/* * Multifd UADK compression accelerator implementation * * Copyright (c) 2024 Huawei Technologies R & D (UK) Ltd * * Authors: * Shameer Kolothum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "qemu/module.h" #include "qapi/error.h" #include "exec/ramblock.h" #include "migration.h" #include "multifd.h" #include "options.h" #include "qemu/error-report.h" #include "uadk/wd_comp.h" #include "uadk/wd_sched.h" struct wd_data { handle_t handle; uint8_t *buf; uint32_t *buf_hdr; }; static bool uadk_hw_init(void) { char alg[] = "zlib"; int ret; ret = wd_comp_init2(alg, SCHED_POLICY_RR, TASK_HW); if (ret && ret != -WD_EEXIST) { return false; } else { return true; } } static struct wd_data *multifd_uadk_init_sess(uint32_t count, uint32_t page_size, bool compress, Error **errp) { struct wd_comp_sess_setup ss = {0}; struct sched_params param = {0}; uint32_t size = count * page_size; struct wd_data *wd; wd = g_new0(struct wd_data, 1); if (uadk_hw_init()) { ss.alg_type = WD_ZLIB; if (compress) { ss.op_type = WD_DIR_COMPRESS; /* Add an additional page for handling output > input */ size += page_size; } else { ss.op_type = WD_DIR_DECOMPRESS; } /* We use default level 1 compression and 4K window size */ param.type = ss.op_type; ss.sched_param = ¶m; wd->handle = wd_comp_alloc_sess(&ss); if (!wd->handle) { error_setg(errp, "multifd: failed wd_comp_alloc_sess"); goto out; } } else { /* For CI test use */ warn_report_once("UADK hardware not available. Switch to no compression mode"); } wd->buf = g_try_malloc(size); if (!wd->buf) { error_setg(errp, "multifd: out of mem for uadk buf"); goto out_free_sess; } wd->buf_hdr = g_new0(uint32_t, count); return wd; out_free_sess: if (wd->handle) { wd_comp_free_sess(wd->handle); } out: wd_comp_uninit2(); g_free(wd); return NULL; } static void multifd_uadk_uninit_sess(struct wd_data *wd) { if (wd->handle) { wd_comp_free_sess(wd->handle); } wd_comp_uninit2(); g_free(wd->buf); g_free(wd->buf_hdr); g_free(wd); } static int multifd_uadk_send_setup(MultiFDSendParams *p, Error **errp) { struct wd_data *wd; uint32_t page_size = multifd_ram_page_size(); uint32_t page_count = multifd_ram_page_count(); wd = multifd_uadk_init_sess(page_count, page_size, true, errp); if (!wd) { return -1; } p->compress_data = wd; assert(p->iov == NULL); /* * Each page will be compressed independently and sent using an IOV. The * additional two IOVs are used to store packet header and compressed data * length */ p->iov = g_new0(struct iovec, page_count + 2); return 0; } static void multifd_uadk_send_cleanup(MultiFDSendParams *p, Error **errp) { struct wd_data *wd = p->compress_data; multifd_uadk_uninit_sess(wd); p->compress_data = NULL; g_free(p->iov); p->iov = NULL; } static inline void prepare_next_iov(MultiFDSendParams *p, void *base, uint32_t len) { p->iov[p->iovs_num].iov_base = (uint8_t *)base; p->iov[p->iovs_num].iov_len = len; p->next_packet_size += len; p->iovs_num++; } static int multifd_uadk_send_prepare(MultiFDSendParams *p, Error **errp) { struct wd_data *uadk_data = p->compress_data; uint32_t hdr_size; uint32_t page_size = multifd_ram_page_size(); uint8_t *buf = uadk_data->buf; int ret = 0; MultiFDPages_t *pages = &p->data->u.ram; if (!multifd_send_prepare_common(p)) { goto out; } hdr_size = pages->normal_num * sizeof(uint32_t); /* prepare the header that stores the lengths of all compressed data */ prepare_next_iov(p, uadk_data->buf_hdr, hdr_size); for (int i = 0; i < pages->normal_num; i++) { struct wd_comp_req creq = { .op_type = WD_DIR_COMPRESS, .src = pages->block->host + pages->offset[i], .src_len = page_size, .dst = buf, /* Set dst_len to double the src in case compressed out >= page_size */ .dst_len = p->page_size * 2, }; if (uadk_data->handle) { ret = wd_do_comp_sync(uadk_data->handle, &creq); if (ret || creq.status) { error_setg(errp, "multifd %u: failed compression, ret %d status %d", p->id, ret, creq.status); return -1; } if (creq.dst_len < page_size) { uadk_data->buf_hdr[i] = cpu_to_be32(creq.dst_len); prepare_next_iov(p, buf, creq.dst_len); buf += creq.dst_len; } } /* * Send raw data if no UADK hardware or if compressed out >= page_size. * We might be better off sending raw data if output is slightly less * than page_size as well because at the receive end we can skip the * decompression. But it is tricky to find the right number here. */ if (!uadk_data->handle || creq.dst_len >= page_size) { uadk_data->buf_hdr[i] = cpu_to_be32(page_size); prepare_next_iov(p, pages->block->host + pages->offset[i], page_size); buf += page_size; } } out: p->flags |= MULTIFD_FLAG_UADK; multifd_send_fill_packet(p); return 0; } static int multifd_uadk_recv_setup(MultiFDRecvParams *p, Error **errp) { struct wd_data *wd; uint32_t page_size = multifd_ram_page_size(); uint32_t page_count = multifd_ram_page_count(); wd = multifd_uadk_init_sess(page_count, page_size, false, errp); if (!wd) { return -1; } p->compress_data = wd; return 0; } static void multifd_uadk_recv_cleanup(MultiFDRecvParams *p) { struct wd_data *wd = p->compress_data; multifd_uadk_uninit_sess(wd); p->compress_data = NULL; } static int multifd_uadk_recv(MultiFDRecvParams *p, Error **errp) { struct wd_data *uadk_data = p->compress_data; uint32_t in_size = p->next_packet_size; uint32_t flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK; uint32_t hdr_len = p->normal_num * sizeof(uint32_t); uint32_t data_len = 0; uint32_t page_size = multifd_ram_page_size(); uint8_t *buf = uadk_data->buf; int ret = 0; if (flags != MULTIFD_FLAG_UADK) { error_setg(errp, "multifd %u: flags received %x flags expected %x", p->id, flags, MULTIFD_FLAG_ZLIB); return -1; } multifd_recv_zero_page_process(p); if (!p->normal_num) { assert(in_size == 0); return 0; } /* read compressed data lengths */ assert(hdr_len < in_size); ret = qio_channel_read_all(p->c, (void *) uadk_data->buf_hdr, hdr_len, errp); if (ret != 0) { return ret; } for (int i = 0; i < p->normal_num; i++) { uadk_data->buf_hdr[i] = be32_to_cpu(uadk_data->buf_hdr[i]); data_len += uadk_data->buf_hdr[i]; assert(uadk_data->buf_hdr[i] <= page_size); } /* read compressed data */ assert(in_size == hdr_len + data_len); ret = qio_channel_read_all(p->c, (void *)buf, data_len, errp); if (ret != 0) { return ret; } for (int i = 0; i < p->normal_num; i++) { struct wd_comp_req creq = { .op_type = WD_DIR_DECOMPRESS, .src = buf, .src_len = uadk_data->buf_hdr[i], .dst = p->host + p->normal[i], .dst_len = page_size, }; if (uadk_data->buf_hdr[i] == page_size) { memcpy(p->host + p->normal[i], buf, page_size); buf += page_size; continue; } if (unlikely(!uadk_data->handle)) { error_setg(errp, "multifd %u: UADK HW not available for decompression", p->id); return -1; } ret = wd_do_comp_sync(uadk_data->handle, &creq); if (ret || creq.status) { error_setg(errp, "multifd %u: failed decompression, ret %d status %d", p->id, ret, creq.status); return -1; } if (creq.dst_len != page_size) { error_setg(errp, "multifd %u: decompressed length error", p->id); return -1; } buf += uadk_data->buf_hdr[i]; } return 0; } static const MultiFDMethods multifd_uadk_ops = { .send_setup = multifd_uadk_send_setup, .send_cleanup = multifd_uadk_send_cleanup, .send_prepare = multifd_uadk_send_prepare, .recv_setup = multifd_uadk_recv_setup, .recv_cleanup = multifd_uadk_recv_cleanup, .recv = multifd_uadk_recv, }; static void multifd_uadk_register(void) { multifd_register_ops(MULTIFD_COMPRESSION_UADK, &multifd_uadk_ops); } migration_init(multifd_uadk_register);