/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include <zlib.h> #include "qemu/error-report.h" #include "qemu/iov.h" #include "migration.h" #include "qemu-file.h" #include "trace.h" #define IO_BUF_SIZE 32768 #define MAX_IOV_SIZE MIN(IOV_MAX, 64) struct QEMUFile { const QEMUFileOps *ops; const QEMUFileHooks *hooks; void *opaque; int64_t bytes_xfer; int64_t xfer_limit; int64_t pos; /* start of buffer when writing, end of buffer when reading */ int buf_index; int buf_size; /* 0 when writing */ uint8_t buf[IO_BUF_SIZE]; DECLARE_BITMAP(may_free, MAX_IOV_SIZE); struct iovec iov[MAX_IOV_SIZE]; unsigned int iovcnt; int last_error; }; /* * Stop a file from being read/written - not all backing files can do this * typically only sockets can. */ int qemu_file_shutdown(QEMUFile *f) { if (!f->ops->shut_down) { return -ENOSYS; } return f->ops->shut_down(f->opaque, true, true); } /* * Result: QEMUFile* for a 'return path' for comms in the opposite direction * NULL if not available */ QEMUFile *qemu_file_get_return_path(QEMUFile *f) { if (!f->ops->get_return_path) { return NULL; } return f->ops->get_return_path(f->opaque); } bool qemu_file_mode_is_not_valid(const char *mode) { if (mode == NULL || (mode[0] != 'r' && mode[0] != 'w') || mode[1] != 'b' || mode[2] != 0) { fprintf(stderr, "qemu_fopen: Argument validity check failed\n"); return true; } return false; } QEMUFile *qemu_fopen_ops(void *opaque, const QEMUFileOps *ops) { QEMUFile *f; f = g_new0(QEMUFile, 1); f->opaque = opaque; f->ops = ops; return f; } void qemu_file_set_hooks(QEMUFile *f, const QEMUFileHooks *hooks) { f->hooks = hooks; } /* * Get last error for stream f * * Return negative error value if there has been an error on previous * operations, return 0 if no error happened. * */ int qemu_file_get_error(QEMUFile *f) { return f->last_error; } void qemu_file_set_error(QEMUFile *f, int ret) { if (f->last_error == 0) { f->last_error = ret; } } bool qemu_file_is_writable(QEMUFile *f) { return f->ops->writev_buffer; } static void qemu_iovec_release_ram(QEMUFile *f) { struct iovec iov; unsigned long idx; /* Find and release all the contiguous memory ranges marked as may_free. */ idx = find_next_bit(f->may_free, f->iovcnt, 0); if (idx >= f->iovcnt) { return; } iov = f->iov[idx]; /* The madvise() in the loop is called for iov within a continuous range and * then reinitialize the iov. And in the end, madvise() is called for the * last iov. */ while ((idx = find_next_bit(f->may_free, f->iovcnt, idx + 1)) < f->iovcnt) { /* check for adjacent buffer and coalesce them */ if (iov.iov_base + iov.iov_len == f->iov[idx].iov_base) { iov.iov_len += f->iov[idx].iov_len; continue; } if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { error_report("migrate: madvise DONTNEED failed %p %zd: %s", iov.iov_base, iov.iov_len, strerror(errno)); } iov = f->iov[idx]; } if (qemu_madvise(iov.iov_base, iov.iov_len, QEMU_MADV_DONTNEED) < 0) { error_report("migrate: madvise DONTNEED failed %p %zd: %s", iov.iov_base, iov.iov_len, strerror(errno)); } memset(f->may_free, 0, sizeof(f->may_free)); } /** * Flushes QEMUFile buffer * * If there is writev_buffer QEMUFileOps it uses it otherwise uses * put_buffer ops. This will flush all pending data. If data was * only partially flushed, it will set an error state. */ void qemu_fflush(QEMUFile *f) { ssize_t ret = 0; ssize_t expect = 0; if (!qemu_file_is_writable(f)) { return; } if (f->iovcnt > 0) { expect = iov_size(f->iov, f->iovcnt); ret = f->ops->writev_buffer(f->opaque, f->iov, f->iovcnt, f->pos); qemu_iovec_release_ram(f); } if (ret >= 0) { f->pos += ret; } /* We expect the QEMUFile write impl to send the full * data set we requested, so sanity check that. */ if (ret != expect) { qemu_file_set_error(f, ret < 0 ? ret : -EIO); } f->buf_index = 0; f->iovcnt = 0; } void ram_control_before_iterate(QEMUFile *f, uint64_t flags) { int ret = 0; if (f->hooks && f->hooks->before_ram_iterate) { ret = f->hooks->before_ram_iterate(f, f->opaque, flags, NULL); if (ret < 0) { qemu_file_set_error(f, ret); } } } void ram_control_after_iterate(QEMUFile *f, uint64_t flags) { int ret = 0; if (f->hooks && f->hooks->after_ram_iterate) { ret = f->hooks->after_ram_iterate(f, f->opaque, flags, NULL); if (ret < 0) { qemu_file_set_error(f, ret); } } } void ram_control_load_hook(QEMUFile *f, uint64_t flags, void *data) { int ret = -EINVAL; if (f->hooks && f->hooks->hook_ram_load) { ret = f->hooks->hook_ram_load(f, f->opaque, flags, data); if (ret < 0) { qemu_file_set_error(f, ret); } } else { /* * Hook is a hook specifically requested by the source sending a flag * that expects there to be a hook on the destination. */ if (flags == RAM_CONTROL_HOOK) { qemu_file_set_error(f, ret); } } } size_t ram_control_save_page(QEMUFile *f, ram_addr_t block_offset, ram_addr_t offset, size_t size, uint64_t *bytes_sent) { if (f->hooks && f->hooks->save_page) { int ret = f->hooks->save_page(f, f->opaque, block_offset, offset, size, bytes_sent); if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { f->bytes_xfer += size; } if (ret != RAM_SAVE_CONTROL_DELAYED && ret != RAM_SAVE_CONTROL_NOT_SUPP) { if (bytes_sent && *bytes_sent > 0) { qemu_update_position(f, *bytes_sent); } else if (ret < 0) { qemu_file_set_error(f, ret); } } return ret; } return RAM_SAVE_CONTROL_NOT_SUPP; } /* * Attempt to fill the buffer from the underlying file * Returns the number of bytes read, or negative value for an error. * * Note that it can return a partially full buffer even in a not error/not EOF * case if the underlying file descriptor gives a short read, and that can * happen even on a blocking fd. */ static ssize_t qemu_fill_buffer(QEMUFile *f) { int len; int pending; assert(!qemu_file_is_writable(f)); pending = f->buf_size - f->buf_index; if (pending > 0) { memmove(f->buf, f->buf + f->buf_index, pending); } f->buf_index = 0; f->buf_size = pending; len = f->ops->get_buffer(f->opaque, f->buf + pending, f->pos, IO_BUF_SIZE - pending); if (len > 0) { f->buf_size += len; f->pos += len; } else if (len == 0) { qemu_file_set_error(f, -EIO); } else if (len != -EAGAIN) { qemu_file_set_error(f, len); } return len; } void qemu_update_position(QEMUFile *f, size_t size) { f->pos += size; } /** Closes the file * * Returns negative error value if any error happened on previous operations or * while closing the file. Returns 0 or positive number on success. * * The meaning of return value on success depends on the specific backend * being used. */ int qemu_fclose(QEMUFile *f) { int ret; qemu_fflush(f); ret = qemu_file_get_error(f); if (f->ops->close) { int ret2 = f->ops->close(f->opaque); if (ret >= 0) { ret = ret2; } } /* If any error was spotted before closing, we should report it * instead of the close() return value. */ if (f->last_error) { ret = f->last_error; } g_free(f); trace_qemu_file_fclose(); return ret; } static void add_to_iovec(QEMUFile *f, const uint8_t *buf, size_t size, bool may_free) { /* check for adjacent buffer and coalesce them */ if (f->iovcnt > 0 && buf == f->iov[f->iovcnt - 1].iov_base + f->iov[f->iovcnt - 1].iov_len && may_free == test_bit(f->iovcnt - 1, f->may_free)) { f->iov[f->iovcnt - 1].iov_len += size; } else { if (may_free) { set_bit(f->iovcnt, f->may_free); } f->iov[f->iovcnt].iov_base = (uint8_t *)buf; f->iov[f->iovcnt++].iov_len = size; } if (f->iovcnt >= MAX_IOV_SIZE) { qemu_fflush(f); } } void qemu_put_buffer_async(QEMUFile *f, const uint8_t *buf, size_t size, bool may_free) { if (f->last_error) { return; } f->bytes_xfer += size; add_to_iovec(f, buf, size, may_free); } void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, size_t size) { size_t l; if (f->last_error) { return; } while (size > 0) { l = IO_BUF_SIZE - f->buf_index; if (l > size) { l = size; } memcpy(f->buf + f->buf_index, buf, l); f->bytes_xfer += l; add_to_iovec(f, f->buf + f->buf_index, l, false); f->buf_index += l; if (f->buf_index == IO_BUF_SIZE) { qemu_fflush(f); } if (qemu_file_get_error(f)) { break; } buf += l; size -= l; } } void qemu_put_byte(QEMUFile *f, int v) { if (f->last_error) { return; } f->buf[f->buf_index] = v; f->bytes_xfer++; add_to_iovec(f, f->buf + f->buf_index, 1, false); f->buf_index++; if (f->buf_index == IO_BUF_SIZE) { qemu_fflush(f); } } void qemu_file_skip(QEMUFile *f, int size) { if (f->buf_index + size <= f->buf_size) { f->buf_index += size; } } /* * Read 'size' bytes from file (at 'offset') without moving the * pointer and set 'buf' to point to that data. * * It will return size bytes unless there was an error, in which case it will * return as many as it managed to read (assuming blocking fd's which * all current QEMUFile are) */ size_t qemu_peek_buffer(QEMUFile *f, uint8_t **buf, size_t size, size_t offset) { ssize_t pending; size_t index; assert(!qemu_file_is_writable(f)); assert(offset < IO_BUF_SIZE); assert(size <= IO_BUF_SIZE - offset); /* The 1st byte to read from */ index = f->buf_index + offset; /* The number of available bytes starting at index */ pending = f->buf_size - index; /* * qemu_fill_buffer might return just a few bytes, even when there isn't * an error, so loop collecting them until we get enough. */ while (pending < size) { int received = qemu_fill_buffer(f); if (received <= 0) { break; } index = f->buf_index + offset; pending = f->buf_size - index; } if (pending <= 0) { return 0; } if (size > pending) { size = pending; } *buf = f->buf + index; return size; } /* * Read 'size' bytes of data from the file into buf. * 'size' can be larger than the internal buffer. * * It will return size bytes unless there was an error, in which case it will * return as many as it managed to read (assuming blocking fd's which * all current QEMUFile are) */ size_t qemu_get_buffer(QEMUFile *f, uint8_t *buf, size_t size) { size_t pending = size; size_t done = 0; while (pending > 0) { size_t res; uint8_t *src; res = qemu_peek_buffer(f, &src, MIN(pending, IO_BUF_SIZE), 0); if (res == 0) { return done; } memcpy(buf, src, res); qemu_file_skip(f, res); buf += res; pending -= res; done += res; } return done; } /* * Read 'size' bytes of data from the file. * 'size' can be larger than the internal buffer. * * The data: * may be held on an internal buffer (in which case *buf is updated * to point to it) that is valid until the next qemu_file operation. * OR * will be copied to the *buf that was passed in. * * The code tries to avoid the copy if possible. * * It will return size bytes unless there was an error, in which case it will * return as many as it managed to read (assuming blocking fd's which * all current QEMUFile are) * * Note: Since **buf may get changed, the caller should take care to * keep a pointer to the original buffer if it needs to deallocate it. */ size_t qemu_get_buffer_in_place(QEMUFile *f, uint8_t **buf, size_t size) { if (size < IO_BUF_SIZE) { size_t res; uint8_t *src; res = qemu_peek_buffer(f, &src, size, 0); if (res == size) { qemu_file_skip(f, res); *buf = src; return res; } } return qemu_get_buffer(f, *buf, size); } /* * Peeks a single byte from the buffer; this isn't guaranteed to work if * offset leaves a gap after the previous read/peeked data. */ int qemu_peek_byte(QEMUFile *f, int offset) { int index = f->buf_index + offset; assert(!qemu_file_is_writable(f)); assert(offset < IO_BUF_SIZE); if (index >= f->buf_size) { qemu_fill_buffer(f); index = f->buf_index + offset; if (index >= f->buf_size) { return 0; } } return f->buf[index]; } int qemu_get_byte(QEMUFile *f) { int result; result = qemu_peek_byte(f, 0); qemu_file_skip(f, 1); return result; } int64_t qemu_ftell_fast(QEMUFile *f) { int64_t ret = f->pos; int i; for (i = 0; i < f->iovcnt; i++) { ret += f->iov[i].iov_len; } return ret; } int64_t qemu_ftell(QEMUFile *f) { qemu_fflush(f); return f->pos; } int qemu_file_rate_limit(QEMUFile *f) { if (qemu_file_get_error(f)) { return 1; } if (f->xfer_limit > 0 && f->bytes_xfer > f->xfer_limit) { return 1; } return 0; } int64_t qemu_file_get_rate_limit(QEMUFile *f) { return f->xfer_limit; } void qemu_file_set_rate_limit(QEMUFile *f, int64_t limit) { f->xfer_limit = limit; } void qemu_file_reset_rate_limit(QEMUFile *f) { f->bytes_xfer = 0; } void qemu_put_be16(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be32(QEMUFile *f, unsigned int v) { qemu_put_byte(f, v >> 24); qemu_put_byte(f, v >> 16); qemu_put_byte(f, v >> 8); qemu_put_byte(f, v); } void qemu_put_be64(QEMUFile *f, uint64_t v) { qemu_put_be32(f, v >> 32); qemu_put_be32(f, v); } unsigned int qemu_get_be16(QEMUFile *f) { unsigned int v; v = qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } unsigned int qemu_get_be32(QEMUFile *f) { unsigned int v; v = (unsigned int)qemu_get_byte(f) << 24; v |= qemu_get_byte(f) << 16; v |= qemu_get_byte(f) << 8; v |= qemu_get_byte(f); return v; } uint64_t qemu_get_be64(QEMUFile *f) { uint64_t v; v = (uint64_t)qemu_get_be32(f) << 32; v |= qemu_get_be32(f); return v; } /* return the size after compression, or negative value on error */ static int qemu_compress_data(z_stream *stream, uint8_t *dest, size_t dest_len, const uint8_t *source, size_t source_len) { int err; err = deflateReset(stream); if (err != Z_OK) { return -1; } stream->avail_in = source_len; stream->next_in = (uint8_t *)source; stream->avail_out = dest_len; stream->next_out = dest; err = deflate(stream, Z_FINISH); if (err != Z_STREAM_END) { return -1; } return stream->next_out - dest; } /* Compress size bytes of data start at p and store the compressed * data to the buffer of f. * * When f is not writable, return -1 if f has no space to save the * compressed data. * When f is wirtable and it has no space to save the compressed data, * do fflush first, if f still has no space to save the compressed * data, return -1. */ ssize_t qemu_put_compression_data(QEMUFile *f, z_stream *stream, const uint8_t *p, size_t size) { ssize_t blen = IO_BUF_SIZE - f->buf_index - sizeof(int32_t); if (blen < compressBound(size)) { if (!qemu_file_is_writable(f)) { return -1; } qemu_fflush(f); blen = IO_BUF_SIZE - sizeof(int32_t); if (blen < compressBound(size)) { return -1; } } blen = qemu_compress_data(stream, f->buf + f->buf_index + sizeof(int32_t), blen, p, size); if (blen < 0) { return -1; } qemu_put_be32(f, blen); if (f->ops->writev_buffer) { add_to_iovec(f, f->buf + f->buf_index, blen, false); } f->buf_index += blen; if (f->buf_index == IO_BUF_SIZE) { qemu_fflush(f); } return blen + sizeof(int32_t); } /* Put the data in the buffer of f_src to the buffer of f_des, and * then reset the buf_index of f_src to 0. */ int qemu_put_qemu_file(QEMUFile *f_des, QEMUFile *f_src) { int len = 0; if (f_src->buf_index > 0) { len = f_src->buf_index; qemu_put_buffer(f_des, f_src->buf, f_src->buf_index); f_src->buf_index = 0; f_src->iovcnt = 0; } return len; } /* * Get a string whose length is determined by a single preceding byte * A preallocated 256 byte buffer must be passed in. * Returns: len on success and a 0 terminated string in the buffer * else 0 * (Note a 0 length string will return 0 either way) */ size_t qemu_get_counted_string(QEMUFile *f, char buf[256]) { size_t len = qemu_get_byte(f); size_t res = qemu_get_buffer(f, (uint8_t *)buf, len); buf[res] = 0; return res == len ? res : 0; } /* * Put a string with one preceding byte containing its length. The length of * the string should be less than 256. */ void qemu_put_counted_string(QEMUFile *f, const char *str) { size_t len = strlen(str); assert(len < 256); qemu_put_byte(f, len); qemu_put_buffer(f, (const uint8_t *)str, len); } /* * Set the blocking state of the QEMUFile. * Note: On some transports the OS only keeps a single blocking state for * both directions, and thus changing the blocking on the main * QEMUFile can also affect the return path. */ void qemu_file_set_blocking(QEMUFile *f, bool block) { if (f->ops->set_blocking) { f->ops->set_blocking(f->opaque, block); } }