/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * Copyright (c) 2009-2015 Red Hat Inc * * Authors: * Juan Quintela * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/boards.h" #include "hw/hw.h" #include "hw/qdev.h" #include "hw/xen/xen.h" #include "net/net.h" #include "sysemu/sysemu.h" #include "qemu/timer.h" #include "migration/migration.h" #include "migration/snapshot.h" #include "ram.h" #include "qemu-file-channel.h" #include "qemu-file.h" #include "savevm.h" #include "postcopy-ram.h" #include "qapi/qmp/qerror.h" #include "qemu/error-report.h" #include "qemu/queue.h" #include "sysemu/cpus.h" #include "exec/memory.h" #include "exec/target_page.h" #include "qmp-commands.h" #include "trace.h" #include "qemu/bitops.h" #include "qemu/iov.h" #include "block/snapshot.h" #include "qemu/cutils.h" #include "io/channel-buffer.h" #include "io/channel-file.h" #ifndef ETH_P_RARP #define ETH_P_RARP 0x8035 #endif #define ARP_HTYPE_ETH 0x0001 #define ARP_PTYPE_IP 0x0800 #define ARP_OP_REQUEST_REV 0x3 const unsigned int postcopy_ram_discard_version = 0; static bool skip_section_footers; /* Subcommands for QEMU_VM_COMMAND */ enum qemu_vm_cmd { MIG_CMD_INVALID = 0, /* Must be 0 */ MIG_CMD_OPEN_RETURN_PATH, /* Tell the dest to open the Return path */ MIG_CMD_PING, /* Request a PONG on the RP */ MIG_CMD_POSTCOPY_ADVISE, /* Prior to any page transfers, just warn we might want to do PC */ MIG_CMD_POSTCOPY_LISTEN, /* Start listening for incoming pages as it's running. */ MIG_CMD_POSTCOPY_RUN, /* Start execution */ MIG_CMD_POSTCOPY_RAM_DISCARD, /* A list of pages to discard that were previously sent during precopy but are dirty. */ MIG_CMD_PACKAGED, /* Send a wrapped stream within this stream */ MIG_CMD_MAX }; #define MAX_VM_CMD_PACKAGED_SIZE (1ul << 24) static struct mig_cmd_args { ssize_t len; /* -1 = variable */ const char *name; } mig_cmd_args[] = { [MIG_CMD_INVALID] = { .len = -1, .name = "INVALID" }, [MIG_CMD_OPEN_RETURN_PATH] = { .len = 0, .name = "OPEN_RETURN_PATH" }, [MIG_CMD_PING] = { .len = sizeof(uint32_t), .name = "PING" }, [MIG_CMD_POSTCOPY_ADVISE] = { .len = 16, .name = "POSTCOPY_ADVISE" }, [MIG_CMD_POSTCOPY_LISTEN] = { .len = 0, .name = "POSTCOPY_LISTEN" }, [MIG_CMD_POSTCOPY_RUN] = { .len = 0, .name = "POSTCOPY_RUN" }, [MIG_CMD_POSTCOPY_RAM_DISCARD] = { .len = -1, .name = "POSTCOPY_RAM_DISCARD" }, [MIG_CMD_PACKAGED] = { .len = 4, .name = "PACKAGED" }, [MIG_CMD_MAX] = { .len = -1, .name = "MAX" }, }; static int announce_self_create(uint8_t *buf, uint8_t *mac_addr) { /* Ethernet header. */ memset(buf, 0xff, 6); /* destination MAC addr */ memcpy(buf + 6, mac_addr, 6); /* source MAC addr */ *(uint16_t *)(buf + 12) = htons(ETH_P_RARP); /* ethertype */ /* RARP header. */ *(uint16_t *)(buf + 14) = htons(ARP_HTYPE_ETH); /* hardware addr space */ *(uint16_t *)(buf + 16) = htons(ARP_PTYPE_IP); /* protocol addr space */ *(buf + 18) = 6; /* hardware addr length (ethernet) */ *(buf + 19) = 4; /* protocol addr length (IPv4) */ *(uint16_t *)(buf + 20) = htons(ARP_OP_REQUEST_REV); /* opcode */ memcpy(buf + 22, mac_addr, 6); /* source hw addr */ memset(buf + 28, 0x00, 4); /* source protocol addr */ memcpy(buf + 32, mac_addr, 6); /* target hw addr */ memset(buf + 38, 0x00, 4); /* target protocol addr */ /* Padding to get up to 60 bytes (ethernet min packet size, minus FCS). */ memset(buf + 42, 0x00, 18); return 60; /* len (FCS will be added by hardware) */ } static void qemu_announce_self_iter(NICState *nic, void *opaque) { uint8_t buf[60]; int len; trace_qemu_announce_self_iter(qemu_ether_ntoa(&nic->conf->macaddr)); len = announce_self_create(buf, nic->conf->macaddr.a); qemu_send_packet_raw(qemu_get_queue(nic), buf, len); } static void qemu_announce_self_once(void *opaque) { static int count = SELF_ANNOUNCE_ROUNDS; QEMUTimer *timer = *(QEMUTimer **)opaque; qemu_foreach_nic(qemu_announce_self_iter, NULL); if (--count) { /* delay 50ms, 150ms, 250ms, ... */ timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + self_announce_delay(count)); } else { timer_del(timer); timer_free(timer); } } void qemu_announce_self(void) { static QEMUTimer *timer; timer = timer_new_ms(QEMU_CLOCK_REALTIME, qemu_announce_self_once, &timer); qemu_announce_self_once(&timer); } /***********************************************************/ /* savevm/loadvm support */ static ssize_t block_writev_buffer(void *opaque, struct iovec *iov, int iovcnt, int64_t pos) { int ret; QEMUIOVector qiov; qemu_iovec_init_external(&qiov, iov, iovcnt); ret = bdrv_writev_vmstate(opaque, &qiov, pos); if (ret < 0) { return ret; } return qiov.size; } static ssize_t block_get_buffer(void *opaque, uint8_t *buf, int64_t pos, size_t size) { return bdrv_load_vmstate(opaque, buf, pos, size); } static int bdrv_fclose(void *opaque) { return bdrv_flush(opaque); } static const QEMUFileOps bdrv_read_ops = { .get_buffer = block_get_buffer, .close = bdrv_fclose }; static const QEMUFileOps bdrv_write_ops = { .writev_buffer = block_writev_buffer, .close = bdrv_fclose }; static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int is_writable) { if (is_writable) { return qemu_fopen_ops(bs, &bdrv_write_ops); } return qemu_fopen_ops(bs, &bdrv_read_ops); } /* QEMUFile timer support. * Not in qemu-file.c to not add qemu-timer.c as dependency to qemu-file.c */ void timer_put(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = timer_expire_time_ns(ts); qemu_put_be64(f, expire_time); } void timer_get(QEMUFile *f, QEMUTimer *ts) { uint64_t expire_time; expire_time = qemu_get_be64(f); if (expire_time != -1) { timer_mod_ns(ts, expire_time); } else { timer_del(ts); } } /* VMState timer support. * Not in vmstate.c to not add qemu-timer.c as dependency to vmstate.c */ static int get_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field) { QEMUTimer *v = pv; timer_get(f, v); return 0; } static int put_timer(QEMUFile *f, void *pv, size_t size, VMStateField *field, QJSON *vmdesc) { QEMUTimer *v = pv; timer_put(f, v); return 0; } const VMStateInfo vmstate_info_timer = { .name = "timer", .get = get_timer, .put = put_timer, }; typedef struct CompatEntry { char idstr[256]; int instance_id; } CompatEntry; typedef struct SaveStateEntry { QTAILQ_ENTRY(SaveStateEntry) entry; char idstr[256]; int instance_id; int alias_id; int version_id; /* version id read from the stream */ int load_version_id; int section_id; /* section id read from the stream */ int load_section_id; SaveVMHandlers *ops; const VMStateDescription *vmsd; void *opaque; CompatEntry *compat; int is_ram; } SaveStateEntry; typedef struct SaveState { QTAILQ_HEAD(, SaveStateEntry) handlers; int global_section_id; bool skip_configuration; uint32_t len; const char *name; uint32_t target_page_bits; } SaveState; static SaveState savevm_state = { .handlers = QTAILQ_HEAD_INITIALIZER(savevm_state.handlers), .global_section_id = 0, .skip_configuration = false, }; void savevm_skip_configuration(void) { savevm_state.skip_configuration = true; } static void configuration_pre_save(void *opaque) { SaveState *state = opaque; const char *current_name = MACHINE_GET_CLASS(current_machine)->name; state->len = strlen(current_name); state->name = current_name; state->target_page_bits = qemu_target_page_bits(); } static int configuration_pre_load(void *opaque) { SaveState *state = opaque; /* If there is no target-page-bits subsection it means the source * predates the variable-target-page-bits support and is using the * minimum possible value for this CPU. */ state->target_page_bits = qemu_target_page_bits_min(); return 0; } static int configuration_post_load(void *opaque, int version_id) { SaveState *state = opaque; const char *current_name = MACHINE_GET_CLASS(current_machine)->name; if (strncmp(state->name, current_name, state->len) != 0) { error_report("Machine type received is '%.*s' and local is '%s'", (int) state->len, state->name, current_name); return -EINVAL; } if (state->target_page_bits != qemu_target_page_bits()) { error_report("Received TARGET_PAGE_BITS is %d but local is %d", state->target_page_bits, qemu_target_page_bits()); return -EINVAL; } return 0; } /* The target-page-bits subsection is present only if the * target page size is not the same as the default (ie the * minimum page size for a variable-page-size guest CPU). * If it is present then it contains the actual target page * bits for the machine, and migration will fail if the * two ends don't agree about it. */ static bool vmstate_target_page_bits_needed(void *opaque) { return qemu_target_page_bits() > qemu_target_page_bits_min(); } static const VMStateDescription vmstate_target_page_bits = { .name = "configuration/target-page-bits", .version_id = 1, .minimum_version_id = 1, .needed = vmstate_target_page_bits_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(target_page_bits, SaveState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_configuration = { .name = "configuration", .version_id = 1, .pre_load = configuration_pre_load, .post_load = configuration_post_load, .pre_save = configuration_pre_save, .fields = (VMStateField[]) { VMSTATE_UINT32(len, SaveState), VMSTATE_VBUFFER_ALLOC_UINT32(name, SaveState, 0, NULL, len), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_target_page_bits, NULL } }; static void dump_vmstate_vmsd(FILE *out_file, const VMStateDescription *vmsd, int indent, bool is_subsection); static void dump_vmstate_vmsf(FILE *out_file, const VMStateField *field, int indent) { fprintf(out_file, "%*s{\n", indent, ""); indent += 2; fprintf(out_file, "%*s\"field\": \"%s\",\n", indent, "", field->name); fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", field->version_id); fprintf(out_file, "%*s\"field_exists\": %s,\n", indent, "", field->field_exists ? "true" : "false"); fprintf(out_file, "%*s\"size\": %zu", indent, "", field->size); if (field->vmsd != NULL) { fprintf(out_file, ",\n"); dump_vmstate_vmsd(out_file, field->vmsd, indent, false); } fprintf(out_file, "\n%*s}", indent - 2, ""); } static void dump_vmstate_vmss(FILE *out_file, const VMStateDescription **subsection, int indent) { if (*subsection != NULL) { dump_vmstate_vmsd(out_file, *subsection, indent, true); } } static void dump_vmstate_vmsd(FILE *out_file, const VMStateDescription *vmsd, int indent, bool is_subsection) { if (is_subsection) { fprintf(out_file, "%*s{\n", indent, ""); } else { fprintf(out_file, "%*s\"%s\": {\n", indent, "", "Description"); } indent += 2; fprintf(out_file, "%*s\"name\": \"%s\",\n", indent, "", vmsd->name); fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", vmsd->version_id); fprintf(out_file, "%*s\"minimum_version_id\": %d", indent, "", vmsd->minimum_version_id); if (vmsd->fields != NULL) { const VMStateField *field = vmsd->fields; bool first; fprintf(out_file, ",\n%*s\"Fields\": [\n", indent, ""); first = true; while (field->name != NULL) { if (field->flags & VMS_MUST_EXIST) { /* Ignore VMSTATE_VALIDATE bits; these don't get migrated */ field++; continue; } if (!first) { fprintf(out_file, ",\n"); } dump_vmstate_vmsf(out_file, field, indent + 2); field++; first = false; } fprintf(out_file, "\n%*s]", indent, ""); } if (vmsd->subsections != NULL) { const VMStateDescription **subsection = vmsd->subsections; bool first; fprintf(out_file, ",\n%*s\"Subsections\": [\n", indent, ""); first = true; while (*subsection != NULL) { if (!first) { fprintf(out_file, ",\n"); } dump_vmstate_vmss(out_file, subsection, indent + 2); subsection++; first = false; } fprintf(out_file, "\n%*s]", indent, ""); } fprintf(out_file, "\n%*s}", indent - 2, ""); } static void dump_machine_type(FILE *out_file) { MachineClass *mc; mc = MACHINE_GET_CLASS(current_machine); fprintf(out_file, " \"vmschkmachine\": {\n"); fprintf(out_file, " \"Name\": \"%s\"\n", mc->name); fprintf(out_file, " },\n"); } void dump_vmstate_json_to_file(FILE *out_file) { GSList *list, *elt; bool first; fprintf(out_file, "{\n"); dump_machine_type(out_file); first = true; list = object_class_get_list(TYPE_DEVICE, true); for (elt = list; elt; elt = elt->next) { DeviceClass *dc = OBJECT_CLASS_CHECK(DeviceClass, elt->data, TYPE_DEVICE); const char *name; int indent = 2; if (!dc->vmsd) { continue; } if (!first) { fprintf(out_file, ",\n"); } name = object_class_get_name(OBJECT_CLASS(dc)); fprintf(out_file, "%*s\"%s\": {\n", indent, "", name); indent += 2; fprintf(out_file, "%*s\"Name\": \"%s\",\n", indent, "", name); fprintf(out_file, "%*s\"version_id\": %d,\n", indent, "", dc->vmsd->version_id); fprintf(out_file, "%*s\"minimum_version_id\": %d,\n", indent, "", dc->vmsd->minimum_version_id); dump_vmstate_vmsd(out_file, dc->vmsd, indent, false); fprintf(out_file, "\n%*s}", indent - 2, ""); first = false; } fprintf(out_file, "\n}\n"); fclose(out_file); } static int calculate_new_instance_id(const char *idstr) { SaveStateEntry *se; int instance_id = 0; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (strcmp(idstr, se->idstr) == 0 && instance_id <= se->instance_id) { instance_id = se->instance_id + 1; } } return instance_id; } static int calculate_compat_instance_id(const char *idstr) { SaveStateEntry *se; int instance_id = 0; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->compat) { continue; } if (strcmp(idstr, se->compat->idstr) == 0 && instance_id <= se->compat->instance_id) { instance_id = se->compat->instance_id + 1; } } return instance_id; } static inline MigrationPriority save_state_priority(SaveStateEntry *se) { if (se->vmsd) { return se->vmsd->priority; } return MIG_PRI_DEFAULT; } static void savevm_state_handler_insert(SaveStateEntry *nse) { MigrationPriority priority = save_state_priority(nse); SaveStateEntry *se; assert(priority <= MIG_PRI_MAX); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (save_state_priority(se) < priority) { break; } } if (se) { QTAILQ_INSERT_BEFORE(se, nse, entry); } else { QTAILQ_INSERT_TAIL(&savevm_state.handlers, nse, entry); } } /* TODO: Individual devices generally have very little idea about the rest of the system, so instance_id should be removed/replaced. Meanwhile pass -1 as instance_id if you do not already have a clearly distinguishing id for all instances of your device class. */ int register_savevm_live(DeviceState *dev, const char *idstr, int instance_id, int version_id, SaveVMHandlers *ops, void *opaque) { SaveStateEntry *se; se = g_new0(SaveStateEntry, 1); se->version_id = version_id; se->section_id = savevm_state.global_section_id++; se->ops = ops; se->opaque = opaque; se->vmsd = NULL; /* if this is a live_savem then set is_ram */ if (ops->save_live_setup != NULL) { se->is_ram = 1; } if (dev) { char *id = qdev_get_dev_path(dev); if (id) { if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= sizeof(se->idstr)) { error_report("Path too long for VMState (%s)", id); g_free(id); g_free(se); return -1; } g_free(id); se->compat = g_new0(CompatEntry, 1); pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), idstr); se->compat->instance_id = instance_id == -1 ? calculate_compat_instance_id(idstr) : instance_id; instance_id = -1; } } pstrcat(se->idstr, sizeof(se->idstr), idstr); if (instance_id == -1) { se->instance_id = calculate_new_instance_id(se->idstr); } else { se->instance_id = instance_id; } assert(!se->compat || se->instance_id == 0); savevm_state_handler_insert(se); return 0; } void unregister_savevm(DeviceState *dev, const char *idstr, void *opaque) { SaveStateEntry *se, *new_se; char id[256] = ""; if (dev) { char *path = qdev_get_dev_path(dev); if (path) { pstrcpy(id, sizeof(id), path); pstrcat(id, sizeof(id), "/"); g_free(path); } } pstrcat(id, sizeof(id), idstr); QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { if (strcmp(se->idstr, id) == 0 && se->opaque == opaque) { QTAILQ_REMOVE(&savevm_state.handlers, se, entry); g_free(se->compat); g_free(se); } } } int vmstate_register_with_alias_id(DeviceState *dev, int instance_id, const VMStateDescription *vmsd, void *opaque, int alias_id, int required_for_version, Error **errp) { SaveStateEntry *se; /* If this triggers, alias support can be dropped for the vmsd. */ assert(alias_id == -1 || required_for_version >= vmsd->minimum_version_id); se = g_new0(SaveStateEntry, 1); se->version_id = vmsd->version_id; se->section_id = savevm_state.global_section_id++; se->opaque = opaque; se->vmsd = vmsd; se->alias_id = alias_id; if (dev) { char *id = qdev_get_dev_path(dev); if (id) { if (snprintf(se->idstr, sizeof(se->idstr), "%s/", id) >= sizeof(se->idstr)) { error_setg(errp, "Path too long for VMState (%s)", id); g_free(id); g_free(se); return -1; } g_free(id); se->compat = g_new0(CompatEntry, 1); pstrcpy(se->compat->idstr, sizeof(se->compat->idstr), vmsd->name); se->compat->instance_id = instance_id == -1 ? calculate_compat_instance_id(vmsd->name) : instance_id; instance_id = -1; } } pstrcat(se->idstr, sizeof(se->idstr), vmsd->name); if (instance_id == -1) { se->instance_id = calculate_new_instance_id(se->idstr); } else { se->instance_id = instance_id; } assert(!se->compat || se->instance_id == 0); savevm_state_handler_insert(se); return 0; } void vmstate_unregister(DeviceState *dev, const VMStateDescription *vmsd, void *opaque) { SaveStateEntry *se, *new_se; QTAILQ_FOREACH_SAFE(se, &savevm_state.handlers, entry, new_se) { if (se->vmsd == vmsd && se->opaque == opaque) { QTAILQ_REMOVE(&savevm_state.handlers, se, entry); g_free(se->compat); g_free(se); } } } static int vmstate_load(QEMUFile *f, SaveStateEntry *se) { trace_vmstate_load(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); if (!se->vmsd) { /* Old style */ return se->ops->load_state(f, se->opaque, se->load_version_id); } return vmstate_load_state(f, se->vmsd, se->opaque, se->load_version_id); } static void vmstate_save_old_style(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) { int64_t old_offset, size; old_offset = qemu_ftell_fast(f); se->ops->save_state(f, se->opaque); size = qemu_ftell_fast(f) - old_offset; if (vmdesc) { json_prop_int(vmdesc, "size", size); json_start_array(vmdesc, "fields"); json_start_object(vmdesc, NULL); json_prop_str(vmdesc, "name", "data"); json_prop_int(vmdesc, "size", size); json_prop_str(vmdesc, "type", "buffer"); json_end_object(vmdesc); json_end_array(vmdesc); } } static void vmstate_save(QEMUFile *f, SaveStateEntry *se, QJSON *vmdesc) { trace_vmstate_save(se->idstr, se->vmsd ? se->vmsd->name : "(old)"); if (!se->vmsd) { vmstate_save_old_style(f, se, vmdesc); return; } vmstate_save_state(f, se->vmsd, se->opaque, vmdesc); } void savevm_skip_section_footers(void) { skip_section_footers = true; } /* * Write the header for device section (QEMU_VM_SECTION START/END/PART/FULL) */ static void save_section_header(QEMUFile *f, SaveStateEntry *se, uint8_t section_type) { qemu_put_byte(f, section_type); qemu_put_be32(f, se->section_id); if (section_type == QEMU_VM_SECTION_FULL || section_type == QEMU_VM_SECTION_START) { /* ID string */ size_t len = strlen(se->idstr); qemu_put_byte(f, len); qemu_put_buffer(f, (uint8_t *)se->idstr, len); qemu_put_be32(f, se->instance_id); qemu_put_be32(f, se->version_id); } } /* * Write a footer onto device sections that catches cases misformatted device * sections. */ static void save_section_footer(QEMUFile *f, SaveStateEntry *se) { if (!skip_section_footers) { qemu_put_byte(f, QEMU_VM_SECTION_FOOTER); qemu_put_be32(f, se->section_id); } } /** * qemu_savevm_command_send: Send a 'QEMU_VM_COMMAND' type element with the * command and associated data. * * @f: File to send command on * @command: Command type to send * @len: Length of associated data * @data: Data associated with command. */ static void qemu_savevm_command_send(QEMUFile *f, enum qemu_vm_cmd command, uint16_t len, uint8_t *data) { trace_savevm_command_send(command, len); qemu_put_byte(f, QEMU_VM_COMMAND); qemu_put_be16(f, (uint16_t)command); qemu_put_be16(f, len); qemu_put_buffer(f, data, len); qemu_fflush(f); } void qemu_savevm_send_ping(QEMUFile *f, uint32_t value) { uint32_t buf; trace_savevm_send_ping(value); buf = cpu_to_be32(value); qemu_savevm_command_send(f, MIG_CMD_PING, sizeof(value), (uint8_t *)&buf); } void qemu_savevm_send_open_return_path(QEMUFile *f) { trace_savevm_send_open_return_path(); qemu_savevm_command_send(f, MIG_CMD_OPEN_RETURN_PATH, 0, NULL); } /* We have a buffer of data to send; we don't want that all to be loaded * by the command itself, so the command contains just the length of the * extra buffer that we then send straight after it. * TODO: Must be a better way to organise that * * Returns: * 0 on success * -ve on error */ int qemu_savevm_send_packaged(QEMUFile *f, const uint8_t *buf, size_t len) { uint32_t tmp; if (len > MAX_VM_CMD_PACKAGED_SIZE) { error_report("%s: Unreasonably large packaged state: %zu", __func__, len); return -1; } tmp = cpu_to_be32(len); trace_qemu_savevm_send_packaged(); qemu_savevm_command_send(f, MIG_CMD_PACKAGED, 4, (uint8_t *)&tmp); qemu_put_buffer(f, buf, len); return 0; } /* Send prior to any postcopy transfer */ void qemu_savevm_send_postcopy_advise(QEMUFile *f) { uint64_t tmp[2]; tmp[0] = cpu_to_be64(ram_pagesize_summary()); tmp[1] = cpu_to_be64(qemu_target_page_size()); trace_qemu_savevm_send_postcopy_advise(); qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_ADVISE, 16, (uint8_t *)tmp); } /* Sent prior to starting the destination running in postcopy, discard pages * that have already been sent but redirtied on the source. * CMD_POSTCOPY_RAM_DISCARD consist of: * byte version (0) * byte Length of name field (not including 0) * n x byte RAM block name * byte 0 terminator (just for safety) * n x Byte ranges within the named RAMBlock * be64 Start of the range * be64 Length * * name: RAMBlock name that these entries are part of * len: Number of page entries * start_list: 'len' addresses * length_list: 'len' addresses * */ void qemu_savevm_send_postcopy_ram_discard(QEMUFile *f, const char *name, uint16_t len, uint64_t *start_list, uint64_t *length_list) { uint8_t *buf; uint16_t tmplen; uint16_t t; size_t name_len = strlen(name); trace_qemu_savevm_send_postcopy_ram_discard(name, len); assert(name_len < 256); buf = g_malloc0(1 + 1 + name_len + 1 + (8 + 8) * len); buf[0] = postcopy_ram_discard_version; buf[1] = name_len; memcpy(buf + 2, name, name_len); tmplen = 2 + name_len; buf[tmplen++] = '\0'; for (t = 0; t < len; t++) { stq_be_p(buf + tmplen, start_list[t]); tmplen += 8; stq_be_p(buf + tmplen, length_list[t]); tmplen += 8; } qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RAM_DISCARD, tmplen, buf); g_free(buf); } /* Get the destination into a state where it can receive postcopy data. */ void qemu_savevm_send_postcopy_listen(QEMUFile *f) { trace_savevm_send_postcopy_listen(); qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_LISTEN, 0, NULL); } /* Kick the destination into running */ void qemu_savevm_send_postcopy_run(QEMUFile *f) { trace_savevm_send_postcopy_run(); qemu_savevm_command_send(f, MIG_CMD_POSTCOPY_RUN, 0, NULL); } bool qemu_savevm_state_blocked(Error **errp) { SaveStateEntry *se; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (se->vmsd && se->vmsd->unmigratable) { error_setg(errp, "State blocked by non-migratable device '%s'", se->idstr); return true; } } return false; } static bool enforce_config_section(void) { MachineState *machine = MACHINE(qdev_get_machine()); return machine->enforce_config_section; } void qemu_savevm_state_header(QEMUFile *f) { trace_savevm_state_header(); qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); if (!savevm_state.skip_configuration || enforce_config_section()) { qemu_put_byte(f, QEMU_VM_CONFIGURATION); vmstate_save_state(f, &vmstate_configuration, &savevm_state, 0); } } void qemu_savevm_state_begin(QEMUFile *f) { SaveStateEntry *se; int ret; trace_savevm_state_begin(); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->ops || !se->ops->save_live_setup) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } save_section_header(f, se, QEMU_VM_SECTION_START); ret = se->ops->save_live_setup(f, se->opaque); save_section_footer(f, se); if (ret < 0) { qemu_file_set_error(f, ret); break; } } } /* * this function has three return values: * negative: there was one error, and we have -errno. * 0 : We haven't finished, caller have to go again * 1 : We have finished, we can go to complete phase */ int qemu_savevm_state_iterate(QEMUFile *f, bool postcopy) { SaveStateEntry *se; int ret = 1; trace_savevm_state_iterate(); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->ops || !se->ops->save_live_iterate) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } /* * In the postcopy phase, any device that doesn't know how to * do postcopy should have saved it's state in the _complete * call that's already run, it might get confused if we call * iterate afterwards. */ if (postcopy && !se->ops->save_live_complete_postcopy) { continue; } if (qemu_file_rate_limit(f)) { return 0; } trace_savevm_section_start(se->idstr, se->section_id); save_section_header(f, se, QEMU_VM_SECTION_PART); ret = se->ops->save_live_iterate(f, se->opaque); trace_savevm_section_end(se->idstr, se->section_id, ret); save_section_footer(f, se); if (ret < 0) { qemu_file_set_error(f, ret); } if (ret <= 0) { /* Do not proceed to the next vmstate before this one reported completion of the current stage. This serializes the migration and reduces the probability that a faster changing state is synchronized over and over again. */ break; } } return ret; } static bool should_send_vmdesc(void) { MachineState *machine = MACHINE(qdev_get_machine()); bool in_postcopy = migration_in_postcopy(); return !machine->suppress_vmdesc && !in_postcopy; } /* * Calls the save_live_complete_postcopy methods * causing the last few pages to be sent immediately and doing any associated * cleanup. * Note postcopy also calls qemu_savevm_state_complete_precopy to complete * all the other devices, but that happens at the point we switch to postcopy. */ void qemu_savevm_state_complete_postcopy(QEMUFile *f) { SaveStateEntry *se; int ret; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->ops || !se->ops->save_live_complete_postcopy) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } trace_savevm_section_start(se->idstr, se->section_id); /* Section type */ qemu_put_byte(f, QEMU_VM_SECTION_END); qemu_put_be32(f, se->section_id); ret = se->ops->save_live_complete_postcopy(f, se->opaque); trace_savevm_section_end(se->idstr, se->section_id, ret); save_section_footer(f, se); if (ret < 0) { qemu_file_set_error(f, ret); return; } } qemu_put_byte(f, QEMU_VM_EOF); qemu_fflush(f); } void qemu_savevm_state_complete_precopy(QEMUFile *f, bool iterable_only) { QJSON *vmdesc; int vmdesc_len; SaveStateEntry *se; int ret; bool in_postcopy = migration_in_postcopy(); trace_savevm_state_complete_precopy(); cpu_synchronize_all_states(); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->ops || (in_postcopy && se->ops->save_live_complete_postcopy) || (in_postcopy && !iterable_only) || !se->ops->save_live_complete_precopy) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } trace_savevm_section_start(se->idstr, se->section_id); save_section_header(f, se, QEMU_VM_SECTION_END); ret = se->ops->save_live_complete_precopy(f, se->opaque); trace_savevm_section_end(se->idstr, se->section_id, ret); save_section_footer(f, se); if (ret < 0) { qemu_file_set_error(f, ret); return; } } if (iterable_only) { return; } vmdesc = qjson_new(); json_prop_int(vmdesc, "page_size", qemu_target_page_size()); json_start_array(vmdesc, "devices"); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if ((!se->ops || !se->ops->save_state) && !se->vmsd) { continue; } if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { trace_savevm_section_skip(se->idstr, se->section_id); continue; } trace_savevm_section_start(se->idstr, se->section_id); json_start_object(vmdesc, NULL); json_prop_str(vmdesc, "name", se->idstr); json_prop_int(vmdesc, "instance_id", se->instance_id); save_section_header(f, se, QEMU_VM_SECTION_FULL); vmstate_save(f, se, vmdesc); trace_savevm_section_end(se->idstr, se->section_id, 0); save_section_footer(f, se); json_end_object(vmdesc); } if (!in_postcopy) { /* Postcopy stream will still be going */ qemu_put_byte(f, QEMU_VM_EOF); } json_end_array(vmdesc); qjson_finish(vmdesc); vmdesc_len = strlen(qjson_get_str(vmdesc)); if (should_send_vmdesc()) { qemu_put_byte(f, QEMU_VM_VMDESCRIPTION); qemu_put_be32(f, vmdesc_len); qemu_put_buffer(f, (uint8_t *)qjson_get_str(vmdesc), vmdesc_len); } qjson_destroy(vmdesc); qemu_fflush(f); } /* Give an estimate of the amount left to be transferred, * the result is split into the amount for units that can and * for units that can't do postcopy. */ void qemu_savevm_state_pending(QEMUFile *f, uint64_t threshold_size, uint64_t *res_non_postcopiable, uint64_t *res_postcopiable) { SaveStateEntry *se; *res_non_postcopiable = 0; *res_postcopiable = 0; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!se->ops || !se->ops->save_live_pending) { continue; } if (se->ops && se->ops->is_active) { if (!se->ops->is_active(se->opaque)) { continue; } } se->ops->save_live_pending(f, se->opaque, threshold_size, res_non_postcopiable, res_postcopiable); } } void qemu_savevm_state_cleanup(void) { SaveStateEntry *se; trace_savevm_state_cleanup(); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (se->ops && se->ops->cleanup) { se->ops->cleanup(se->opaque); } } } static int qemu_savevm_state(QEMUFile *f, Error **errp) { int ret; MigrationState *ms = migrate_init(); MigrationStatus status; ms->to_dst_file = f; if (migration_is_blocked(errp)) { ret = -EINVAL; goto done; } if (migrate_use_block()) { error_setg(errp, "Block migration and snapshots are incompatible"); ret = -EINVAL; goto done; } qemu_mutex_unlock_iothread(); qemu_savevm_state_header(f); qemu_savevm_state_begin(f); qemu_mutex_lock_iothread(); while (qemu_file_get_error(f) == 0) { if (qemu_savevm_state_iterate(f, false) > 0) { break; } } ret = qemu_file_get_error(f); if (ret == 0) { qemu_savevm_state_complete_precopy(f, false); ret = qemu_file_get_error(f); } qemu_savevm_state_cleanup(); if (ret != 0) { error_setg_errno(errp, -ret, "Error while writing VM state"); } done: if (ret != 0) { status = MIGRATION_STATUS_FAILED; } else { status = MIGRATION_STATUS_COMPLETED; } migrate_set_state(&ms->state, MIGRATION_STATUS_SETUP, status); /* f is outer parameter, it should not stay in global migration state after * this function finished */ ms->to_dst_file = NULL; return ret; } static int qemu_save_device_state(QEMUFile *f) { SaveStateEntry *se; qemu_put_be32(f, QEMU_VM_FILE_MAGIC); qemu_put_be32(f, QEMU_VM_FILE_VERSION); cpu_synchronize_all_states(); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (se->is_ram) { continue; } if ((!se->ops || !se->ops->save_state) && !se->vmsd) { continue; } if (se->vmsd && !vmstate_save_needed(se->vmsd, se->opaque)) { continue; } save_section_header(f, se, QEMU_VM_SECTION_FULL); vmstate_save(f, se, NULL); save_section_footer(f, se); } qemu_put_byte(f, QEMU_VM_EOF); return qemu_file_get_error(f); } static SaveStateEntry *find_se(const char *idstr, int instance_id) { SaveStateEntry *se; QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (!strcmp(se->idstr, idstr) && (instance_id == se->instance_id || instance_id == se->alias_id)) return se; /* Migrating from an older version? */ if (strstr(se->idstr, idstr) && se->compat) { if (!strcmp(se->compat->idstr, idstr) && (instance_id == se->compat->instance_id || instance_id == se->alias_id)) return se; } } return NULL; } enum LoadVMExitCodes { /* Allow a command to quit all layers of nested loadvm loops */ LOADVM_QUIT = 1, }; static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis); /* ------ incoming postcopy messages ------ */ /* 'advise' arrives before any transfers just to tell us that a postcopy * *might* happen - it might be skipped if precopy transferred everything * quickly. */ static int loadvm_postcopy_handle_advise(MigrationIncomingState *mis) { PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_ADVISE); uint64_t remote_pagesize_summary, local_pagesize_summary, remote_tps; trace_loadvm_postcopy_handle_advise(); if (ps != POSTCOPY_INCOMING_NONE) { error_report("CMD_POSTCOPY_ADVISE in wrong postcopy state (%d)", ps); return -1; } if (!postcopy_ram_supported_by_host()) { postcopy_state_set(POSTCOPY_INCOMING_NONE); return -1; } remote_pagesize_summary = qemu_get_be64(mis->from_src_file); local_pagesize_summary = ram_pagesize_summary(); if (remote_pagesize_summary != local_pagesize_summary) { /* * This detects two potential causes of mismatch: * a) A mismatch in host page sizes * Some combinations of mismatch are probably possible but it gets * a bit more complicated. In particular we need to place whole * host pages on the dest at once, and we need to ensure that we * handle dirtying to make sure we never end up sending part of * a hostpage on it's own. * b) The use of different huge page sizes on source/destination * a more fine grain test is performed during RAM block migration * but this test here causes a nice early clear failure, and * also fails when passed to an older qemu that doesn't * do huge pages. */ error_report("Postcopy needs matching RAM page sizes (s=%" PRIx64 " d=%" PRIx64 ")", remote_pagesize_summary, local_pagesize_summary); return -1; } remote_tps = qemu_get_be64(mis->from_src_file); if (remote_tps != qemu_target_page_size()) { /* * Again, some differences could be dealt with, but for now keep it * simple. */ error_report("Postcopy needs matching target page sizes (s=%d d=%zd)", (int)remote_tps, qemu_target_page_size()); return -1; } if (ram_postcopy_incoming_init(mis)) { return -1; } postcopy_state_set(POSTCOPY_INCOMING_ADVISE); return 0; } /* After postcopy we will be told to throw some pages away since they're * dirty and will have to be demand fetched. Must happen before CPU is * started. * There can be 0..many of these messages, each encoding multiple pages. */ static int loadvm_postcopy_ram_handle_discard(MigrationIncomingState *mis, uint16_t len) { int tmp; char ramid[256]; PostcopyState ps = postcopy_state_get(); trace_loadvm_postcopy_ram_handle_discard(); switch (ps) { case POSTCOPY_INCOMING_ADVISE: /* 1st discard */ tmp = postcopy_ram_prepare_discard(mis); if (tmp) { return tmp; } break; case POSTCOPY_INCOMING_DISCARD: /* Expected state */ break; default: error_report("CMD_POSTCOPY_RAM_DISCARD in wrong postcopy state (%d)", ps); return -1; } /* We're expecting a * Version (0) * a RAM ID string (length byte, name, 0 term) * then at least 1 16 byte chunk */ if (len < (1 + 1 + 1 + 1 + 2 * 8)) { error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); return -1; } tmp = qemu_get_byte(mis->from_src_file); if (tmp != postcopy_ram_discard_version) { error_report("CMD_POSTCOPY_RAM_DISCARD invalid version (%d)", tmp); return -1; } if (!qemu_get_counted_string(mis->from_src_file, ramid)) { error_report("CMD_POSTCOPY_RAM_DISCARD Failed to read RAMBlock ID"); return -1; } tmp = qemu_get_byte(mis->from_src_file); if (tmp != 0) { error_report("CMD_POSTCOPY_RAM_DISCARD missing nil (%d)", tmp); return -1; } len -= 3 + strlen(ramid); if (len % 16) { error_report("CMD_POSTCOPY_RAM_DISCARD invalid length (%d)", len); return -1; } trace_loadvm_postcopy_ram_handle_discard_header(ramid, len); while (len) { uint64_t start_addr, block_length; start_addr = qemu_get_be64(mis->from_src_file); block_length = qemu_get_be64(mis->from_src_file); len -= 16; int ret = ram_discard_range(ramid, start_addr, block_length); if (ret) { return ret; } } trace_loadvm_postcopy_ram_handle_discard_end(); return 0; } /* * Triggered by a postcopy_listen command; this thread takes over reading * the input stream, leaving the main thread free to carry on loading the rest * of the device state (from RAM). * (TODO:This could do with being in a postcopy file - but there again it's * just another input loop, not that postcopy specific) */ static void *postcopy_ram_listen_thread(void *opaque) { QEMUFile *f = opaque; MigrationIncomingState *mis = migration_incoming_get_current(); int load_res; migrate_set_state(&mis->state, MIGRATION_STATUS_ACTIVE, MIGRATION_STATUS_POSTCOPY_ACTIVE); qemu_sem_post(&mis->listen_thread_sem); trace_postcopy_ram_listen_thread_start(); /* * Because we're a thread and not a coroutine we can't yield * in qemu_file, and thus we must be blocking now. */ qemu_file_set_blocking(f, true); load_res = qemu_loadvm_state_main(f, mis); /* And non-blocking again so we don't block in any cleanup */ qemu_file_set_blocking(f, false); trace_postcopy_ram_listen_thread_exit(); if (load_res < 0) { error_report("%s: loadvm failed: %d", __func__, load_res); qemu_file_set_error(f, load_res); migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, MIGRATION_STATUS_FAILED); } else { /* * This looks good, but it's possible that the device loading in the * main thread hasn't finished yet, and so we might not be in 'RUN' * state yet; wait for the end of the main thread. */ qemu_event_wait(&mis->main_thread_load_event); } postcopy_ram_incoming_cleanup(mis); if (load_res < 0) { /* * If something went wrong then we have a bad state so exit; * depending how far we got it might be possible at this point * to leave the guest running and fire MCEs for pages that never * arrived as a desperate recovery step. */ exit(EXIT_FAILURE); } migrate_set_state(&mis->state, MIGRATION_STATUS_POSTCOPY_ACTIVE, MIGRATION_STATUS_COMPLETED); /* * If everything has worked fine, then the main thread has waited * for us to start, and we're the last use of the mis. * (If something broke then qemu will have to exit anyway since it's * got a bad migration state). */ migration_incoming_state_destroy(); return NULL; } /* After this message we must be able to immediately receive postcopy data */ static int loadvm_postcopy_handle_listen(MigrationIncomingState *mis) { PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_LISTENING); trace_loadvm_postcopy_handle_listen(); if (ps != POSTCOPY_INCOMING_ADVISE && ps != POSTCOPY_INCOMING_DISCARD) { error_report("CMD_POSTCOPY_LISTEN in wrong postcopy state (%d)", ps); return -1; } if (ps == POSTCOPY_INCOMING_ADVISE) { /* * A rare case, we entered listen without having to do any discards, * so do the setup that's normally done at the time of the 1st discard. */ postcopy_ram_prepare_discard(mis); } /* * Sensitise RAM - can now generate requests for blocks that don't exist * However, at this point the CPU shouldn't be running, and the IO * shouldn't be doing anything yet so don't actually expect requests */ if (postcopy_ram_enable_notify(mis)) { return -1; } if (mis->have_listen_thread) { error_report("CMD_POSTCOPY_RAM_LISTEN already has a listen thread"); return -1; } mis->have_listen_thread = true; /* Start up the listening thread and wait for it to signal ready */ qemu_sem_init(&mis->listen_thread_sem, 0); qemu_thread_create(&mis->listen_thread, "postcopy/listen", postcopy_ram_listen_thread, mis->from_src_file, QEMU_THREAD_DETACHED); qemu_sem_wait(&mis->listen_thread_sem); qemu_sem_destroy(&mis->listen_thread_sem); return 0; } typedef struct { QEMUBH *bh; } HandleRunBhData; static void loadvm_postcopy_handle_run_bh(void *opaque) { Error *local_err = NULL; HandleRunBhData *data = opaque; /* TODO we should move all of this lot into postcopy_ram.c or a shared code * in migration.c */ cpu_synchronize_all_post_init(); qemu_announce_self(); /* Make sure all file formats flush their mutable metadata. * If we get an error here, just don't restart the VM yet. */ bdrv_invalidate_cache_all(&local_err); if (local_err) { error_report_err(local_err); local_err = NULL; autostart = false; } trace_loadvm_postcopy_handle_run_cpu_sync(); cpu_synchronize_all_post_init(); trace_loadvm_postcopy_handle_run_vmstart(); if (autostart) { /* Hold onto your hats, starting the CPU */ vm_start(); } else { /* leave it paused and let management decide when to start the CPU */ runstate_set(RUN_STATE_PAUSED); } qemu_bh_delete(data->bh); g_free(data); } /* After all discards we can start running and asking for pages */ static int loadvm_postcopy_handle_run(MigrationIncomingState *mis) { PostcopyState ps = postcopy_state_set(POSTCOPY_INCOMING_RUNNING); HandleRunBhData *data; trace_loadvm_postcopy_handle_run(); if (ps != POSTCOPY_INCOMING_LISTENING) { error_report("CMD_POSTCOPY_RUN in wrong postcopy state (%d)", ps); return -1; } data = g_new(HandleRunBhData, 1); data->bh = qemu_bh_new(loadvm_postcopy_handle_run_bh, data); qemu_bh_schedule(data->bh); /* We need to finish reading the stream from the package * and also stop reading anything more from the stream that loaded the * package (since it's now being read by the listener thread). * LOADVM_QUIT will quit all the layers of nested loadvm loops. */ return LOADVM_QUIT; } /** * Immediately following this command is a blob of data containing an embedded * chunk of migration stream; read it and load it. * * @mis: Incoming state * @length: Length of packaged data to read * * Returns: Negative values on error * */ static int loadvm_handle_cmd_packaged(MigrationIncomingState *mis) { int ret; size_t length; QIOChannelBuffer *bioc; length = qemu_get_be32(mis->from_src_file); trace_loadvm_handle_cmd_packaged(length); if (length > MAX_VM_CMD_PACKAGED_SIZE) { error_report("Unreasonably large packaged state: %zu", length); return -1; } bioc = qio_channel_buffer_new(length); qio_channel_set_name(QIO_CHANNEL(bioc), "migration-loadvm-buffer"); ret = qemu_get_buffer(mis->from_src_file, bioc->data, length); if (ret != length) { object_unref(OBJECT(bioc)); error_report("CMD_PACKAGED: Buffer receive fail ret=%d length=%zu", ret, length); return (ret < 0) ? ret : -EAGAIN; } bioc->usage += length; trace_loadvm_handle_cmd_packaged_received(ret); QEMUFile *packf = qemu_fopen_channel_input(QIO_CHANNEL(bioc)); ret = qemu_loadvm_state_main(packf, mis); trace_loadvm_handle_cmd_packaged_main(ret); qemu_fclose(packf); object_unref(OBJECT(bioc)); return ret; } /* * Process an incoming 'QEMU_VM_COMMAND' * 0 just a normal return * LOADVM_QUIT All good, but exit the loop * <0 Error */ static int loadvm_process_command(QEMUFile *f) { MigrationIncomingState *mis = migration_incoming_get_current(); uint16_t cmd; uint16_t len; uint32_t tmp32; cmd = qemu_get_be16(f); len = qemu_get_be16(f); trace_loadvm_process_command(cmd, len); if (cmd >= MIG_CMD_MAX || cmd == MIG_CMD_INVALID) { error_report("MIG_CMD 0x%x unknown (len 0x%x)", cmd, len); return -EINVAL; } if (mig_cmd_args[cmd].len != -1 && mig_cmd_args[cmd].len != len) { error_report("%s received with bad length - expecting %zu, got %d", mig_cmd_args[cmd].name, (size_t)mig_cmd_args[cmd].len, len); return -ERANGE; } switch (cmd) { case MIG_CMD_OPEN_RETURN_PATH: if (mis->to_src_file) { error_report("CMD_OPEN_RETURN_PATH called when RP already open"); /* Not really a problem, so don't give up */ return 0; } mis->to_src_file = qemu_file_get_return_path(f); if (!mis->to_src_file) { error_report("CMD_OPEN_RETURN_PATH failed"); return -1; } break; case MIG_CMD_PING: tmp32 = qemu_get_be32(f); trace_loadvm_process_command_ping(tmp32); if (!mis->to_src_file) { error_report("CMD_PING (0x%x) received with no return path", tmp32); return -1; } migrate_send_rp_pong(mis, tmp32); break; case MIG_CMD_PACKAGED: return loadvm_handle_cmd_packaged(mis); case MIG_CMD_POSTCOPY_ADVISE: return loadvm_postcopy_handle_advise(mis); case MIG_CMD_POSTCOPY_LISTEN: return loadvm_postcopy_handle_listen(mis); case MIG_CMD_POSTCOPY_RUN: return loadvm_postcopy_handle_run(mis); case MIG_CMD_POSTCOPY_RAM_DISCARD: return loadvm_postcopy_ram_handle_discard(mis, len); } return 0; } /* * Read a footer off the wire and check that it matches the expected section * * Returns: true if the footer was good * false if there is a problem (and calls error_report to say why) */ static bool check_section_footer(QEMUFile *f, SaveStateEntry *se) { uint8_t read_mark; uint32_t read_section_id; if (skip_section_footers) { /* No footer to check */ return true; } read_mark = qemu_get_byte(f); if (read_mark != QEMU_VM_SECTION_FOOTER) { error_report("Missing section footer for %s", se->idstr); return false; } read_section_id = qemu_get_be32(f); if (read_section_id != se->load_section_id) { error_report("Mismatched section id in footer for %s -" " read 0x%x expected 0x%x", se->idstr, read_section_id, se->load_section_id); return false; } /* All good */ return true; } static int qemu_loadvm_section_start_full(QEMUFile *f, MigrationIncomingState *mis) { uint32_t instance_id, version_id, section_id; SaveStateEntry *se; char idstr[256]; int ret; /* Read section start */ section_id = qemu_get_be32(f); if (!qemu_get_counted_string(f, idstr)) { error_report("Unable to read ID string for section %u", section_id); return -EINVAL; } instance_id = qemu_get_be32(f); version_id = qemu_get_be32(f); trace_qemu_loadvm_state_section_startfull(section_id, idstr, instance_id, version_id); /* Find savevm section */ se = find_se(idstr, instance_id); if (se == NULL) { error_report("Unknown savevm section or instance '%s' %d", idstr, instance_id); return -EINVAL; } /* Validate version */ if (version_id > se->version_id) { error_report("savevm: unsupported version %d for '%s' v%d", version_id, idstr, se->version_id); return -EINVAL; } se->load_version_id = version_id; se->load_section_id = section_id; /* Validate if it is a device's state */ if (xen_enabled() && se->is_ram) { error_report("loadvm: %s RAM loading not allowed on Xen", idstr); return -EINVAL; } ret = vmstate_load(f, se); if (ret < 0) { error_report("error while loading state for instance 0x%x of" " device '%s'", instance_id, idstr); return ret; } if (!check_section_footer(f, se)) { return -EINVAL; } return 0; } static int qemu_loadvm_section_part_end(QEMUFile *f, MigrationIncomingState *mis) { uint32_t section_id; SaveStateEntry *se; int ret; section_id = qemu_get_be32(f); trace_qemu_loadvm_state_section_partend(section_id); QTAILQ_FOREACH(se, &savevm_state.handlers, entry) { if (se->load_section_id == section_id) { break; } } if (se == NULL) { error_report("Unknown savevm section %d", section_id); return -EINVAL; } ret = vmstate_load(f, se); if (ret < 0) { error_report("error while loading state section id %d(%s)", section_id, se->idstr); return ret; } if (!check_section_footer(f, se)) { return -EINVAL; } return 0; } static int qemu_loadvm_state_main(QEMUFile *f, MigrationIncomingState *mis) { uint8_t section_type; int ret = 0; while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) { ret = 0; trace_qemu_loadvm_state_section(section_type); switch (section_type) { case QEMU_VM_SECTION_START: case QEMU_VM_SECTION_FULL: ret = qemu_loadvm_section_start_full(f, mis); if (ret < 0) { goto out; } break; case QEMU_VM_SECTION_PART: case QEMU_VM_SECTION_END: ret = qemu_loadvm_section_part_end(f, mis); if (ret < 0) { goto out; } break; case QEMU_VM_COMMAND: ret = loadvm_process_command(f); trace_qemu_loadvm_state_section_command(ret); if ((ret < 0) || (ret & LOADVM_QUIT)) { goto out; } break; default: error_report("Unknown savevm section type %d", section_type); ret = -EINVAL; goto out; } } out: if (ret < 0) { qemu_file_set_error(f, ret); } return ret; } int qemu_loadvm_state(QEMUFile *f) { MigrationIncomingState *mis = migration_incoming_get_current(); Error *local_err = NULL; unsigned int v; int ret; if (qemu_savevm_state_blocked(&local_err)) { error_report_err(local_err); return -EINVAL; } v = qemu_get_be32(f); if (v != QEMU_VM_FILE_MAGIC) { error_report("Not a migration stream"); return -EINVAL; } v = qemu_get_be32(f); if (v == QEMU_VM_FILE_VERSION_COMPAT) { error_report("SaveVM v2 format is obsolete and don't work anymore"); return -ENOTSUP; } if (v != QEMU_VM_FILE_VERSION) { error_report("Unsupported migration stream version"); return -ENOTSUP; } if (!savevm_state.skip_configuration || enforce_config_section()) { if (qemu_get_byte(f) != QEMU_VM_CONFIGURATION) { error_report("Configuration section missing"); return -EINVAL; } ret = vmstate_load_state(f, &vmstate_configuration, &savevm_state, 0); if (ret) { return ret; } } cpu_synchronize_all_pre_loadvm(); ret = qemu_loadvm_state_main(f, mis); qemu_event_set(&mis->main_thread_load_event); trace_qemu_loadvm_state_post_main(ret); if (mis->have_listen_thread) { /* Listen thread still going, can't clean up yet */ return ret; } if (ret == 0) { ret = qemu_file_get_error(f); } /* * Try to read in the VMDESC section as well, so that dumping tools that * intercept our migration stream have the chance to see it. */ /* We've got to be careful; if we don't read the data and just shut the fd * then the sender can error if we close while it's still sending. * We also mustn't read data that isn't there; some transports (RDMA) * will stall waiting for that data when the source has already closed. */ if (ret == 0 && should_send_vmdesc()) { uint8_t *buf; uint32_t size; uint8_t section_type = qemu_get_byte(f); if (section_type != QEMU_VM_VMDESCRIPTION) { error_report("Expected vmdescription section, but got %d", section_type); /* * It doesn't seem worth failing at this point since * we apparently have an otherwise valid VM state */ } else { buf = g_malloc(0x1000); size = qemu_get_be32(f); while (size > 0) { uint32_t read_chunk = MIN(size, 0x1000); qemu_get_buffer(f, buf, read_chunk); size -= read_chunk; } g_free(buf); } } cpu_synchronize_all_post_init(); return ret; } int save_snapshot(const char *name, Error **errp) { BlockDriverState *bs, *bs1; QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1; int ret = -1; QEMUFile *f; int saved_vm_running; uint64_t vm_state_size; qemu_timeval tv; struct tm tm; AioContext *aio_context; if (!bdrv_all_can_snapshot(&bs)) { error_setg(errp, "Device '%s' is writable but does not support " "snapshots", bdrv_get_device_name(bs)); return ret; } /* Delete old snapshots of the same name */ if (name) { ret = bdrv_all_delete_snapshot(name, &bs1, errp); if (ret < 0) { error_prepend(errp, "Error while deleting snapshot on device " "'%s': ", bdrv_get_device_name(bs1)); return ret; } } bs = bdrv_all_find_vmstate_bs(); if (bs == NULL) { error_setg(errp, "No block device can accept snapshots"); return ret; } aio_context = bdrv_get_aio_context(bs); saved_vm_running = runstate_is_running(); ret = global_state_store(); if (ret) { error_setg(errp, "Error saving global state"); return ret; } vm_stop(RUN_STATE_SAVE_VM); aio_context_acquire(aio_context); memset(sn, 0, sizeof(*sn)); /* fill auxiliary fields */ qemu_gettimeofday(&tv); sn->date_sec = tv.tv_sec; sn->date_nsec = tv.tv_usec * 1000; sn->vm_clock_nsec = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); if (name) { ret = bdrv_snapshot_find(bs, old_sn, name); if (ret >= 0) { pstrcpy(sn->name, sizeof(sn->name), old_sn->name); pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str); } else { pstrcpy(sn->name, sizeof(sn->name), name); } } else { /* cast below needed for OpenBSD where tv_sec is still 'long' */ localtime_r((const time_t *)&tv.tv_sec, &tm); strftime(sn->name, sizeof(sn->name), "vm-%Y%m%d%H%M%S", &tm); } /* save the VM state */ f = qemu_fopen_bdrv(bs, 1); if (!f) { error_setg(errp, "Could not open VM state file"); goto the_end; } ret = qemu_savevm_state(f, errp); vm_state_size = qemu_ftell(f); qemu_fclose(f); if (ret < 0) { goto the_end; } ret = bdrv_all_create_snapshot(sn, bs, vm_state_size, &bs); if (ret < 0) { error_setg(errp, "Error while creating snapshot on '%s'", bdrv_get_device_name(bs)); goto the_end; } ret = 0; the_end: aio_context_release(aio_context); if (saved_vm_running) { vm_start(); } return ret; } void qmp_xen_save_devices_state(const char *filename, Error **errp) { QEMUFile *f; QIOChannelFile *ioc; int saved_vm_running; int ret; saved_vm_running = runstate_is_running(); vm_stop(RUN_STATE_SAVE_VM); global_state_store_running(); ioc = qio_channel_file_new_path(filename, O_WRONLY | O_CREAT, 0660, errp); if (!ioc) { goto the_end; } qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-save-state"); f = qemu_fopen_channel_output(QIO_CHANNEL(ioc)); ret = qemu_save_device_state(f); qemu_fclose(f); if (ret < 0) { error_setg(errp, QERR_IO_ERROR); } the_end: if (saved_vm_running) { vm_start(); } } void qmp_xen_load_devices_state(const char *filename, Error **errp) { QEMUFile *f; QIOChannelFile *ioc; int ret; /* Guest must be paused before loading the device state; the RAM state * will already have been loaded by xc */ if (runstate_is_running()) { error_setg(errp, "Cannot update device state while vm is running"); return; } vm_stop(RUN_STATE_RESTORE_VM); ioc = qio_channel_file_new_path(filename, O_RDONLY | O_BINARY, 0, errp); if (!ioc) { return; } qio_channel_set_name(QIO_CHANNEL(ioc), "migration-xen-load-state"); f = qemu_fopen_channel_input(QIO_CHANNEL(ioc)); ret = qemu_loadvm_state(f); qemu_fclose(f); if (ret < 0) { error_setg(errp, QERR_IO_ERROR); } migration_incoming_state_destroy(); } int load_snapshot(const char *name, Error **errp) { BlockDriverState *bs, *bs_vm_state; QEMUSnapshotInfo sn; QEMUFile *f; int ret; AioContext *aio_context; MigrationIncomingState *mis = migration_incoming_get_current(); if (!bdrv_all_can_snapshot(&bs)) { error_setg(errp, "Device '%s' is writable but does not support snapshots", bdrv_get_device_name(bs)); return -ENOTSUP; } ret = bdrv_all_find_snapshot(name, &bs); if (ret < 0) { error_setg(errp, "Device '%s' does not have the requested snapshot '%s'", bdrv_get_device_name(bs), name); return ret; } bs_vm_state = bdrv_all_find_vmstate_bs(); if (!bs_vm_state) { error_setg(errp, "No block device supports snapshots"); return -ENOTSUP; } aio_context = bdrv_get_aio_context(bs_vm_state); /* Don't even try to load empty VM states */ aio_context_acquire(aio_context); ret = bdrv_snapshot_find(bs_vm_state, &sn, name); aio_context_release(aio_context); if (ret < 0) { return ret; } else if (sn.vm_state_size == 0) { error_setg(errp, "This is a disk-only snapshot. Revert to it " " offline using qemu-img"); return -EINVAL; } /* Flush all IO requests so they don't interfere with the new state. */ bdrv_drain_all(); ret = bdrv_all_goto_snapshot(name, &bs); if (ret < 0) { error_setg(errp, "Error %d while activating snapshot '%s' on '%s'", ret, name, bdrv_get_device_name(bs)); return ret; } /* restore the VM state */ f = qemu_fopen_bdrv(bs_vm_state, 0); if (!f) { error_setg(errp, "Could not open VM state file"); return -EINVAL; } qemu_system_reset(SHUTDOWN_CAUSE_NONE); mis->from_src_file = f; aio_context_acquire(aio_context); ret = qemu_loadvm_state(f); aio_context_release(aio_context); migration_incoming_state_destroy(); if (ret < 0) { error_setg(errp, "Error %d while loading VM state", ret); return ret; } return 0; } void vmstate_register_ram(MemoryRegion *mr, DeviceState *dev) { qemu_ram_set_idstr(mr->ram_block, memory_region_name(mr), dev); } void vmstate_unregister_ram(MemoryRegion *mr, DeviceState *dev) { qemu_ram_unset_idstr(mr->ram_block); } void vmstate_register_ram_global(MemoryRegion *mr) { vmstate_register_ram(mr, NULL); } bool vmstate_check_only_migratable(const VMStateDescription *vmsd) { /* check needed if --only-migratable is specified */ if (!only_migratable) { return true; } return !(vmsd && vmsd->unmigratable); }