/* * QEMU monitor * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "hw/usb.h" #include "hw/pcmcia.h" #include "hw/pc.h" #include "hw/pci.h" #include "gdbstub.h" #include "net.h" #include "qemu-char.h" #include "sysemu.h" #include "console.h" #include "block.h" #include "audio/audio.h" #include "disas.h" #include <dirent.h> #include "qemu-timer.h" #include "migration.h" #include "kvm.h" //#define DEBUG //#define DEBUG_COMPLETION /* * Supported types: * * 'F' filename * 'B' block device name * 's' string (accept optional quote) * 'i' 32 bit integer * 'l' target long (32 or 64 bit) * '/' optional gdb-like print format (like "/10x") * * '?' optional type (for 'F', 's' and 'i') * */ typedef struct term_cmd_t { const char *name; const char *args_type; void *handler; const char *params; const char *help; } term_cmd_t; #define MAX_MON 4 static CharDriverState *monitor_hd[MAX_MON]; static int hide_banner; static const term_cmd_t term_cmds[]; static const term_cmd_t info_cmds[]; static uint8_t term_outbuf[1024]; static int term_outbuf_index; static void monitor_start_input(void); static CPUState *mon_cpu = NULL; void term_flush(void) { int i; if (term_outbuf_index > 0) { for (i = 0; i < MAX_MON; i++) if (monitor_hd[i] && monitor_hd[i]->focus == 0) qemu_chr_write(monitor_hd[i], term_outbuf, term_outbuf_index); term_outbuf_index = 0; } } /* flush at every end of line or if the buffer is full */ void term_puts(const char *str) { char c; for(;;) { c = *str++; if (c == '\0') break; if (c == '\n') term_outbuf[term_outbuf_index++] = '\r'; term_outbuf[term_outbuf_index++] = c; if (term_outbuf_index >= (sizeof(term_outbuf) - 1) || c == '\n') term_flush(); } } void term_vprintf(const char *fmt, va_list ap) { char buf[4096]; vsnprintf(buf, sizeof(buf), fmt, ap); term_puts(buf); } void term_printf(const char *fmt, ...) { va_list ap; va_start(ap, fmt); term_vprintf(fmt, ap); va_end(ap); } void term_print_filename(const char *filename) { int i; for (i = 0; filename[i]; i++) { switch (filename[i]) { case ' ': case '"': case '\\': term_printf("\\%c", filename[i]); break; case '\t': term_printf("\\t"); break; case '\r': term_printf("\\r"); break; case '\n': term_printf("\\n"); break; default: term_printf("%c", filename[i]); break; } } } static int monitor_fprintf(FILE *stream, const char *fmt, ...) { va_list ap; va_start(ap, fmt); term_vprintf(fmt, ap); va_end(ap); return 0; } static int compare_cmd(const char *name, const char *list) { const char *p, *pstart; int len; len = strlen(name); p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); if ((p - pstart) == len && !memcmp(pstart, name, len)) return 1; if (*p == '\0') break; p++; } return 0; } static void help_cmd1(const term_cmd_t *cmds, const char *prefix, const char *name) { const term_cmd_t *cmd; for(cmd = cmds; cmd->name != NULL; cmd++) { if (!name || !strcmp(name, cmd->name)) term_printf("%s%s %s -- %s\n", prefix, cmd->name, cmd->params, cmd->help); } } static void help_cmd(const char *name) { if (name && !strcmp(name, "info")) { help_cmd1(info_cmds, "info ", NULL); } else { help_cmd1(term_cmds, "", name); if (name && !strcmp(name, "log")) { const CPULogItem *item; term_printf("Log items (comma separated):\n"); term_printf("%-10s %s\n", "none", "remove all logs"); for(item = cpu_log_items; item->mask != 0; item++) { term_printf("%-10s %s\n", item->name, item->help); } } } } static void do_help(const char *name) { help_cmd(name); } static void do_commit(const char *device) { int i, all_devices; all_devices = !strcmp(device, "all"); for (i = 0; i < nb_drives; i++) { if (all_devices || !strcmp(bdrv_get_device_name(drives_table[i].bdrv), device)) bdrv_commit(drives_table[i].bdrv); } } static void do_info(const char *item) { const term_cmd_t *cmd; void (*handler)(void); if (!item) goto help; for(cmd = info_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(item, cmd->name)) goto found; } help: help_cmd("info"); return; found: handler = cmd->handler; handler(); } static void do_info_version(void) { term_printf("%s\n", QEMU_VERSION); } static void do_info_name(void) { if (qemu_name) term_printf("%s\n", qemu_name); } static void do_info_uuid(void) { term_printf(UUID_FMT "\n", qemu_uuid[0], qemu_uuid[1], qemu_uuid[2], qemu_uuid[3], qemu_uuid[4], qemu_uuid[5], qemu_uuid[6], qemu_uuid[7], qemu_uuid[8], qemu_uuid[9], qemu_uuid[10], qemu_uuid[11], qemu_uuid[12], qemu_uuid[13], qemu_uuid[14], qemu_uuid[15]); } static void do_info_block(void) { bdrv_info(); } static void do_info_blockstats(void) { bdrv_info_stats(); } /* get the current CPU defined by the user */ static int mon_set_cpu(int cpu_index) { CPUState *env; for(env = first_cpu; env != NULL; env = env->next_cpu) { if (env->cpu_index == cpu_index) { mon_cpu = env; return 0; } } return -1; } static CPUState *mon_get_cpu(void) { if (!mon_cpu) { mon_set_cpu(0); } return mon_cpu; } static void do_info_registers(void) { CPUState *env; env = mon_get_cpu(); if (!env) return; #ifdef TARGET_I386 cpu_dump_state(env, NULL, monitor_fprintf, X86_DUMP_FPU); #else cpu_dump_state(env, NULL, monitor_fprintf, 0); #endif } static void do_info_cpus(void) { CPUState *env; /* just to set the default cpu if not already done */ mon_get_cpu(); for(env = first_cpu; env != NULL; env = env->next_cpu) { term_printf("%c CPU #%d:", (env == mon_cpu) ? '*' : ' ', env->cpu_index); #if defined(TARGET_I386) term_printf(" pc=0x" TARGET_FMT_lx, env->eip + env->segs[R_CS].base); #elif defined(TARGET_PPC) term_printf(" nip=0x" TARGET_FMT_lx, env->nip); #elif defined(TARGET_SPARC) term_printf(" pc=0x" TARGET_FMT_lx " npc=0x" TARGET_FMT_lx, env->pc, env->npc); #elif defined(TARGET_MIPS) term_printf(" PC=0x" TARGET_FMT_lx, env->active_tc.PC); #endif if (env->halted) term_printf(" (halted)"); term_printf("\n"); } } static void do_cpu_set(int index) { if (mon_set_cpu(index) < 0) term_printf("Invalid CPU index\n"); } static void do_info_jit(void) { dump_exec_info(NULL, monitor_fprintf); } static void do_info_history (void) { int i; const char *str; i = 0; for(;;) { str = readline_get_history(i); if (!str) break; term_printf("%d: '%s'\n", i, str); i++; } } #if defined(TARGET_PPC) /* XXX: not implemented in other targets */ static void do_info_cpu_stats (void) { CPUState *env; env = mon_get_cpu(); cpu_dump_statistics(env, NULL, &monitor_fprintf, 0); } #endif static void do_quit(void) { exit(0); } static int eject_device(BlockDriverState *bs, int force) { if (bdrv_is_inserted(bs)) { if (!force) { if (!bdrv_is_removable(bs)) { term_printf("device is not removable\n"); return -1; } if (bdrv_is_locked(bs)) { term_printf("device is locked\n"); return -1; } } bdrv_close(bs); } return 0; } static void do_eject(int force, const char *filename) { BlockDriverState *bs; bs = bdrv_find(filename); if (!bs) { term_printf("device not found\n"); return; } eject_device(bs, force); } static void do_change_block(const char *device, const char *filename, const char *fmt) { BlockDriverState *bs; BlockDriver *drv = NULL; bs = bdrv_find(device); if (!bs) { term_printf("device not found\n"); return; } if (fmt) { drv = bdrv_find_format(fmt); if (!drv) { term_printf("invalid format %s\n", fmt); return; } } if (eject_device(bs, 0) < 0) return; bdrv_open2(bs, filename, 0, drv); qemu_key_check(bs, filename); } static void do_change_vnc(const char *target) { if (strcmp(target, "passwd") == 0 || strcmp(target, "password") == 0) { char password[9]; monitor_readline("Password: ", 1, password, sizeof(password)-1); password[sizeof(password)-1] = '\0'; if (vnc_display_password(NULL, password) < 0) term_printf("could not set VNC server password\n"); } else { if (vnc_display_open(NULL, target) < 0) term_printf("could not start VNC server on %s\n", target); } } static void do_change(const char *device, const char *target, const char *fmt) { if (strcmp(device, "vnc") == 0) { do_change_vnc(target); } else { do_change_block(device, target, fmt); } } static void do_screen_dump(const char *filename) { vga_hw_screen_dump(filename); } static void do_logfile(const char *filename) { cpu_set_log_filename(filename); } static void do_log(const char *items) { int mask; if (!strcmp(items, "none")) { mask = 0; } else { mask = cpu_str_to_log_mask(items); if (!mask) { help_cmd("log"); return; } } cpu_set_log(mask); } static void do_stop(void) { vm_stop(EXCP_INTERRUPT); } static void do_cont(void) { vm_start(); } #ifdef CONFIG_GDBSTUB static void do_gdbserver(const char *port) { if (!port) port = DEFAULT_GDBSTUB_PORT; if (gdbserver_start(port) < 0) { qemu_printf("Could not open gdbserver socket on port '%s'\n", port); } else { qemu_printf("Waiting gdb connection on port '%s'\n", port); } } #endif static void term_printc(int c) { term_printf("'"); switch(c) { case '\'': term_printf("\\'"); break; case '\\': term_printf("\\\\"); break; case '\n': term_printf("\\n"); break; case '\r': term_printf("\\r"); break; default: if (c >= 32 && c <= 126) { term_printf("%c", c); } else { term_printf("\\x%02x", c); } break; } term_printf("'"); } static void memory_dump(int count, int format, int wsize, target_phys_addr_t addr, int is_physical) { CPUState *env; int nb_per_line, l, line_size, i, max_digits, len; uint8_t buf[16]; uint64_t v; if (format == 'i') { int flags; flags = 0; env = mon_get_cpu(); if (!env && !is_physical) return; #ifdef TARGET_I386 if (wsize == 2) { flags = 1; } else if (wsize == 4) { flags = 0; } else { /* as default we use the current CS size */ flags = 0; if (env) { #ifdef TARGET_X86_64 if ((env->efer & MSR_EFER_LMA) && (env->segs[R_CS].flags & DESC_L_MASK)) flags = 2; else #endif if (!(env->segs[R_CS].flags & DESC_B_MASK)) flags = 1; } } #endif monitor_disas(env, addr, count, is_physical, flags); return; } len = wsize * count; if (wsize == 1) line_size = 8; else line_size = 16; nb_per_line = line_size / wsize; max_digits = 0; switch(format) { case 'o': max_digits = (wsize * 8 + 2) / 3; break; default: case 'x': max_digits = (wsize * 8) / 4; break; case 'u': case 'd': max_digits = (wsize * 8 * 10 + 32) / 33; break; case 'c': wsize = 1; break; } while (len > 0) { if (is_physical) term_printf(TARGET_FMT_plx ":", addr); else term_printf(TARGET_FMT_lx ":", (target_ulong)addr); l = len; if (l > line_size) l = line_size; if (is_physical) { cpu_physical_memory_rw(addr, buf, l, 0); } else { env = mon_get_cpu(); if (!env) break; if (cpu_memory_rw_debug(env, addr, buf, l, 0) < 0) { term_printf(" Cannot access memory\n"); break; } } i = 0; while (i < l) { switch(wsize) { default: case 1: v = ldub_raw(buf + i); break; case 2: v = lduw_raw(buf + i); break; case 4: v = (uint32_t)ldl_raw(buf + i); break; case 8: v = ldq_raw(buf + i); break; } term_printf(" "); switch(format) { case 'o': term_printf("%#*" PRIo64, max_digits, v); break; case 'x': term_printf("0x%0*" PRIx64, max_digits, v); break; case 'u': term_printf("%*" PRIu64, max_digits, v); break; case 'd': term_printf("%*" PRId64, max_digits, v); break; case 'c': term_printc(v); break; } i += wsize; } term_printf("\n"); addr += l; len -= l; } } #if TARGET_LONG_BITS == 64 #define GET_TLONG(h, l) (((uint64_t)(h) << 32) | (l)) #else #define GET_TLONG(h, l) (l) #endif static void do_memory_dump(int count, int format, int size, uint32_t addrh, uint32_t addrl) { target_long addr = GET_TLONG(addrh, addrl); memory_dump(count, format, size, addr, 0); } #if TARGET_PHYS_ADDR_BITS > 32 #define GET_TPHYSADDR(h, l) (((uint64_t)(h) << 32) | (l)) #else #define GET_TPHYSADDR(h, l) (l) #endif static void do_physical_memory_dump(int count, int format, int size, uint32_t addrh, uint32_t addrl) { target_phys_addr_t addr = GET_TPHYSADDR(addrh, addrl); memory_dump(count, format, size, addr, 1); } static void do_print(int count, int format, int size, unsigned int valh, unsigned int vall) { target_phys_addr_t val = GET_TPHYSADDR(valh, vall); #if TARGET_PHYS_ADDR_BITS == 32 switch(format) { case 'o': term_printf("%#o", val); break; case 'x': term_printf("%#x", val); break; case 'u': term_printf("%u", val); break; default: case 'd': term_printf("%d", val); break; case 'c': term_printc(val); break; } #else switch(format) { case 'o': term_printf("%#" PRIo64, val); break; case 'x': term_printf("%#" PRIx64, val); break; case 'u': term_printf("%" PRIu64, val); break; default: case 'd': term_printf("%" PRId64, val); break; case 'c': term_printc(val); break; } #endif term_printf("\n"); } static void do_memory_save(unsigned int valh, unsigned int vall, uint32_t size, const char *filename) { FILE *f; target_long addr = GET_TLONG(valh, vall); uint32_t l; CPUState *env; uint8_t buf[1024]; env = mon_get_cpu(); if (!env) return; f = fopen(filename, "wb"); if (!f) { term_printf("could not open '%s'\n", filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_memory_rw_debug(env, addr, buf, l, 0); fwrite(buf, 1, l, f); addr += l; size -= l; } fclose(f); } static void do_physical_memory_save(unsigned int valh, unsigned int vall, uint32_t size, const char *filename) { FILE *f; uint32_t l; uint8_t buf[1024]; target_phys_addr_t addr = GET_TPHYSADDR(valh, vall); f = fopen(filename, "wb"); if (!f) { term_printf("could not open '%s'\n", filename); return; } while (size != 0) { l = sizeof(buf); if (l > size) l = size; cpu_physical_memory_rw(addr, buf, l, 0); fwrite(buf, 1, l, f); fflush(f); addr += l; size -= l; } fclose(f); } static void do_sum(uint32_t start, uint32_t size) { uint32_t addr; uint8_t buf[1]; uint16_t sum; sum = 0; for(addr = start; addr < (start + size); addr++) { cpu_physical_memory_rw(addr, buf, 1, 0); /* BSD sum algorithm ('sum' Unix command) */ sum = (sum >> 1) | (sum << 15); sum += buf[0]; } term_printf("%05d\n", sum); } typedef struct { int keycode; const char *name; } KeyDef; static const KeyDef key_defs[] = { { 0x2a, "shift" }, { 0x36, "shift_r" }, { 0x38, "alt" }, { 0xb8, "alt_r" }, { 0x64, "altgr" }, { 0xe4, "altgr_r" }, { 0x1d, "ctrl" }, { 0x9d, "ctrl_r" }, { 0xdd, "menu" }, { 0x01, "esc" }, { 0x02, "1" }, { 0x03, "2" }, { 0x04, "3" }, { 0x05, "4" }, { 0x06, "5" }, { 0x07, "6" }, { 0x08, "7" }, { 0x09, "8" }, { 0x0a, "9" }, { 0x0b, "0" }, { 0x0c, "minus" }, { 0x0d, "equal" }, { 0x0e, "backspace" }, { 0x0f, "tab" }, { 0x10, "q" }, { 0x11, "w" }, { 0x12, "e" }, { 0x13, "r" }, { 0x14, "t" }, { 0x15, "y" }, { 0x16, "u" }, { 0x17, "i" }, { 0x18, "o" }, { 0x19, "p" }, { 0x1c, "ret" }, { 0x1e, "a" }, { 0x1f, "s" }, { 0x20, "d" }, { 0x21, "f" }, { 0x22, "g" }, { 0x23, "h" }, { 0x24, "j" }, { 0x25, "k" }, { 0x26, "l" }, { 0x2c, "z" }, { 0x2d, "x" }, { 0x2e, "c" }, { 0x2f, "v" }, { 0x30, "b" }, { 0x31, "n" }, { 0x32, "m" }, { 0x33, "comma" }, { 0x34, "dot" }, { 0x35, "slash" }, { 0x37, "asterisk" }, { 0x39, "spc" }, { 0x3a, "caps_lock" }, { 0x3b, "f1" }, { 0x3c, "f2" }, { 0x3d, "f3" }, { 0x3e, "f4" }, { 0x3f, "f5" }, { 0x40, "f6" }, { 0x41, "f7" }, { 0x42, "f8" }, { 0x43, "f9" }, { 0x44, "f10" }, { 0x45, "num_lock" }, { 0x46, "scroll_lock" }, { 0xb5, "kp_divide" }, { 0x37, "kp_multiply" }, { 0x4a, "kp_subtract" }, { 0x4e, "kp_add" }, { 0x9c, "kp_enter" }, { 0x53, "kp_decimal" }, { 0x54, "sysrq" }, { 0x52, "kp_0" }, { 0x4f, "kp_1" }, { 0x50, "kp_2" }, { 0x51, "kp_3" }, { 0x4b, "kp_4" }, { 0x4c, "kp_5" }, { 0x4d, "kp_6" }, { 0x47, "kp_7" }, { 0x48, "kp_8" }, { 0x49, "kp_9" }, { 0x56, "<" }, { 0x57, "f11" }, { 0x58, "f12" }, { 0xb7, "print" }, { 0xc7, "home" }, { 0xc9, "pgup" }, { 0xd1, "pgdn" }, { 0xcf, "end" }, { 0xcb, "left" }, { 0xc8, "up" }, { 0xd0, "down" }, { 0xcd, "right" }, { 0xd2, "insert" }, { 0xd3, "delete" }, #if defined(TARGET_SPARC) && !defined(TARGET_SPARC64) { 0xf0, "stop" }, { 0xf1, "again" }, { 0xf2, "props" }, { 0xf3, "undo" }, { 0xf4, "front" }, { 0xf5, "copy" }, { 0xf6, "open" }, { 0xf7, "paste" }, { 0xf8, "find" }, { 0xf9, "cut" }, { 0xfa, "lf" }, { 0xfb, "help" }, { 0xfc, "meta_l" }, { 0xfd, "meta_r" }, { 0xfe, "compose" }, #endif { 0, NULL }, }; static int get_keycode(const char *key) { const KeyDef *p; char *endp; int ret; for(p = key_defs; p->name != NULL; p++) { if (!strcmp(key, p->name)) return p->keycode; } if (strstart(key, "0x", NULL)) { ret = strtoul(key, &endp, 0); if (*endp == '\0' && ret >= 0x01 && ret <= 0xff) return ret; } return -1; } #define MAX_KEYCODES 16 static uint8_t keycodes[MAX_KEYCODES]; static int nb_pending_keycodes; static QEMUTimer *key_timer; static void release_keys(void *opaque) { int keycode; while (nb_pending_keycodes > 0) { nb_pending_keycodes--; keycode = keycodes[nb_pending_keycodes]; if (keycode & 0x80) kbd_put_keycode(0xe0); kbd_put_keycode(keycode | 0x80); } } static void do_sendkey(const char *string, int has_hold_time, int hold_time) { char keyname_buf[16]; char *separator; int keyname_len, keycode, i; if (nb_pending_keycodes > 0) { qemu_del_timer(key_timer); release_keys(NULL); } if (!has_hold_time) hold_time = 100; i = 0; while (1) { separator = strchr(string, '-'); keyname_len = separator ? separator - string : strlen(string); if (keyname_len > 0) { pstrcpy(keyname_buf, sizeof(keyname_buf), string); if (keyname_len > sizeof(keyname_buf) - 1) { term_printf("invalid key: '%s...'\n", keyname_buf); return; } if (i == MAX_KEYCODES) { term_printf("too many keys\n"); return; } keyname_buf[keyname_len] = 0; keycode = get_keycode(keyname_buf); if (keycode < 0) { term_printf("unknown key: '%s'\n", keyname_buf); return; } keycodes[i++] = keycode; } if (!separator) break; string = separator + 1; } nb_pending_keycodes = i; /* key down events */ for (i = 0; i < nb_pending_keycodes; i++) { keycode = keycodes[i]; if (keycode & 0x80) kbd_put_keycode(0xe0); kbd_put_keycode(keycode & 0x7f); } /* delayed key up events */ qemu_mod_timer(key_timer, qemu_get_clock(vm_clock) + muldiv64(ticks_per_sec, hold_time, 1000)); } static int mouse_button_state; static void do_mouse_move(const char *dx_str, const char *dy_str, const char *dz_str) { int dx, dy, dz; dx = strtol(dx_str, NULL, 0); dy = strtol(dy_str, NULL, 0); dz = 0; if (dz_str) dz = strtol(dz_str, NULL, 0); kbd_mouse_event(dx, dy, dz, mouse_button_state); } static void do_mouse_button(int button_state) { mouse_button_state = button_state; kbd_mouse_event(0, 0, 0, mouse_button_state); } static void do_ioport_read(int count, int format, int size, int addr, int has_index, int index) { uint32_t val; int suffix; if (has_index) { cpu_outb(NULL, addr & 0xffff, index & 0xff); addr++; } addr &= 0xffff; switch(size) { default: case 1: val = cpu_inb(NULL, addr); suffix = 'b'; break; case 2: val = cpu_inw(NULL, addr); suffix = 'w'; break; case 4: val = cpu_inl(NULL, addr); suffix = 'l'; break; } term_printf("port%c[0x%04x] = %#0*x\n", suffix, addr, size * 2, val); } /* boot_set handler */ static QEMUBootSetHandler *qemu_boot_set_handler = NULL; static void *boot_opaque; void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque) { qemu_boot_set_handler = func; boot_opaque = opaque; } static void do_boot_set(const char *bootdevice) { int res; if (qemu_boot_set_handler) { res = qemu_boot_set_handler(boot_opaque, bootdevice); if (res == 0) term_printf("boot device list now set to %s\n", bootdevice); else term_printf("setting boot device list failed with error %i\n", res); } else { term_printf("no function defined to set boot device list for this architecture\n"); } } static void do_system_reset(void) { qemu_system_reset_request(); } static void do_system_powerdown(void) { qemu_system_powerdown_request(); } #if defined(TARGET_I386) static void print_pte(uint32_t addr, uint32_t pte, uint32_t mask) { term_printf("%08x: %08x %c%c%c%c%c%c%c%c\n", addr, pte & mask, pte & PG_GLOBAL_MASK ? 'G' : '-', pte & PG_PSE_MASK ? 'P' : '-', pte & PG_DIRTY_MASK ? 'D' : '-', pte & PG_ACCESSED_MASK ? 'A' : '-', pte & PG_PCD_MASK ? 'C' : '-', pte & PG_PWT_MASK ? 'T' : '-', pte & PG_USER_MASK ? 'U' : '-', pte & PG_RW_MASK ? 'W' : '-'); } static void tlb_info(void) { CPUState *env; int l1, l2; uint32_t pgd, pde, pte; env = mon_get_cpu(); if (!env) return; if (!(env->cr[0] & CR0_PG_MASK)) { term_printf("PG disabled\n"); return; } pgd = env->cr[3] & ~0xfff; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4); pde = le32_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { print_pte((l1 << 22), pde, ~((1 << 20) - 1)); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, (uint8_t *)&pte, 4); pte = le32_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte((l1 << 22) + (l2 << 12), pte & ~PG_PSE_MASK, ~0xfff); } } } } } } static void mem_print(uint32_t *pstart, int *plast_prot, uint32_t end, int prot) { int prot1; prot1 = *plast_prot; if (prot != prot1) { if (*pstart != -1) { term_printf("%08x-%08x %08x %c%c%c\n", *pstart, end, end - *pstart, prot1 & PG_USER_MASK ? 'u' : '-', 'r', prot1 & PG_RW_MASK ? 'w' : '-'); } if (prot != 0) *pstart = end; else *pstart = -1; *plast_prot = prot; } } static void mem_info(void) { CPUState *env; int l1, l2, prot, last_prot; uint32_t pgd, pde, pte, start, end; env = mon_get_cpu(); if (!env) return; if (!(env->cr[0] & CR0_PG_MASK)) { term_printf("PG disabled\n"); return; } pgd = env->cr[3] & ~0xfff; last_prot = 0; start = -1; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, (uint8_t *)&pde, 4); pde = le32_to_cpu(pde); end = l1 << 22; if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(&start, &last_prot, end, prot); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, (uint8_t *)&pte, 4); pte = le32_to_cpu(pte); end = (l1 << 22) + (l2 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(&start, &last_prot, end, prot); } } } else { prot = 0; mem_print(&start, &last_prot, end, prot); } } } #endif static void do_info_kqemu(void) { #ifdef USE_KQEMU CPUState *env; int val; val = 0; env = mon_get_cpu(); if (!env) { term_printf("No cpu initialized yet"); return; } val = env->kqemu_enabled; term_printf("kqemu support: "); switch(val) { default: case 0: term_printf("disabled\n"); break; case 1: term_printf("enabled for user code\n"); break; case 2: term_printf("enabled for user and kernel code\n"); break; } #else term_printf("kqemu support: not compiled\n"); #endif } static void do_info_kvm(void) { #ifdef CONFIG_KVM term_printf("kvm support: "); if (kvm_enabled()) term_printf("enabled\n"); else term_printf("disabled\n"); #else term_printf("kvm support: not compiled\n"); #endif } #ifdef CONFIG_PROFILER int64_t kqemu_time; int64_t qemu_time; int64_t kqemu_exec_count; int64_t dev_time; int64_t kqemu_ret_int_count; int64_t kqemu_ret_excp_count; int64_t kqemu_ret_intr_count; static void do_info_profile(void) { int64_t total; total = qemu_time; if (total == 0) total = 1; term_printf("async time %" PRId64 " (%0.3f)\n", dev_time, dev_time / (double)ticks_per_sec); term_printf("qemu time %" PRId64 " (%0.3f)\n", qemu_time, qemu_time / (double)ticks_per_sec); term_printf("kqemu time %" PRId64 " (%0.3f %0.1f%%) count=%" PRId64 " int=%" PRId64 " excp=%" PRId64 " intr=%" PRId64 "\n", kqemu_time, kqemu_time / (double)ticks_per_sec, kqemu_time / (double)total * 100.0, kqemu_exec_count, kqemu_ret_int_count, kqemu_ret_excp_count, kqemu_ret_intr_count); qemu_time = 0; kqemu_time = 0; kqemu_exec_count = 0; dev_time = 0; kqemu_ret_int_count = 0; kqemu_ret_excp_count = 0; kqemu_ret_intr_count = 0; #ifdef USE_KQEMU kqemu_record_dump(); #endif } #else static void do_info_profile(void) { term_printf("Internal profiler not compiled\n"); } #endif /* Capture support */ static LIST_HEAD (capture_list_head, CaptureState) capture_head; static void do_info_capture (void) { int i; CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { term_printf ("[%d]: ", i); s->ops.info (s->opaque); } } static void do_stop_capture (int n) { int i; CaptureState *s; for (s = capture_head.lh_first, i = 0; s; s = s->entries.le_next, ++i) { if (i == n) { s->ops.destroy (s->opaque); LIST_REMOVE (s, entries); qemu_free (s); return; } } } #ifdef HAS_AUDIO static void do_wav_capture (const char *path, int has_freq, int freq, int has_bits, int bits, int has_channels, int nchannels) { CaptureState *s; s = qemu_mallocz (sizeof (*s)); if (!s) { term_printf ("Not enough memory to add wave capture\n"); return; } freq = has_freq ? freq : 44100; bits = has_bits ? bits : 16; nchannels = has_channels ? nchannels : 2; if (wav_start_capture (s, path, freq, bits, nchannels)) { term_printf ("Faied to add wave capture\n"); qemu_free (s); } LIST_INSERT_HEAD (&capture_head, s, entries); } #endif #if defined(TARGET_I386) static void do_inject_nmi(int cpu_index) { CPUState *env; for (env = first_cpu; env != NULL; env = env->next_cpu) if (env->cpu_index == cpu_index) { cpu_interrupt(env, CPU_INTERRUPT_NMI); break; } } #endif static const term_cmd_t term_cmds[] = { { "help|?", "s?", do_help, "[cmd]", "show the help" }, { "commit", "s", do_commit, "device|all", "commit changes to the disk images (if -snapshot is used) or backing files" }, { "info", "s?", do_info, "subcommand", "show various information about the system state" }, { "q|quit", "", do_quit, "", "quit the emulator" }, { "eject", "-fB", do_eject, "[-f] device", "eject a removable medium (use -f to force it)" }, { "change", "BFs?", do_change, "device filename [format]", "change a removable medium, optional format" }, { "screendump", "F", do_screen_dump, "filename", "save screen into PPM image 'filename'" }, { "logfile", "F", do_logfile, "filename", "output logs to 'filename'" }, { "log", "s", do_log, "item1[,...]", "activate logging of the specified items to '/tmp/qemu.log'" }, { "savevm", "s?", do_savevm, "tag|id", "save a VM snapshot. If no tag or id are provided, a new snapshot is created" }, { "loadvm", "s", do_loadvm, "tag|id", "restore a VM snapshot from its tag or id" }, { "delvm", "s", do_delvm, "tag|id", "delete a VM snapshot from its tag or id" }, { "stop", "", do_stop, "", "stop emulation", }, { "c|cont", "", do_cont, "", "resume emulation", }, #ifdef CONFIG_GDBSTUB { "gdbserver", "s?", do_gdbserver, "[port]", "start gdbserver session (default port=1234)", }, #endif { "x", "/l", do_memory_dump, "/fmt addr", "virtual memory dump starting at 'addr'", }, { "xp", "/l", do_physical_memory_dump, "/fmt addr", "physical memory dump starting at 'addr'", }, { "p|print", "/l", do_print, "/fmt expr", "print expression value (use $reg for CPU register access)", }, { "i", "/ii.", do_ioport_read, "/fmt addr", "I/O port read" }, { "sendkey", "si?", do_sendkey, "keys [hold_ms]", "send keys to the VM (e.g. 'sendkey ctrl-alt-f1', default hold time=100 ms)" }, { "system_reset", "", do_system_reset, "", "reset the system" }, { "system_powerdown", "", do_system_powerdown, "", "send system power down event" }, { "sum", "ii", do_sum, "addr size", "compute the checksum of a memory region" }, { "usb_add", "s", do_usb_add, "device", "add USB device (e.g. 'host:bus.addr' or 'host:vendor_id:product_id')" }, { "usb_del", "s", do_usb_del, "device", "remove USB device 'bus.addr'" }, { "cpu", "i", do_cpu_set, "index", "set the default CPU" }, { "mouse_move", "sss?", do_mouse_move, "dx dy [dz]", "send mouse move events" }, { "mouse_button", "i", do_mouse_button, "state", "change mouse button state (1=L, 2=M, 4=R)" }, { "mouse_set", "i", do_mouse_set, "index", "set which mouse device receives events" }, #ifdef HAS_AUDIO { "wavcapture", "si?i?i?", do_wav_capture, "path [frequency bits channels]", "capture audio to a wave file (default frequency=44100 bits=16 channels=2)" }, #endif { "stopcapture", "i", do_stop_capture, "capture index", "stop capture" }, { "memsave", "lis", do_memory_save, "addr size file", "save to disk virtual memory dump starting at 'addr' of size 'size'", }, { "pmemsave", "lis", do_physical_memory_save, "addr size file", "save to disk physical memory dump starting at 'addr' of size 'size'", }, { "boot_set", "s", do_boot_set, "bootdevice", "define new values for the boot device list" }, #if defined(TARGET_I386) { "nmi", "i", do_inject_nmi, "cpu", "inject an NMI on the given CPU", }, #endif { "migrate", "-ds", do_migrate, "[-d] uri", "migrate to URI (using -d to not wait for completion)" }, { "migrate_cancel", "", do_migrate_cancel, "", "cancel the current VM migration" }, { "migrate_set_speed", "s", do_migrate_set_speed, "value", "set maximum speed (in bytes) for migrations" }, { NULL, NULL, }, }; static const term_cmd_t info_cmds[] = { { "version", "", do_info_version, "", "show the version of qemu" }, { "network", "", do_info_network, "", "show the network state" }, { "chardev", "", qemu_chr_info, "", "show the character devices" }, { "block", "", do_info_block, "", "show the block devices" }, { "blockstats", "", do_info_blockstats, "", "show block device statistics" }, { "registers", "", do_info_registers, "", "show the cpu registers" }, { "cpus", "", do_info_cpus, "", "show infos for each CPU" }, { "history", "", do_info_history, "", "show the command line history", }, { "irq", "", irq_info, "", "show the interrupts statistics (if available)", }, { "pic", "", pic_info, "", "show i8259 (PIC) state", }, { "pci", "", pci_info, "", "show PCI info", }, #if defined(TARGET_I386) { "tlb", "", tlb_info, "", "show virtual to physical memory mappings", }, { "mem", "", mem_info, "", "show the active virtual memory mappings", }, #endif { "jit", "", do_info_jit, "", "show dynamic compiler info", }, { "kqemu", "", do_info_kqemu, "", "show kqemu information", }, { "kvm", "", do_info_kvm, "", "show kvm information", }, { "usb", "", usb_info, "", "show guest USB devices", }, { "usbhost", "", usb_host_info, "", "show host USB devices", }, { "profile", "", do_info_profile, "", "show profiling information", }, { "capture", "", do_info_capture, "", "show capture information" }, { "snapshots", "", do_info_snapshots, "", "show the currently saved VM snapshots" }, { "pcmcia", "", pcmcia_info, "", "show guest PCMCIA status" }, { "mice", "", do_info_mice, "", "show which guest mouse is receiving events" }, { "vnc", "", do_info_vnc, "", "show the vnc server status"}, { "name", "", do_info_name, "", "show the current VM name" }, { "uuid", "", do_info_uuid, "", "show the current VM UUID" }, #if defined(TARGET_PPC) { "cpustats", "", do_info_cpu_stats, "", "show CPU statistics", }, #endif #if defined(CONFIG_SLIRP) { "slirp", "", do_info_slirp, "", "show SLIRP statistics", }, #endif { "migrate", "", do_info_migrate, "", "show migration status" }, { NULL, NULL, }, }; /*******************************************************************/ static const char *pch; static jmp_buf expr_env; #define MD_TLONG 0 #define MD_I32 1 typedef struct MonitorDef { const char *name; int offset; target_long (*get_value)(const struct MonitorDef *md, int val); int type; } MonitorDef; #if defined(TARGET_I386) static target_long monitor_get_pc (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return env->eip + env->segs[R_CS].base; } #endif #if defined(TARGET_PPC) static target_long monitor_get_ccr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); unsigned int u; int i; if (!env) return 0; u = 0; for (i = 0; i < 8; i++) u |= env->crf[i] << (32 - (4 * i)); return u; } static target_long monitor_get_msr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return env->msr; } static target_long monitor_get_xer (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return env->xer; } static target_long monitor_get_decr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return cpu_ppc_load_decr(env); } static target_long monitor_get_tbu (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return cpu_ppc_load_tbu(env); } static target_long monitor_get_tbl (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return cpu_ppc_load_tbl(env); } #endif #if defined(TARGET_SPARC) #ifndef TARGET_SPARC64 static target_long monitor_get_psr (const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return GET_PSR(env); } #endif static target_long monitor_get_reg(const struct MonitorDef *md, int val) { CPUState *env = mon_get_cpu(); if (!env) return 0; return env->regwptr[val]; } #endif static const MonitorDef monitor_defs[] = { #ifdef TARGET_I386 #define SEG(name, seg) \ { name, offsetof(CPUState, segs[seg].selector), NULL, MD_I32 },\ { name ".base", offsetof(CPUState, segs[seg].base) },\ { name ".limit", offsetof(CPUState, segs[seg].limit), NULL, MD_I32 }, { "eax", offsetof(CPUState, regs[0]) }, { "ecx", offsetof(CPUState, regs[1]) }, { "edx", offsetof(CPUState, regs[2]) }, { "ebx", offsetof(CPUState, regs[3]) }, { "esp|sp", offsetof(CPUState, regs[4]) }, { "ebp|fp", offsetof(CPUState, regs[5]) }, { "esi", offsetof(CPUState, regs[6]) }, { "edi", offsetof(CPUState, regs[7]) }, #ifdef TARGET_X86_64 { "r8", offsetof(CPUState, regs[8]) }, { "r9", offsetof(CPUState, regs[9]) }, { "r10", offsetof(CPUState, regs[10]) }, { "r11", offsetof(CPUState, regs[11]) }, { "r12", offsetof(CPUState, regs[12]) }, { "r13", offsetof(CPUState, regs[13]) }, { "r14", offsetof(CPUState, regs[14]) }, { "r15", offsetof(CPUState, regs[15]) }, #endif { "eflags", offsetof(CPUState, eflags) }, { "eip", offsetof(CPUState, eip) }, SEG("cs", R_CS) SEG("ds", R_DS) SEG("es", R_ES) SEG("ss", R_SS) SEG("fs", R_FS) SEG("gs", R_GS) { "pc", 0, monitor_get_pc, }, #elif defined(TARGET_PPC) /* General purpose registers */ { "r0", offsetof(CPUState, gpr[0]) }, { "r1", offsetof(CPUState, gpr[1]) }, { "r2", offsetof(CPUState, gpr[2]) }, { "r3", offsetof(CPUState, gpr[3]) }, { "r4", offsetof(CPUState, gpr[4]) }, { "r5", offsetof(CPUState, gpr[5]) }, { "r6", offsetof(CPUState, gpr[6]) }, { "r7", offsetof(CPUState, gpr[7]) }, { "r8", offsetof(CPUState, gpr[8]) }, { "r9", offsetof(CPUState, gpr[9]) }, { "r10", offsetof(CPUState, gpr[10]) }, { "r11", offsetof(CPUState, gpr[11]) }, { "r12", offsetof(CPUState, gpr[12]) }, { "r13", offsetof(CPUState, gpr[13]) }, { "r14", offsetof(CPUState, gpr[14]) }, { "r15", offsetof(CPUState, gpr[15]) }, { "r16", offsetof(CPUState, gpr[16]) }, { "r17", offsetof(CPUState, gpr[17]) }, { "r18", offsetof(CPUState, gpr[18]) }, { "r19", offsetof(CPUState, gpr[19]) }, { "r20", offsetof(CPUState, gpr[20]) }, { "r21", offsetof(CPUState, gpr[21]) }, { "r22", offsetof(CPUState, gpr[22]) }, { "r23", offsetof(CPUState, gpr[23]) }, { "r24", offsetof(CPUState, gpr[24]) }, { "r25", offsetof(CPUState, gpr[25]) }, { "r26", offsetof(CPUState, gpr[26]) }, { "r27", offsetof(CPUState, gpr[27]) }, { "r28", offsetof(CPUState, gpr[28]) }, { "r29", offsetof(CPUState, gpr[29]) }, { "r30", offsetof(CPUState, gpr[30]) }, { "r31", offsetof(CPUState, gpr[31]) }, /* Floating point registers */ { "f0", offsetof(CPUState, fpr[0]) }, { "f1", offsetof(CPUState, fpr[1]) }, { "f2", offsetof(CPUState, fpr[2]) }, { "f3", offsetof(CPUState, fpr[3]) }, { "f4", offsetof(CPUState, fpr[4]) }, { "f5", offsetof(CPUState, fpr[5]) }, { "f6", offsetof(CPUState, fpr[6]) }, { "f7", offsetof(CPUState, fpr[7]) }, { "f8", offsetof(CPUState, fpr[8]) }, { "f9", offsetof(CPUState, fpr[9]) }, { "f10", offsetof(CPUState, fpr[10]) }, { "f11", offsetof(CPUState, fpr[11]) }, { "f12", offsetof(CPUState, fpr[12]) }, { "f13", offsetof(CPUState, fpr[13]) }, { "f14", offsetof(CPUState, fpr[14]) }, { "f15", offsetof(CPUState, fpr[15]) }, { "f16", offsetof(CPUState, fpr[16]) }, { "f17", offsetof(CPUState, fpr[17]) }, { "f18", offsetof(CPUState, fpr[18]) }, { "f19", offsetof(CPUState, fpr[19]) }, { "f20", offsetof(CPUState, fpr[20]) }, { "f21", offsetof(CPUState, fpr[21]) }, { "f22", offsetof(CPUState, fpr[22]) }, { "f23", offsetof(CPUState, fpr[23]) }, { "f24", offsetof(CPUState, fpr[24]) }, { "f25", offsetof(CPUState, fpr[25]) }, { "f26", offsetof(CPUState, fpr[26]) }, { "f27", offsetof(CPUState, fpr[27]) }, { "f28", offsetof(CPUState, fpr[28]) }, { "f29", offsetof(CPUState, fpr[29]) }, { "f30", offsetof(CPUState, fpr[30]) }, { "f31", offsetof(CPUState, fpr[31]) }, { "fpscr", offsetof(CPUState, fpscr) }, /* Next instruction pointer */ { "nip|pc", offsetof(CPUState, nip) }, { "lr", offsetof(CPUState, lr) }, { "ctr", offsetof(CPUState, ctr) }, { "decr", 0, &monitor_get_decr, }, { "ccr", 0, &monitor_get_ccr, }, /* Machine state register */ { "msr", 0, &monitor_get_msr, }, { "xer", 0, &monitor_get_xer, }, { "tbu", 0, &monitor_get_tbu, }, { "tbl", 0, &monitor_get_tbl, }, #if defined(TARGET_PPC64) /* Address space register */ { "asr", offsetof(CPUState, asr) }, #endif /* Segment registers */ { "sdr1", offsetof(CPUState, sdr1) }, { "sr0", offsetof(CPUState, sr[0]) }, { "sr1", offsetof(CPUState, sr[1]) }, { "sr2", offsetof(CPUState, sr[2]) }, { "sr3", offsetof(CPUState, sr[3]) }, { "sr4", offsetof(CPUState, sr[4]) }, { "sr5", offsetof(CPUState, sr[5]) }, { "sr6", offsetof(CPUState, sr[6]) }, { "sr7", offsetof(CPUState, sr[7]) }, { "sr8", offsetof(CPUState, sr[8]) }, { "sr9", offsetof(CPUState, sr[9]) }, { "sr10", offsetof(CPUState, sr[10]) }, { "sr11", offsetof(CPUState, sr[11]) }, { "sr12", offsetof(CPUState, sr[12]) }, { "sr13", offsetof(CPUState, sr[13]) }, { "sr14", offsetof(CPUState, sr[14]) }, { "sr15", offsetof(CPUState, sr[15]) }, /* Too lazy to put BATs and SPRs ... */ #elif defined(TARGET_SPARC) { "g0", offsetof(CPUState, gregs[0]) }, { "g1", offsetof(CPUState, gregs[1]) }, { "g2", offsetof(CPUState, gregs[2]) }, { "g3", offsetof(CPUState, gregs[3]) }, { "g4", offsetof(CPUState, gregs[4]) }, { "g5", offsetof(CPUState, gregs[5]) }, { "g6", offsetof(CPUState, gregs[6]) }, { "g7", offsetof(CPUState, gregs[7]) }, { "o0", 0, monitor_get_reg }, { "o1", 1, monitor_get_reg }, { "o2", 2, monitor_get_reg }, { "o3", 3, monitor_get_reg }, { "o4", 4, monitor_get_reg }, { "o5", 5, monitor_get_reg }, { "o6", 6, monitor_get_reg }, { "o7", 7, monitor_get_reg }, { "l0", 8, monitor_get_reg }, { "l1", 9, monitor_get_reg }, { "l2", 10, monitor_get_reg }, { "l3", 11, monitor_get_reg }, { "l4", 12, monitor_get_reg }, { "l5", 13, monitor_get_reg }, { "l6", 14, monitor_get_reg }, { "l7", 15, monitor_get_reg }, { "i0", 16, monitor_get_reg }, { "i1", 17, monitor_get_reg }, { "i2", 18, monitor_get_reg }, { "i3", 19, monitor_get_reg }, { "i4", 20, monitor_get_reg }, { "i5", 21, monitor_get_reg }, { "i6", 22, monitor_get_reg }, { "i7", 23, monitor_get_reg }, { "pc", offsetof(CPUState, pc) }, { "npc", offsetof(CPUState, npc) }, { "y", offsetof(CPUState, y) }, #ifndef TARGET_SPARC64 { "psr", 0, &monitor_get_psr, }, { "wim", offsetof(CPUState, wim) }, #endif { "tbr", offsetof(CPUState, tbr) }, { "fsr", offsetof(CPUState, fsr) }, { "f0", offsetof(CPUState, fpr[0]) }, { "f1", offsetof(CPUState, fpr[1]) }, { "f2", offsetof(CPUState, fpr[2]) }, { "f3", offsetof(CPUState, fpr[3]) }, { "f4", offsetof(CPUState, fpr[4]) }, { "f5", offsetof(CPUState, fpr[5]) }, { "f6", offsetof(CPUState, fpr[6]) }, { "f7", offsetof(CPUState, fpr[7]) }, { "f8", offsetof(CPUState, fpr[8]) }, { "f9", offsetof(CPUState, fpr[9]) }, { "f10", offsetof(CPUState, fpr[10]) }, { "f11", offsetof(CPUState, fpr[11]) }, { "f12", offsetof(CPUState, fpr[12]) }, { "f13", offsetof(CPUState, fpr[13]) }, { "f14", offsetof(CPUState, fpr[14]) }, { "f15", offsetof(CPUState, fpr[15]) }, { "f16", offsetof(CPUState, fpr[16]) }, { "f17", offsetof(CPUState, fpr[17]) }, { "f18", offsetof(CPUState, fpr[18]) }, { "f19", offsetof(CPUState, fpr[19]) }, { "f20", offsetof(CPUState, fpr[20]) }, { "f21", offsetof(CPUState, fpr[21]) }, { "f22", offsetof(CPUState, fpr[22]) }, { "f23", offsetof(CPUState, fpr[23]) }, { "f24", offsetof(CPUState, fpr[24]) }, { "f25", offsetof(CPUState, fpr[25]) }, { "f26", offsetof(CPUState, fpr[26]) }, { "f27", offsetof(CPUState, fpr[27]) }, { "f28", offsetof(CPUState, fpr[28]) }, { "f29", offsetof(CPUState, fpr[29]) }, { "f30", offsetof(CPUState, fpr[30]) }, { "f31", offsetof(CPUState, fpr[31]) }, #ifdef TARGET_SPARC64 { "f32", offsetof(CPUState, fpr[32]) }, { "f34", offsetof(CPUState, fpr[34]) }, { "f36", offsetof(CPUState, fpr[36]) }, { "f38", offsetof(CPUState, fpr[38]) }, { "f40", offsetof(CPUState, fpr[40]) }, { "f42", offsetof(CPUState, fpr[42]) }, { "f44", offsetof(CPUState, fpr[44]) }, { "f46", offsetof(CPUState, fpr[46]) }, { "f48", offsetof(CPUState, fpr[48]) }, { "f50", offsetof(CPUState, fpr[50]) }, { "f52", offsetof(CPUState, fpr[52]) }, { "f54", offsetof(CPUState, fpr[54]) }, { "f56", offsetof(CPUState, fpr[56]) }, { "f58", offsetof(CPUState, fpr[58]) }, { "f60", offsetof(CPUState, fpr[60]) }, { "f62", offsetof(CPUState, fpr[62]) }, { "asi", offsetof(CPUState, asi) }, { "pstate", offsetof(CPUState, pstate) }, { "cansave", offsetof(CPUState, cansave) }, { "canrestore", offsetof(CPUState, canrestore) }, { "otherwin", offsetof(CPUState, otherwin) }, { "wstate", offsetof(CPUState, wstate) }, { "cleanwin", offsetof(CPUState, cleanwin) }, { "fprs", offsetof(CPUState, fprs) }, #endif #endif { NULL }, }; static void expr_error(const char *fmt) { term_printf(fmt); term_printf("\n"); longjmp(expr_env, 1); } /* return 0 if OK, -1 if not found, -2 if no CPU defined */ static int get_monitor_def(target_long *pval, const char *name) { const MonitorDef *md; void *ptr; for(md = monitor_defs; md->name != NULL; md++) { if (compare_cmd(name, md->name)) { if (md->get_value) { *pval = md->get_value(md, md->offset); } else { CPUState *env = mon_get_cpu(); if (!env) return -2; ptr = (uint8_t *)env + md->offset; switch(md->type) { case MD_I32: *pval = *(int32_t *)ptr; break; case MD_TLONG: *pval = *(target_long *)ptr; break; default: *pval = 0; break; } } return 0; } } return -1; } static void next(void) { if (pch != '\0') { pch++; while (qemu_isspace(*pch)) pch++; } } static int64_t expr_sum(void); static int64_t expr_unary(void) { int64_t n; char *p; int ret; switch(*pch) { case '+': next(); n = expr_unary(); break; case '-': next(); n = -expr_unary(); break; case '~': next(); n = ~expr_unary(); break; case '(': next(); n = expr_sum(); if (*pch != ')') { expr_error("')' expected"); } next(); break; case '\'': pch++; if (*pch == '\0') expr_error("character constant expected"); n = *pch; pch++; if (*pch != '\'') expr_error("missing terminating \' character"); next(); break; case '$': { char buf[128], *q; target_long reg=0; pch++; q = buf; while ((*pch >= 'a' && *pch <= 'z') || (*pch >= 'A' && *pch <= 'Z') || (*pch >= '0' && *pch <= '9') || *pch == '_' || *pch == '.') { if ((q - buf) < sizeof(buf) - 1) *q++ = *pch; pch++; } while (qemu_isspace(*pch)) pch++; *q = 0; ret = get_monitor_def(®, buf); if (ret == -1) expr_error("unknown register"); else if (ret == -2) expr_error("no cpu defined"); n = reg; } break; case '\0': expr_error("unexpected end of expression"); n = 0; break; default: #if TARGET_PHYS_ADDR_BITS > 32 n = strtoull(pch, &p, 0); #else n = strtoul(pch, &p, 0); #endif if (pch == p) { expr_error("invalid char in expression"); } pch = p; while (qemu_isspace(*pch)) pch++; break; } return n; } static int64_t expr_prod(void) { int64_t val, val2; int op; val = expr_unary(); for(;;) { op = *pch; if (op != '*' && op != '/' && op != '%') break; next(); val2 = expr_unary(); switch(op) { default: case '*': val *= val2; break; case '/': case '%': if (val2 == 0) expr_error("division by zero"); if (op == '/') val /= val2; else val %= val2; break; } } return val; } static int64_t expr_logic(void) { int64_t val, val2; int op; val = expr_prod(); for(;;) { op = *pch; if (op != '&' && op != '|' && op != '^') break; next(); val2 = expr_prod(); switch(op) { default: case '&': val &= val2; break; case '|': val |= val2; break; case '^': val ^= val2; break; } } return val; } static int64_t expr_sum(void) { int64_t val, val2; int op; val = expr_logic(); for(;;) { op = *pch; if (op != '+' && op != '-') break; next(); val2 = expr_logic(); if (op == '+') val += val2; else val -= val2; } return val; } static int get_expr(int64_t *pval, const char **pp) { pch = *pp; if (setjmp(expr_env)) { *pp = pch; return -1; } while (qemu_isspace(*pch)) pch++; *pval = expr_sum(); *pp = pch; return 0; } static int get_str(char *buf, int buf_size, const char **pp) { const char *p; char *q; int c; q = buf; p = *pp; while (qemu_isspace(*p)) p++; if (*p == '\0') { fail: *q = '\0'; *pp = p; return -1; } if (*p == '\"') { p++; while (*p != '\0' && *p != '\"') { if (*p == '\\') { p++; c = *p++; switch(c) { case 'n': c = '\n'; break; case 'r': c = '\r'; break; case '\\': case '\'': case '\"': break; default: qemu_printf("unsupported escape code: '\\%c'\n", c); goto fail; } if ((q - buf) < buf_size - 1) { *q++ = c; } } else { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } if (*p != '\"') { qemu_printf("unterminated string\n"); goto fail; } p++; } else { while (*p != '\0' && !qemu_isspace(*p)) { if ((q - buf) < buf_size - 1) { *q++ = *p; } p++; } } *q = '\0'; *pp = p; return 0; } static int default_fmt_format = 'x'; static int default_fmt_size = 4; #define MAX_ARGS 16 static void monitor_handle_command(const char *cmdline) { const char *p, *pstart, *typestr; char *q; int c, nb_args, len, i, has_arg; const term_cmd_t *cmd; char cmdname[256]; char buf[1024]; void *str_allocated[MAX_ARGS]; void *args[MAX_ARGS]; void (*handler_0)(void); void (*handler_1)(void *arg0); void (*handler_2)(void *arg0, void *arg1); void (*handler_3)(void *arg0, void *arg1, void *arg2); void (*handler_4)(void *arg0, void *arg1, void *arg2, void *arg3); void (*handler_5)(void *arg0, void *arg1, void *arg2, void *arg3, void *arg4); void (*handler_6)(void *arg0, void *arg1, void *arg2, void *arg3, void *arg4, void *arg5); void (*handler_7)(void *arg0, void *arg1, void *arg2, void *arg3, void *arg4, void *arg5, void *arg6); #ifdef DEBUG term_printf("command='%s'\n", cmdline); #endif /* extract the command name */ p = cmdline; q = cmdname; while (qemu_isspace(*p)) p++; if (*p == '\0') return; pstart = p; while (*p != '\0' && *p != '/' && !qemu_isspace(*p)) p++; len = p - pstart; if (len > sizeof(cmdname) - 1) len = sizeof(cmdname) - 1; memcpy(cmdname, pstart, len); cmdname[len] = '\0'; /* find the command */ for(cmd = term_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(cmdname, cmd->name)) goto found; } term_printf("unknown command: '%s'\n", cmdname); return; found: for(i = 0; i < MAX_ARGS; i++) str_allocated[i] = NULL; /* parse the parameters */ typestr = cmd->args_type; nb_args = 0; for(;;) { c = *typestr; if (c == '\0') break; typestr++; switch(c) { case 'F': case 'B': case 's': { int ret; char *str; while (qemu_isspace(*p)) p++; if (*typestr == '?') { typestr++; if (*p == '\0') { /* no optional string: NULL argument */ str = NULL; goto add_str; } } ret = get_str(buf, sizeof(buf), &p); if (ret < 0) { switch(c) { case 'F': term_printf("%s: filename expected\n", cmdname); break; case 'B': term_printf("%s: block device name expected\n", cmdname); break; default: term_printf("%s: string expected\n", cmdname); break; } goto fail; } str = qemu_malloc(strlen(buf) + 1); pstrcpy(str, sizeof(buf), buf); str_allocated[nb_args] = str; add_str: if (nb_args >= MAX_ARGS) { error_args: term_printf("%s: too many arguments\n", cmdname); goto fail; } args[nb_args++] = str; } break; case '/': { int count, format, size; while (qemu_isspace(*p)) p++; if (*p == '/') { /* format found */ p++; count = 1; if (qemu_isdigit(*p)) { count = 0; while (qemu_isdigit(*p)) { count = count * 10 + (*p - '0'); p++; } } size = -1; format = -1; for(;;) { switch(*p) { case 'o': case 'd': case 'u': case 'x': case 'i': case 'c': format = *p++; break; case 'b': size = 1; p++; break; case 'h': size = 2; p++; break; case 'w': size = 4; p++; break; case 'g': case 'L': size = 8; p++; break; default: goto next; } } next: if (*p != '\0' && !qemu_isspace(*p)) { term_printf("invalid char in format: '%c'\n", *p); goto fail; } if (format < 0) format = default_fmt_format; if (format != 'i') { /* for 'i', not specifying a size gives -1 as size */ if (size < 0) size = default_fmt_size; default_fmt_size = size; } default_fmt_format = format; } else { count = 1; format = default_fmt_format; if (format != 'i') { size = default_fmt_size; } else { size = -1; } } if (nb_args + 3 > MAX_ARGS) goto error_args; args[nb_args++] = (void*)(long)count; args[nb_args++] = (void*)(long)format; args[nb_args++] = (void*)(long)size; } break; case 'i': case 'l': { int64_t val; while (qemu_isspace(*p)) p++; if (*typestr == '?' || *typestr == '.') { if (*typestr == '?') { if (*p == '\0') has_arg = 0; else has_arg = 1; } else { if (*p == '.') { p++; while (qemu_isspace(*p)) p++; has_arg = 1; } else { has_arg = 0; } } typestr++; if (nb_args >= MAX_ARGS) goto error_args; args[nb_args++] = (void *)(long)has_arg; if (!has_arg) { if (nb_args >= MAX_ARGS) goto error_args; val = -1; goto add_num; } } if (get_expr(&val, &p)) goto fail; add_num: if (c == 'i') { if (nb_args >= MAX_ARGS) goto error_args; args[nb_args++] = (void *)(long)val; } else { if ((nb_args + 1) >= MAX_ARGS) goto error_args; #if TARGET_PHYS_ADDR_BITS > 32 args[nb_args++] = (void *)(long)((val >> 32) & 0xffffffff); #else args[nb_args++] = (void *)0; #endif args[nb_args++] = (void *)(long)(val & 0xffffffff); } } break; case '-': { int has_option; /* option */ c = *typestr++; if (c == '\0') goto bad_type; while (qemu_isspace(*p)) p++; has_option = 0; if (*p == '-') { p++; if (*p != c) { term_printf("%s: unsupported option -%c\n", cmdname, *p); goto fail; } p++; has_option = 1; } if (nb_args >= MAX_ARGS) goto error_args; args[nb_args++] = (void *)(long)has_option; } break; default: bad_type: term_printf("%s: unknown type '%c'\n", cmdname, c); goto fail; } } /* check that all arguments were parsed */ while (qemu_isspace(*p)) p++; if (*p != '\0') { term_printf("%s: extraneous characters at the end of line\n", cmdname); goto fail; } switch(nb_args) { case 0: handler_0 = cmd->handler; handler_0(); break; case 1: handler_1 = cmd->handler; handler_1(args[0]); break; case 2: handler_2 = cmd->handler; handler_2(args[0], args[1]); break; case 3: handler_3 = cmd->handler; handler_3(args[0], args[1], args[2]); break; case 4: handler_4 = cmd->handler; handler_4(args[0], args[1], args[2], args[3]); break; case 5: handler_5 = cmd->handler; handler_5(args[0], args[1], args[2], args[3], args[4]); break; case 6: handler_6 = cmd->handler; handler_6(args[0], args[1], args[2], args[3], args[4], args[5]); break; case 7: handler_7 = cmd->handler; handler_7(args[0], args[1], args[2], args[3], args[4], args[5], args[6]); break; default: term_printf("unsupported number of arguments: %d\n", nb_args); goto fail; } fail: for(i = 0; i < MAX_ARGS; i++) qemu_free(str_allocated[i]); return; } static void cmd_completion(const char *name, const char *list) { const char *p, *pstart; char cmd[128]; int len; p = list; for(;;) { pstart = p; p = strchr(p, '|'); if (!p) p = pstart + strlen(pstart); len = p - pstart; if (len > sizeof(cmd) - 2) len = sizeof(cmd) - 2; memcpy(cmd, pstart, len); cmd[len] = '\0'; if (name[0] == '\0' || !strncmp(name, cmd, strlen(name))) { add_completion(cmd); } if (*p == '\0') break; p++; } } static void file_completion(const char *input) { DIR *ffs; struct dirent *d; char path[1024]; char file[1024], file_prefix[1024]; int input_path_len; const char *p; p = strrchr(input, '/'); if (!p) { input_path_len = 0; pstrcpy(file_prefix, sizeof(file_prefix), input); pstrcpy(path, sizeof(path), "."); } else { input_path_len = p - input + 1; memcpy(path, input, input_path_len); if (input_path_len > sizeof(path) - 1) input_path_len = sizeof(path) - 1; path[input_path_len] = '\0'; pstrcpy(file_prefix, sizeof(file_prefix), p + 1); } #ifdef DEBUG_COMPLETION term_printf("input='%s' path='%s' prefix='%s'\n", input, path, file_prefix); #endif ffs = opendir(path); if (!ffs) return; for(;;) { struct stat sb; d = readdir(ffs); if (!d) break; if (strstart(d->d_name, file_prefix, NULL)) { memcpy(file, input, input_path_len); if (input_path_len < sizeof(file)) pstrcpy(file + input_path_len, sizeof(file) - input_path_len, d->d_name); /* stat the file to find out if it's a directory. * In that case add a slash to speed up typing long paths */ stat(file, &sb); if(S_ISDIR(sb.st_mode)) pstrcat(file, sizeof(file), "/"); add_completion(file); } } closedir(ffs); } static void block_completion_it(void *opaque, const char *name) { const char *input = opaque; if (input[0] == '\0' || !strncmp(name, (char *)input, strlen(input))) { add_completion(name); } } /* NOTE: this parser is an approximate form of the real command parser */ static void parse_cmdline(const char *cmdline, int *pnb_args, char **args) { const char *p; int nb_args, ret; char buf[1024]; p = cmdline; nb_args = 0; for(;;) { while (qemu_isspace(*p)) p++; if (*p == '\0') break; if (nb_args >= MAX_ARGS) break; ret = get_str(buf, sizeof(buf), &p); args[nb_args] = qemu_strdup(buf); nb_args++; if (ret < 0) break; } *pnb_args = nb_args; } void readline_find_completion(const char *cmdline) { const char *cmdname; char *args[MAX_ARGS]; int nb_args, i, len; const char *ptype, *str; const term_cmd_t *cmd; const KeyDef *key; parse_cmdline(cmdline, &nb_args, args); #ifdef DEBUG_COMPLETION for(i = 0; i < nb_args; i++) { term_printf("arg%d = '%s'\n", i, (char *)args[i]); } #endif /* if the line ends with a space, it means we want to complete the next arg */ len = strlen(cmdline); if (len > 0 && qemu_isspace(cmdline[len - 1])) { if (nb_args >= MAX_ARGS) return; args[nb_args++] = qemu_strdup(""); } if (nb_args <= 1) { /* command completion */ if (nb_args == 0) cmdname = ""; else cmdname = args[0]; completion_index = strlen(cmdname); for(cmd = term_cmds; cmd->name != NULL; cmd++) { cmd_completion(cmdname, cmd->name); } } else { /* find the command */ for(cmd = term_cmds; cmd->name != NULL; cmd++) { if (compare_cmd(args[0], cmd->name)) goto found; } return; found: ptype = cmd->args_type; for(i = 0; i < nb_args - 2; i++) { if (*ptype != '\0') { ptype++; while (*ptype == '?') ptype++; } } str = args[nb_args - 1]; switch(*ptype) { case 'F': /* file completion */ completion_index = strlen(str); file_completion(str); break; case 'B': /* block device name completion */ completion_index = strlen(str); bdrv_iterate(block_completion_it, (void *)str); break; case 's': /* XXX: more generic ? */ if (!strcmp(cmd->name, "info")) { completion_index = strlen(str); for(cmd = info_cmds; cmd->name != NULL; cmd++) { cmd_completion(str, cmd->name); } } else if (!strcmp(cmd->name, "sendkey")) { completion_index = strlen(str); for(key = key_defs; key->name != NULL; key++) { cmd_completion(str, key->name); } } break; default: break; } } for(i = 0; i < nb_args; i++) qemu_free(args[i]); } static int term_can_read(void *opaque) { return 128; } static void term_read(void *opaque, const uint8_t *buf, int size) { int i; for(i = 0; i < size; i++) readline_handle_byte(buf[i]); } static int monitor_suspended; static void monitor_handle_command1(void *opaque, const char *cmdline) { monitor_handle_command(cmdline); if (!monitor_suspended) monitor_start_input(); else monitor_suspended = 2; } void monitor_suspend(void) { monitor_suspended = 1; } void monitor_resume(void) { if (monitor_suspended == 2) monitor_start_input(); monitor_suspended = 0; } static void monitor_start_input(void) { readline_start("(qemu) ", 0, monitor_handle_command1, NULL); } static void term_event(void *opaque, int event) { if (event != CHR_EVENT_RESET) return; if (!hide_banner) term_printf("QEMU %s monitor - type 'help' for more information\n", QEMU_VERSION); monitor_start_input(); } static int is_first_init = 1; void monitor_init(CharDriverState *hd, int show_banner) { int i; if (is_first_init) { key_timer = qemu_new_timer(vm_clock, release_keys, NULL); if (!key_timer) return; for (i = 0; i < MAX_MON; i++) { monitor_hd[i] = NULL; } is_first_init = 0; } for (i = 0; i < MAX_MON; i++) { if (monitor_hd[i] == NULL) { monitor_hd[i] = hd; break; } } hide_banner = !show_banner; qemu_chr_add_handlers(hd, term_can_read, term_read, term_event, NULL); readline_start("", 0, monitor_handle_command1, NULL); } /* XXX: use threads ? */ /* modal monitor readline */ static int monitor_readline_started; static char *monitor_readline_buf; static int monitor_readline_buf_size; static void monitor_readline_cb(void *opaque, const char *input) { pstrcpy(monitor_readline_buf, monitor_readline_buf_size, input); monitor_readline_started = 0; } void monitor_readline(const char *prompt, int is_password, char *buf, int buf_size) { int i; int old_focus[MAX_MON]; if (is_password) { for (i = 0; i < MAX_MON; i++) { old_focus[i] = 0; if (monitor_hd[i]) { old_focus[i] = monitor_hd[i]->focus; monitor_hd[i]->focus = 0; qemu_chr_send_event(monitor_hd[i], CHR_EVENT_FOCUS); } } } readline_start(prompt, is_password, monitor_readline_cb, NULL); monitor_readline_buf = buf; monitor_readline_buf_size = buf_size; monitor_readline_started = 1; while (monitor_readline_started) { main_loop_wait(10); } /* restore original focus */ if (is_password) { for (i = 0; i < MAX_MON; i++) if (old_focus[i]) monitor_hd[i]->focus = old_focus[i]; } }