/* * QEMU live migration * * Copyright IBM, Corp. 2008 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu-common.h" #include "qemu/error-report.h" #include "qemu/main-loop.h" #include "migration/migration.h" #include "migration/qemu-file.h" #include "sysemu/sysemu.h" #include "block/block.h" #include "qapi/qmp/qerror.h" #include "qemu/sockets.h" #include "qemu/rcu.h" #include "migration/block.h" #include "qemu/thread.h" #include "qmp-commands.h" #include "trace.h" #include "qapi/util.h" #include "qapi-event.h" #include "qom/cpu.h" #define MAX_THROTTLE (32 << 20) /* Migration transfer speed throttling */ /* Amount of time to allocate to each "chunk" of bandwidth-throttled * data. */ #define BUFFER_DELAY 100 #define XFER_LIMIT_RATIO (1000 / BUFFER_DELAY) /* Default compression thread count */ #define DEFAULT_MIGRATE_COMPRESS_THREAD_COUNT 8 /* Default decompression thread count, usually decompression is at * least 4 times as fast as compression.*/ #define DEFAULT_MIGRATE_DECOMPRESS_THREAD_COUNT 2 /*0: means nocompress, 1: best speed, ... 9: best compress ratio */ #define DEFAULT_MIGRATE_COMPRESS_LEVEL 1 /* Define default autoconverge cpu throttle migration parameters */ #define DEFAULT_MIGRATE_X_CPU_THROTTLE_INITIAL 20 #define DEFAULT_MIGRATE_X_CPU_THROTTLE_INCREMENT 10 /* Migration XBZRLE default cache size */ #define DEFAULT_MIGRATE_CACHE_SIZE (64 * 1024 * 1024) static NotifierList migration_state_notifiers = NOTIFIER_LIST_INITIALIZER(migration_state_notifiers); static bool deferred_incoming; /* * Current state of incoming postcopy; note this is not part of * MigrationIncomingState since it's state is used during cleanup * at the end as MIS is being freed. */ static PostcopyState incoming_postcopy_state; /* When we add fault tolerance, we could have several migrations at once. For now we don't need to add dynamic creation of migration */ /* For outgoing */ MigrationState *migrate_get_current(void) { static MigrationState current_migration = { .state = MIGRATION_STATUS_NONE, .bandwidth_limit = MAX_THROTTLE, .xbzrle_cache_size = DEFAULT_MIGRATE_CACHE_SIZE, .mbps = -1, .parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL] = DEFAULT_MIGRATE_COMPRESS_LEVEL, .parameters[MIGRATION_PARAMETER_COMPRESS_THREADS] = DEFAULT_MIGRATE_COMPRESS_THREAD_COUNT, .parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS] = DEFAULT_MIGRATE_DECOMPRESS_THREAD_COUNT, .parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL] = DEFAULT_MIGRATE_X_CPU_THROTTLE_INITIAL, .parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT] = DEFAULT_MIGRATE_X_CPU_THROTTLE_INCREMENT, }; return ¤t_migration; } /* For incoming */ static MigrationIncomingState *mis_current; MigrationIncomingState *migration_incoming_get_current(void) { return mis_current; } MigrationIncomingState *migration_incoming_state_new(QEMUFile* f) { mis_current = g_new0(MigrationIncomingState, 1); mis_current->from_src_file = f; QLIST_INIT(&mis_current->loadvm_handlers); qemu_mutex_init(&mis_current->rp_mutex); qemu_event_init(&mis_current->main_thread_load_event, false); return mis_current; } void migration_incoming_state_destroy(void) { qemu_event_destroy(&mis_current->main_thread_load_event); loadvm_free_handlers(mis_current); g_free(mis_current); mis_current = NULL; } typedef struct { bool optional; uint32_t size; uint8_t runstate[100]; RunState state; bool received; } GlobalState; static GlobalState global_state; int global_state_store(void) { if (!runstate_store((char *)global_state.runstate, sizeof(global_state.runstate))) { error_report("runstate name too big: %s", global_state.runstate); trace_migrate_state_too_big(); return -EINVAL; } return 0; } void global_state_store_running(void) { const char *state = RunState_lookup[RUN_STATE_RUNNING]; strncpy((char *)global_state.runstate, state, sizeof(global_state.runstate)); } static bool global_state_received(void) { return global_state.received; } static RunState global_state_get_runstate(void) { return global_state.state; } void global_state_set_optional(void) { global_state.optional = true; } static bool global_state_needed(void *opaque) { GlobalState *s = opaque; char *runstate = (char *)s->runstate; /* If it is not optional, it is mandatory */ if (s->optional == false) { return true; } /* If state is running or paused, it is not needed */ if (strcmp(runstate, "running") == 0 || strcmp(runstate, "paused") == 0) { return false; } /* for any other state it is needed */ return true; } static int global_state_post_load(void *opaque, int version_id) { GlobalState *s = opaque; Error *local_err = NULL; int r; char *runstate = (char *)s->runstate; s->received = true; trace_migrate_global_state_post_load(runstate); r = qapi_enum_parse(RunState_lookup, runstate, RUN_STATE_MAX, -1, &local_err); if (r == -1) { if (local_err) { error_report_err(local_err); } return -EINVAL; } s->state = r; return 0; } static void global_state_pre_save(void *opaque) { GlobalState *s = opaque; trace_migrate_global_state_pre_save((char *)s->runstate); s->size = strlen((char *)s->runstate) + 1; } static const VMStateDescription vmstate_globalstate = { .name = "globalstate", .version_id = 1, .minimum_version_id = 1, .post_load = global_state_post_load, .pre_save = global_state_pre_save, .needed = global_state_needed, .fields = (VMStateField[]) { VMSTATE_UINT32(size, GlobalState), VMSTATE_BUFFER(runstate, GlobalState), VMSTATE_END_OF_LIST() }, }; void register_global_state(void) { /* We would use it independently that we receive it */ strcpy((char *)&global_state.runstate, ""); global_state.received = false; vmstate_register(NULL, 0, &vmstate_globalstate, &global_state); } static void migrate_generate_event(int new_state) { if (migrate_use_events()) { qapi_event_send_migration(new_state, &error_abort); } } /* * Called on -incoming with a defer: uri. * The migration can be started later after any parameters have been * changed. */ static void deferred_incoming_migration(Error **errp) { if (deferred_incoming) { error_setg(errp, "Incoming migration already deferred"); } deferred_incoming = true; } void qemu_start_incoming_migration(const char *uri, Error **errp) { const char *p; qapi_event_send_migration(MIGRATION_STATUS_SETUP, &error_abort); if (!strcmp(uri, "defer")) { deferred_incoming_migration(errp); } else if (strstart(uri, "tcp:", &p)) { tcp_start_incoming_migration(p, errp); #ifdef CONFIG_RDMA } else if (strstart(uri, "rdma:", &p)) { rdma_start_incoming_migration(p, errp); #endif #if !defined(WIN32) } else if (strstart(uri, "exec:", &p)) { exec_start_incoming_migration(p, errp); } else if (strstart(uri, "unix:", &p)) { unix_start_incoming_migration(p, errp); } else if (strstart(uri, "fd:", &p)) { fd_start_incoming_migration(p, errp); #endif } else { error_setg(errp, "unknown migration protocol: %s", uri); } } static void process_incoming_migration_co(void *opaque) { QEMUFile *f = opaque; Error *local_err = NULL; int ret; migration_incoming_state_new(f); postcopy_state_set(POSTCOPY_INCOMING_NONE); migrate_generate_event(MIGRATION_STATUS_ACTIVE); ret = qemu_loadvm_state(f); qemu_fclose(f); free_xbzrle_decoded_buf(); migration_incoming_state_destroy(); if (ret < 0) { migrate_generate_event(MIGRATION_STATUS_FAILED); error_report("load of migration failed: %s", strerror(-ret)); migrate_decompress_threads_join(); exit(EXIT_FAILURE); } /* Make sure all file formats flush their mutable metadata */ bdrv_invalidate_cache_all(&local_err); if (local_err) { migrate_generate_event(MIGRATION_STATUS_FAILED); error_report_err(local_err); migrate_decompress_threads_join(); exit(EXIT_FAILURE); } /* * This must happen after all error conditions are dealt with and * we're sure the VM is going to be running on this host. */ qemu_announce_self(); /* If global state section was not received or we are in running state, we need to obey autostart. Any other state is set with runstate_set. */ if (!global_state_received() || global_state_get_runstate() == RUN_STATE_RUNNING) { if (autostart) { vm_start(); } else { runstate_set(RUN_STATE_PAUSED); } } else { runstate_set(global_state_get_runstate()); } migrate_decompress_threads_join(); /* * This must happen after any state changes since as soon as an external * observer sees this event they might start to prod at the VM assuming * it's ready to use. */ migrate_generate_event(MIGRATION_STATUS_COMPLETED); } void process_incoming_migration(QEMUFile *f) { Coroutine *co = qemu_coroutine_create(process_incoming_migration_co); int fd = qemu_get_fd(f); assert(fd != -1); migrate_decompress_threads_create(); qemu_set_nonblock(fd); qemu_coroutine_enter(co, f); } /* * Send a message on the return channel back to the source * of the migration. */ void migrate_send_rp_message(MigrationIncomingState *mis, enum mig_rp_message_type message_type, uint16_t len, void *data) { trace_migrate_send_rp_message((int)message_type, len); qemu_mutex_lock(&mis->rp_mutex); qemu_put_be16(mis->to_src_file, (unsigned int)message_type); qemu_put_be16(mis->to_src_file, len); qemu_put_buffer(mis->to_src_file, data, len); qemu_fflush(mis->to_src_file); qemu_mutex_unlock(&mis->rp_mutex); } /* * Send a 'SHUT' message on the return channel with the given value * to indicate that we've finished with the RP. Non-0 value indicates * error. */ void migrate_send_rp_shut(MigrationIncomingState *mis, uint32_t value) { uint32_t buf; buf = cpu_to_be32(value); migrate_send_rp_message(mis, MIG_RP_MSG_SHUT, sizeof(buf), &buf); } /* * Send a 'PONG' message on the return channel with the given value * (normally in response to a 'PING') */ void migrate_send_rp_pong(MigrationIncomingState *mis, uint32_t value) { uint32_t buf; buf = cpu_to_be32(value); migrate_send_rp_message(mis, MIG_RP_MSG_PONG, sizeof(buf), &buf); } /* amount of nanoseconds we are willing to wait for migration to be down. * the choice of nanoseconds is because it is the maximum resolution that * get_clock() can achieve. It is an internal measure. All user-visible * units must be in seconds */ static uint64_t max_downtime = 300000000; uint64_t migrate_max_downtime(void) { return max_downtime; } MigrationCapabilityStatusList *qmp_query_migrate_capabilities(Error **errp) { MigrationCapabilityStatusList *head = NULL; MigrationCapabilityStatusList *caps; MigrationState *s = migrate_get_current(); int i; caps = NULL; /* silence compiler warning */ for (i = 0; i < MIGRATION_CAPABILITY_MAX; i++) { if (head == NULL) { head = g_malloc0(sizeof(*caps)); caps = head; } else { caps->next = g_malloc0(sizeof(*caps)); caps = caps->next; } caps->value = g_malloc(sizeof(*caps->value)); caps->value->capability = i; caps->value->state = s->enabled_capabilities[i]; } return head; } MigrationParameters *qmp_query_migrate_parameters(Error **errp) { MigrationParameters *params; MigrationState *s = migrate_get_current(); params = g_malloc0(sizeof(*params)); params->compress_level = s->parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL]; params->compress_threads = s->parameters[MIGRATION_PARAMETER_COMPRESS_THREADS]; params->decompress_threads = s->parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS]; params->x_cpu_throttle_initial = s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL]; params->x_cpu_throttle_increment = s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT]; return params; } /* * Return true if we're already in the middle of a migration * (i.e. any of the active or setup states) */ static bool migration_is_setup_or_active(int state) { switch (state) { case MIGRATION_STATUS_ACTIVE: case MIGRATION_STATUS_SETUP: return true; default: return false; } } static void get_xbzrle_cache_stats(MigrationInfo *info) { if (migrate_use_xbzrle()) { info->has_xbzrle_cache = true; info->xbzrle_cache = g_malloc0(sizeof(*info->xbzrle_cache)); info->xbzrle_cache->cache_size = migrate_xbzrle_cache_size(); info->xbzrle_cache->bytes = xbzrle_mig_bytes_transferred(); info->xbzrle_cache->pages = xbzrle_mig_pages_transferred(); info->xbzrle_cache->cache_miss = xbzrle_mig_pages_cache_miss(); info->xbzrle_cache->cache_miss_rate = xbzrle_mig_cache_miss_rate(); info->xbzrle_cache->overflow = xbzrle_mig_pages_overflow(); } } MigrationInfo *qmp_query_migrate(Error **errp) { MigrationInfo *info = g_malloc0(sizeof(*info)); MigrationState *s = migrate_get_current(); switch (s->state) { case MIGRATION_STATUS_NONE: /* no migration has happened ever */ break; case MIGRATION_STATUS_SETUP: info->has_status = true; info->has_total_time = false; break; case MIGRATION_STATUS_ACTIVE: case MIGRATION_STATUS_CANCELLING: info->has_status = true; info->has_total_time = true; info->total_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) - s->total_time; info->has_expected_downtime = true; info->expected_downtime = s->expected_downtime; info->has_setup_time = true; info->setup_time = s->setup_time; info->has_ram = true; info->ram = g_malloc0(sizeof(*info->ram)); info->ram->transferred = ram_bytes_transferred(); info->ram->remaining = ram_bytes_remaining(); info->ram->total = ram_bytes_total(); info->ram->duplicate = dup_mig_pages_transferred(); info->ram->skipped = skipped_mig_pages_transferred(); info->ram->normal = norm_mig_pages_transferred(); info->ram->normal_bytes = norm_mig_bytes_transferred(); info->ram->dirty_pages_rate = s->dirty_pages_rate; info->ram->mbps = s->mbps; info->ram->dirty_sync_count = s->dirty_sync_count; if (blk_mig_active()) { info->has_disk = true; info->disk = g_malloc0(sizeof(*info->disk)); info->disk->transferred = blk_mig_bytes_transferred(); info->disk->remaining = blk_mig_bytes_remaining(); info->disk->total = blk_mig_bytes_total(); } if (cpu_throttle_active()) { info->has_x_cpu_throttle_percentage = true; info->x_cpu_throttle_percentage = cpu_throttle_get_percentage(); } get_xbzrle_cache_stats(info); break; case MIGRATION_STATUS_COMPLETED: get_xbzrle_cache_stats(info); info->has_status = true; info->has_total_time = true; info->total_time = s->total_time; info->has_downtime = true; info->downtime = s->downtime; info->has_setup_time = true; info->setup_time = s->setup_time; info->has_ram = true; info->ram = g_malloc0(sizeof(*info->ram)); info->ram->transferred = ram_bytes_transferred(); info->ram->remaining = 0; info->ram->total = ram_bytes_total(); info->ram->duplicate = dup_mig_pages_transferred(); info->ram->skipped = skipped_mig_pages_transferred(); info->ram->normal = norm_mig_pages_transferred(); info->ram->normal_bytes = norm_mig_bytes_transferred(); info->ram->mbps = s->mbps; info->ram->dirty_sync_count = s->dirty_sync_count; break; case MIGRATION_STATUS_FAILED: info->has_status = true; break; case MIGRATION_STATUS_CANCELLED: info->has_status = true; break; } info->status = s->state; return info; } void qmp_migrate_set_capabilities(MigrationCapabilityStatusList *params, Error **errp) { MigrationState *s = migrate_get_current(); MigrationCapabilityStatusList *cap; if (migration_is_setup_or_active(s->state)) { error_setg(errp, QERR_MIGRATION_ACTIVE); return; } for (cap = params; cap; cap = cap->next) { s->enabled_capabilities[cap->value->capability] = cap->value->state; } if (migrate_postcopy_ram()) { if (migrate_use_compression()) { /* The decompression threads asynchronously write into RAM * rather than use the atomic copies needed to avoid * userfaulting. It should be possible to fix the decompression * threads for compatibility in future. */ error_report("Postcopy is not currently compatible with " "compression"); s->enabled_capabilities[MIGRATION_CAPABILITY_X_POSTCOPY_RAM] = false; } } } void qmp_migrate_set_parameters(bool has_compress_level, int64_t compress_level, bool has_compress_threads, int64_t compress_threads, bool has_decompress_threads, int64_t decompress_threads, bool has_x_cpu_throttle_initial, int64_t x_cpu_throttle_initial, bool has_x_cpu_throttle_increment, int64_t x_cpu_throttle_increment, Error **errp) { MigrationState *s = migrate_get_current(); if (has_compress_level && (compress_level < 0 || compress_level > 9)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "compress_level", "is invalid, it should be in the range of 0 to 9"); return; } if (has_compress_threads && (compress_threads < 1 || compress_threads > 255)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "compress_threads", "is invalid, it should be in the range of 1 to 255"); return; } if (has_decompress_threads && (decompress_threads < 1 || decompress_threads > 255)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "decompress_threads", "is invalid, it should be in the range of 1 to 255"); return; } if (has_x_cpu_throttle_initial && (x_cpu_throttle_initial < 1 || x_cpu_throttle_initial > 99)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "x_cpu_throttle_initial", "an integer in the range of 1 to 99"); } if (has_x_cpu_throttle_increment && (x_cpu_throttle_increment < 1 || x_cpu_throttle_increment > 99)) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "x_cpu_throttle_increment", "an integer in the range of 1 to 99"); } if (has_compress_level) { s->parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL] = compress_level; } if (has_compress_threads) { s->parameters[MIGRATION_PARAMETER_COMPRESS_THREADS] = compress_threads; } if (has_decompress_threads) { s->parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS] = decompress_threads; } if (has_x_cpu_throttle_initial) { s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL] = x_cpu_throttle_initial; } if (has_x_cpu_throttle_increment) { s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT] = x_cpu_throttle_increment; } } void qmp_migrate_start_postcopy(Error **errp) { MigrationState *s = migrate_get_current(); if (!migrate_postcopy_ram()) { error_setg(errp, "Enable postcopy with migration_set_capability before" " the start of migration"); return; } if (s->state == MIGRATION_STATUS_NONE) { error_setg(errp, "Postcopy must be started after migration has been" " started"); return; } /* * we don't error if migration has finished since that would be racy * with issuing this command. */ atomic_set(&s->start_postcopy, true); } /* shared migration helpers */ static void migrate_set_state(MigrationState *s, int old_state, int new_state) { if (atomic_cmpxchg(&s->state, old_state, new_state) == old_state) { trace_migrate_set_state(new_state); migrate_generate_event(new_state); } } static void migrate_fd_cleanup(void *opaque) { MigrationState *s = opaque; qemu_bh_delete(s->cleanup_bh); s->cleanup_bh = NULL; if (s->file) { trace_migrate_fd_cleanup(); qemu_mutex_unlock_iothread(); qemu_thread_join(&s->thread); qemu_mutex_lock_iothread(); migrate_compress_threads_join(); qemu_fclose(s->file); s->file = NULL; } assert(s->state != MIGRATION_STATUS_ACTIVE); if (s->state == MIGRATION_STATUS_CANCELLING) { migrate_set_state(s, MIGRATION_STATUS_CANCELLING, MIGRATION_STATUS_CANCELLED); } notifier_list_notify(&migration_state_notifiers, s); } void migrate_fd_error(MigrationState *s) { trace_migrate_fd_error(); assert(s->file == NULL); migrate_set_state(s, MIGRATION_STATUS_SETUP, MIGRATION_STATUS_FAILED); notifier_list_notify(&migration_state_notifiers, s); } static void migrate_fd_cancel(MigrationState *s) { int old_state ; QEMUFile *f = migrate_get_current()->file; trace_migrate_fd_cancel(); if (s->rp_state.from_dst_file) { /* shutdown the rp socket, so causing the rp thread to shutdown */ qemu_file_shutdown(s->rp_state.from_dst_file); } do { old_state = s->state; if (!migration_is_setup_or_active(old_state)) { break; } migrate_set_state(s, old_state, MIGRATION_STATUS_CANCELLING); } while (s->state != MIGRATION_STATUS_CANCELLING); /* * If we're unlucky the migration code might be stuck somewhere in a * send/write while the network has failed and is waiting to timeout; * if we've got shutdown(2) available then we can force it to quit. * The outgoing qemu file gets closed in migrate_fd_cleanup that is * called in a bh, so there is no race against this cancel. */ if (s->state == MIGRATION_STATUS_CANCELLING && f) { qemu_file_shutdown(f); } } void add_migration_state_change_notifier(Notifier *notify) { notifier_list_add(&migration_state_notifiers, notify); } void remove_migration_state_change_notifier(Notifier *notify) { notifier_remove(notify); } bool migration_in_setup(MigrationState *s) { return s->state == MIGRATION_STATUS_SETUP; } bool migration_has_finished(MigrationState *s) { return s->state == MIGRATION_STATUS_COMPLETED; } bool migration_has_failed(MigrationState *s) { return (s->state == MIGRATION_STATUS_CANCELLED || s->state == MIGRATION_STATUS_FAILED); } MigrationState *migrate_init(const MigrationParams *params) { MigrationState *s = migrate_get_current(); int64_t bandwidth_limit = s->bandwidth_limit; bool enabled_capabilities[MIGRATION_CAPABILITY_MAX]; int64_t xbzrle_cache_size = s->xbzrle_cache_size; int compress_level = s->parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL]; int compress_thread_count = s->parameters[MIGRATION_PARAMETER_COMPRESS_THREADS]; int decompress_thread_count = s->parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS]; int x_cpu_throttle_initial = s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL]; int x_cpu_throttle_increment = s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT]; memcpy(enabled_capabilities, s->enabled_capabilities, sizeof(enabled_capabilities)); memset(s, 0, sizeof(*s)); s->params = *params; memcpy(s->enabled_capabilities, enabled_capabilities, sizeof(enabled_capabilities)); s->xbzrle_cache_size = xbzrle_cache_size; s->parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL] = compress_level; s->parameters[MIGRATION_PARAMETER_COMPRESS_THREADS] = compress_thread_count; s->parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS] = decompress_thread_count; s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL] = x_cpu_throttle_initial; s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT] = x_cpu_throttle_increment; s->bandwidth_limit = bandwidth_limit; migrate_set_state(s, MIGRATION_STATUS_NONE, MIGRATION_STATUS_SETUP); s->total_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); return s; } static GSList *migration_blockers; void migrate_add_blocker(Error *reason) { migration_blockers = g_slist_prepend(migration_blockers, reason); } void migrate_del_blocker(Error *reason) { migration_blockers = g_slist_remove(migration_blockers, reason); } void qmp_migrate_incoming(const char *uri, Error **errp) { Error *local_err = NULL; static bool once = true; if (!deferred_incoming) { error_setg(errp, "For use with '-incoming defer'"); return; } if (!once) { error_setg(errp, "The incoming migration has already been started"); } qemu_start_incoming_migration(uri, &local_err); if (local_err) { error_propagate(errp, local_err); return; } once = false; } void qmp_migrate(const char *uri, bool has_blk, bool blk, bool has_inc, bool inc, bool has_detach, bool detach, Error **errp) { Error *local_err = NULL; MigrationState *s = migrate_get_current(); MigrationParams params; const char *p; params.blk = has_blk && blk; params.shared = has_inc && inc; if (migration_is_setup_or_active(s->state) || s->state == MIGRATION_STATUS_CANCELLING) { error_setg(errp, QERR_MIGRATION_ACTIVE); return; } if (runstate_check(RUN_STATE_INMIGRATE)) { error_setg(errp, "Guest is waiting for an incoming migration"); return; } if (qemu_savevm_state_blocked(errp)) { return; } if (migration_blockers) { *errp = error_copy(migration_blockers->data); return; } /* We are starting a new migration, so we want to start in a clean state. This change is only needed if previous migration failed/was cancelled. We don't use migrate_set_state() because we are setting the initial state, not changing it. */ s->state = MIGRATION_STATUS_NONE; s = migrate_init(¶ms); if (strstart(uri, "tcp:", &p)) { tcp_start_outgoing_migration(s, p, &local_err); #ifdef CONFIG_RDMA } else if (strstart(uri, "rdma:", &p)) { rdma_start_outgoing_migration(s, p, &local_err); #endif #if !defined(WIN32) } else if (strstart(uri, "exec:", &p)) { exec_start_outgoing_migration(s, p, &local_err); } else if (strstart(uri, "unix:", &p)) { unix_start_outgoing_migration(s, p, &local_err); } else if (strstart(uri, "fd:", &p)) { fd_start_outgoing_migration(s, p, &local_err); #endif } else { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "uri", "a valid migration protocol"); migrate_set_state(s, MIGRATION_STATUS_SETUP, MIGRATION_STATUS_FAILED); return; } if (local_err) { migrate_fd_error(s); error_propagate(errp, local_err); return; } } void qmp_migrate_cancel(Error **errp) { migrate_fd_cancel(migrate_get_current()); } void qmp_migrate_set_cache_size(int64_t value, Error **errp) { MigrationState *s = migrate_get_current(); int64_t new_size; /* Check for truncation */ if (value != (size_t)value) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", "exceeding address space"); return; } /* Cache should not be larger than guest ram size */ if (value > ram_bytes_total()) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", "exceeds guest ram size "); return; } new_size = xbzrle_cache_resize(value); if (new_size < 0) { error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", "is smaller than page size"); return; } s->xbzrle_cache_size = new_size; } int64_t qmp_query_migrate_cache_size(Error **errp) { return migrate_xbzrle_cache_size(); } void qmp_migrate_set_speed(int64_t value, Error **errp) { MigrationState *s; if (value < 0) { value = 0; } if (value > SIZE_MAX) { value = SIZE_MAX; } s = migrate_get_current(); s->bandwidth_limit = value; if (s->file) { qemu_file_set_rate_limit(s->file, s->bandwidth_limit / XFER_LIMIT_RATIO); } } void qmp_migrate_set_downtime(double value, Error **errp) { value *= 1e9; value = MAX(0, MIN(UINT64_MAX, value)); max_downtime = (uint64_t)value; } bool migrate_postcopy_ram(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_X_POSTCOPY_RAM]; } bool migrate_auto_converge(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_AUTO_CONVERGE]; } bool migrate_zero_blocks(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_ZERO_BLOCKS]; } bool migrate_use_compression(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_COMPRESS]; } int migrate_compress_level(void) { MigrationState *s; s = migrate_get_current(); return s->parameters[MIGRATION_PARAMETER_COMPRESS_LEVEL]; } int migrate_compress_threads(void) { MigrationState *s; s = migrate_get_current(); return s->parameters[MIGRATION_PARAMETER_COMPRESS_THREADS]; } int migrate_decompress_threads(void) { MigrationState *s; s = migrate_get_current(); return s->parameters[MIGRATION_PARAMETER_DECOMPRESS_THREADS]; } bool migrate_use_events(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_EVENTS]; } int migrate_use_xbzrle(void) { MigrationState *s; s = migrate_get_current(); return s->enabled_capabilities[MIGRATION_CAPABILITY_XBZRLE]; } int64_t migrate_xbzrle_cache_size(void) { MigrationState *s; s = migrate_get_current(); return s->xbzrle_cache_size; } /* migration thread support */ /* * Something bad happened to the RP stream, mark an error * The caller shall print or trace something to indicate why */ static void mark_source_rp_bad(MigrationState *s) { s->rp_state.error = true; } static struct rp_cmd_args { ssize_t len; /* -1 = variable */ const char *name; } rp_cmd_args[] = { [MIG_RP_MSG_INVALID] = { .len = -1, .name = "INVALID" }, [MIG_RP_MSG_SHUT] = { .len = 4, .name = "SHUT" }, [MIG_RP_MSG_PONG] = { .len = 4, .name = "PONG" }, [MIG_RP_MSG_MAX] = { .len = -1, .name = "MAX" }, }; /* * Handles messages sent on the return path towards the source VM * */ static void *source_return_path_thread(void *opaque) { MigrationState *ms = opaque; QEMUFile *rp = ms->rp_state.from_dst_file; uint16_t header_len, header_type; const int max_len = 512; uint8_t buf[max_len]; uint32_t tmp32, sibling_error; int res; trace_source_return_path_thread_entry(); while (!ms->rp_state.error && !qemu_file_get_error(rp) && migration_is_setup_or_active(ms->state)) { trace_source_return_path_thread_loop_top(); header_type = qemu_get_be16(rp); header_len = qemu_get_be16(rp); if (header_type >= MIG_RP_MSG_MAX || header_type == MIG_RP_MSG_INVALID) { error_report("RP: Received invalid message 0x%04x length 0x%04x", header_type, header_len); mark_source_rp_bad(ms); goto out; } if ((rp_cmd_args[header_type].len != -1 && header_len != rp_cmd_args[header_type].len) || header_len > max_len) { error_report("RP: Received '%s' message (0x%04x) with" "incorrect length %d expecting %zu", rp_cmd_args[header_type].name, header_type, header_len, (size_t)rp_cmd_args[header_type].len); mark_source_rp_bad(ms); goto out; } /* We know we've got a valid header by this point */ res = qemu_get_buffer(rp, buf, header_len); if (res != header_len) { error_report("RP: Failed reading data for message 0x%04x" " read %d expected %d", header_type, res, header_len); mark_source_rp_bad(ms); goto out; } /* OK, we have the message and the data */ switch (header_type) { case MIG_RP_MSG_SHUT: sibling_error = be32_to_cpup((uint32_t *)buf); trace_source_return_path_thread_shut(sibling_error); if (sibling_error) { error_report("RP: Sibling indicated error %d", sibling_error); mark_source_rp_bad(ms); } /* * We'll let the main thread deal with closing the RP * we could do a shutdown(2) on it, but we're the only user * anyway, so there's nothing gained. */ goto out; case MIG_RP_MSG_PONG: tmp32 = be32_to_cpup((uint32_t *)buf); trace_source_return_path_thread_pong(tmp32); break; default: break; } } if (rp && qemu_file_get_error(rp)) { trace_source_return_path_thread_bad_end(); mark_source_rp_bad(ms); } trace_source_return_path_thread_end(); out: ms->rp_state.from_dst_file = NULL; qemu_fclose(rp); return NULL; } __attribute__ (( unused )) /* Until later in patch series */ static int open_return_path_on_source(MigrationState *ms) { ms->rp_state.from_dst_file = qemu_file_get_return_path(ms->file); if (!ms->rp_state.from_dst_file) { return -1; } trace_open_return_path_on_source(); qemu_thread_create(&ms->rp_state.rp_thread, "return path", source_return_path_thread, ms, QEMU_THREAD_JOINABLE); trace_open_return_path_on_source_continue(); return 0; } __attribute__ (( unused )) /* Until later in patch series */ /* Returns 0 if the RP was ok, otherwise there was an error on the RP */ static int await_return_path_close_on_source(MigrationState *ms) { /* * If this is a normal exit then the destination will send a SHUT and the * rp_thread will exit, however if there's an error we need to cause * it to exit. */ if (qemu_file_get_error(ms->file) && ms->rp_state.from_dst_file) { /* * shutdown(2), if we have it, will cause it to unblock if it's stuck * waiting for the destination. */ qemu_file_shutdown(ms->rp_state.from_dst_file); mark_source_rp_bad(ms); } trace_await_return_path_close_on_source_joining(); qemu_thread_join(&ms->rp_state.rp_thread); trace_await_return_path_close_on_source_close(); return ms->rp_state.error; } /** * migration_completion: Used by migration_thread when there's not much left. * The caller 'breaks' the loop when this returns. * * @s: Current migration state * @*old_vm_running: Pointer to old_vm_running flag * @*start_time: Pointer to time to update */ static void migration_completion(MigrationState *s, bool *old_vm_running, int64_t *start_time) { int ret; qemu_mutex_lock_iothread(); *start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER); *old_vm_running = runstate_is_running(); ret = global_state_store(); if (!ret) { ret = vm_stop_force_state(RUN_STATE_FINISH_MIGRATE); if (ret >= 0) { qemu_file_set_rate_limit(s->file, INT64_MAX); qemu_savevm_state_complete_precopy(s->file); } } qemu_mutex_unlock_iothread(); if (ret < 0) { goto fail; } if (qemu_file_get_error(s->file)) { trace_migration_completion_file_err(); goto fail; } migrate_set_state(s, MIGRATION_STATUS_ACTIVE, MIGRATION_STATUS_COMPLETED); return; fail: migrate_set_state(s, MIGRATION_STATUS_ACTIVE, MIGRATION_STATUS_FAILED); } /* * Master migration thread on the source VM. * It drives the migration and pumps the data down the outgoing channel. */ static void *migration_thread(void *opaque) { MigrationState *s = opaque; int64_t initial_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); int64_t setup_start = qemu_clock_get_ms(QEMU_CLOCK_HOST); int64_t initial_bytes = 0; int64_t max_size = 0; int64_t start_time = initial_time; int64_t end_time; bool old_vm_running = false; rcu_register_thread(); qemu_savevm_state_header(s->file); qemu_savevm_state_begin(s->file, &s->params); s->setup_time = qemu_clock_get_ms(QEMU_CLOCK_HOST) - setup_start; migrate_set_state(s, MIGRATION_STATUS_SETUP, MIGRATION_STATUS_ACTIVE); while (s->state == MIGRATION_STATUS_ACTIVE) { int64_t current_time; uint64_t pending_size; if (!qemu_file_rate_limit(s->file)) { uint64_t pend_post, pend_nonpost; qemu_savevm_state_pending(s->file, max_size, &pend_nonpost, &pend_post); pending_size = pend_nonpost + pend_post; trace_migrate_pending(pending_size, max_size, pend_post, pend_nonpost); if (pending_size && pending_size >= max_size) { qemu_savevm_state_iterate(s->file); } else { trace_migration_thread_low_pending(pending_size); migration_completion(s, &old_vm_running, &start_time); break; } } if (qemu_file_get_error(s->file)) { migrate_set_state(s, MIGRATION_STATUS_ACTIVE, MIGRATION_STATUS_FAILED); break; } current_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); if (current_time >= initial_time + BUFFER_DELAY) { uint64_t transferred_bytes = qemu_ftell(s->file) - initial_bytes; uint64_t time_spent = current_time - initial_time; double bandwidth = transferred_bytes / time_spent; max_size = bandwidth * migrate_max_downtime() / 1000000; s->mbps = time_spent ? (((double) transferred_bytes * 8.0) / ((double) time_spent / 1000.0)) / 1000.0 / 1000.0 : -1; trace_migrate_transferred(transferred_bytes, time_spent, bandwidth, max_size); /* if we haven't sent anything, we don't want to recalculate 10000 is a small enough number for our purposes */ if (s->dirty_bytes_rate && transferred_bytes > 10000) { s->expected_downtime = s->dirty_bytes_rate / bandwidth; } qemu_file_reset_rate_limit(s->file); initial_time = current_time; initial_bytes = qemu_ftell(s->file); } if (qemu_file_rate_limit(s->file)) { /* usleep expects microseconds */ g_usleep((initial_time + BUFFER_DELAY - current_time)*1000); } } /* If we enabled cpu throttling for auto-converge, turn it off. */ cpu_throttle_stop(); end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); qemu_mutex_lock_iothread(); qemu_savevm_state_cleanup(); if (s->state == MIGRATION_STATUS_COMPLETED) { uint64_t transferred_bytes = qemu_ftell(s->file); s->total_time = end_time - s->total_time; s->downtime = end_time - start_time; if (s->total_time) { s->mbps = (((double) transferred_bytes * 8.0) / ((double) s->total_time)) / 1000; } runstate_set(RUN_STATE_POSTMIGRATE); } else { if (old_vm_running) { vm_start(); } } qemu_bh_schedule(s->cleanup_bh); qemu_mutex_unlock_iothread(); rcu_unregister_thread(); return NULL; } void migrate_fd_connect(MigrationState *s) { /* This is a best 1st approximation. ns to ms */ s->expected_downtime = max_downtime/1000000; s->cleanup_bh = qemu_bh_new(migrate_fd_cleanup, s); qemu_file_set_rate_limit(s->file, s->bandwidth_limit / XFER_LIMIT_RATIO); /* Notify before starting migration thread */ notifier_list_notify(&migration_state_notifiers, s); migrate_compress_threads_create(); qemu_thread_create(&s->thread, "migration", migration_thread, s, QEMU_THREAD_JOINABLE); } PostcopyState postcopy_state_get(void) { return atomic_mb_read(&incoming_postcopy_state); } /* Set the state and return the old state */ PostcopyState postcopy_state_set(PostcopyState new_state) { return atomic_xchg(&incoming_postcopy_state, new_state); }