret = 0; if (bdrv_set_key(bs, password) != 0) { monitor_printf(mon, "invalid password\n"); ret = -EPERM; } if (mon->password_completion_cb) mon->password_completion_cb(mon->password_opaque, ret); monitor_read_command(mon, 1); } void monitor_read_bdrv_key_start(Monitor *mon, BlockDriverState *bs, BlockDriverCompletionFunc *completion_cb, void *opaque) { int err; if (!bdrv_key_required(bs)) { if (completion_cb) completion_cb(opaque, 0); return; } if (monitor_ctrl_mode(mon)) { qemu_error_new(QERR_DEVICE_ENCRYPTED, bdrv_get_device_name(bs)); return; } monitor_printf(mon, "%s (%s) is encrypted.\n", bdrv_get_device_name(bs), bdrv_get_encrypted_filename(bs)); mon->password_completion_cb = completion_cb; mon->password_opaque = opaque; err = monitor_read_password(mon, bdrv_password_cb, bs); if (err && completion_cb) completion_cb(opaque, err); } typedef struct QemuErrorSink QemuErrorSink; struct QemuErrorSink { enum { ERR_SINK_FILE, ERR_SINK_MONITOR, } dest; union { FILE *fp; Monitor *mon; }; QemuErrorSink *previous; }; static QemuErrorSink *qemu_error_sink; void qemu_errors_to_file(FILE *fp) { QemuErrorSink *sink; sink = qemu_mallocz(sizeof(*sink)); sink->dest = ERR_SINK_FILE; sink->fp = fp; sink->previous = qemu_error_sink; qemu_error_sink = sink; } void qemu_errors_to_mon(Monitor *mon) { QemuErrorSink *sink; sink = qemu_mallocz(sizeof(*sink)); sink->dest = ERR_SINK_MONITOR; sink->mon = mon; sink->previous = qemu_error_sink; qemu_error_sink = sink; } void qemu_errors_to_previous(void) { QemuErrorSink *sink; assert(qemu_error_sink != NULL); sink = qemu_error_sink; qemu_error_sink = sink->previous; qemu_free(sink); } void qemu_error(const char *fmt, ...) { va_list args; assert(qemu_error_sink != NULL); switch (qemu_error_sink->dest) { case ERR_SINK_FILE: va_start(args, fmt); vfprintf(qemu_error_sink->fp, fmt, args); va_end(args); break; case ERR_SINK_MONITOR: va_start(args, fmt); monitor_vprintf(qemu_error_sink->mon, fmt, args); va_end(args); break; } } void qemu_error_internal(const char *file, int linenr, const char *func, const char *fmt, ...) { va_list va; QError *qerror; assert(qemu_error_sink != NULL); va_start(va, fmt); qerror = qerror_from_info(file, linenr, func, fmt, &va); va_end(va); switch (qemu_error_sink->dest) { case ERR_SINK_FILE: qerror_print(qerror); QDECREF(qerror); break; case ERR_SINK_MONITOR: /* report only the first error */ if (!qemu_error_sink->mon->error) { qemu_error_sink->mon->error = qerror; } else { /* XXX: warn the programmer */ QDECREF(qerror); } break; } }